# Microarray normalization and error models

Wolfgang Huber European Bioinformatics Institute

SMP3 (0.25 ul uptake)



H. Sueltmann DKFZ/MGA

Why do you need normalisation?



From: lymphoma dataset vsn package

Alizadeh et al., Nature 2000











PCR plates: tumor

## print-tip effects



q (log-ratio)



H. Sueltmann DKFZ/MGA

#### spatial effects



spotted cDNA arrays, Stanford-type

#### **Batches:** array to array differences $d_{ij} = mad_k(h_{ik} - h_{jk})$



#### A complex measurement process lies between mRNA concentrations and intensities



Why do you need statistics?

#### Which genes are differentially transcribed?

same-same

tumor-normal



## Statistics 101:

# precision

# variance→

←bias



#### accuracy→





# Basic dogma of data analysis

- Can always increase sensitivity on the cost of specificity,
- or vice versa,
- the art is to
- optimize both
- then find the best trade-off.



# ratios and fold changes

# Fold changes are useful to describe continuous changes in expression



# But what if the gene is "off" (below detection limit) in one condition?

# ratios and fold changes

The idea of the log-ratio (base 2) O: no change +1: up by factor of  $2^1 = 2$ +2: up by factor of  $2^2 = 4$ -1: down by factor of  $2^{-1} = 1/2$ -2: down by factor of  $2^{-2} = \frac{1}{4}$ 

A unit for measuring changes in expression: assumes that a change from 1000 to 2000 units has a similar biological meaning to one from 5000 to 10000.

#### What about a change from 0 to 500?

- conceptually
- noise, measurement precision



# How to compare microarray intensities with each other?

# How to address measurement uncertainty ("variance")?

How to calibrate ("normalize") for biases between samples?

# **Sources of variation**

amount of RNA in the biopsy efficiencies of

- -RNA extraction
- -reverse transcription
- -labeling
- -fluorescent detection

# Systematic

similar effect on many measurements
corrections can be estimated from data

probe purity and length distribution spotting efficiency, spot size cross-/unspecific hybridization stray signal

# Stochastic

too random to be explicitely accounted for
remain as "noise"

Calibration

Error model

# **Error models**

# describe the possible outcomes of a set of measurements

# **Outcomes depend on:**

# -true value of the measured quantity

(abundances of specific molecules in biological sample)

### -measurement apparatus

(cascade of biochemical reactions, optical detection system with laser scanner or CCD camera)

# Error models

#### **Purpose:**

- 1. Data compression: summary statistic instead of full empirical distribution
- 2. Quality control
- 3. Statistical inference: appropriate parametric methods have better power than non-parametric (this has practical, financial, and ethical aspects)

The two component model

measured intensity = offset +

 $\mathbf{Y}_{ik} = \mathbf{a}_{ik}$ 

 $a_{ik} = a_i + \varepsilon_{ik}$ 

a, per-sample offset

$$b_{ik} = b_i b_k \exp(\eta_{ik})$$

- *b*<sub>i</sub> per-sample normalization factor
- b<sub>k</sub> sequence-wise probe efficiency

 $\eta_{ik} \sim N(0, s_2^2)$ "multiplicative noise"

# The two-component model



B. Durbin, D. Rocke, JCB 2001

# Parameterization

$$y = a + \varepsilon + b \cdot x \cdot (1 + \eta)$$
$$y = a + \varepsilon + b \cdot x \cdot e^{\eta}$$

two practically equivalent forms (η<<1)

| a systematic<br>background    | same for all probes<br>(per array x color) | per array x color x<br>print-tip group |
|-------------------------------|--------------------------------------------|----------------------------------------|
| ε random<br>background        | iid in whole<br>experiment                 | iid per array                          |
| b systematic gain factor      | per array x color                          | per array x color x print-tip group    |
| η random gain<br>fluctuations | iid in whole<br>experiment                 | iid per array                          |

# Important issues for model fitting

#### Parameterization variance vs bias

## "Heteroskedasticity" (unequal variances) ⇒ weighted regression or variance stabilizing transformation

### Outliers

⇒ use a robust method

### Algorithm

If likelihood is not quadratic, need non-linear optimization. Local minima / concavity of likelihood?

#### Models are never correct, but some are useful

#### True relationship: $y = x - \frac{1}{2}x^2 + \varepsilon$ $\varepsilon$ $N(0, 0.15^2)$



# variance stabilizing transformations



derivation: linear approximation

# variance stabilizing transformations



# variance stabilizing transformations

$$f(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{v(u)}} du$$

- 1.) constant variance ('additive')  $v(u) = s^2 \implies f \propto u$
- 2.) constant CV ('multiplicative')  $v(u) \propto u^2 \Rightarrow f \propto \log u$
- 3.) offset  $v(u) \propto (u + u_0)^2 \Rightarrow f \propto \log(u + u_0)$
- 4.) additive and multiplicative

$$v(u) \propto (u + u_0)^2 + s^2 \Rightarrow f \propto \operatorname{arsinh} \frac{u + u_0}{s}$$

# the "glog" transformation







#### variance:



constant part proportional part

### **Parameter estimation**



## Least trimmed sum of squares regression



P. Rousseeuw, 1980s

- least sum of squares
- least trimmed sum of squares

"usual" log-ratio 
$$\log \frac{x_1}{x_2}$$



c<sub>1</sub>, c<sub>2</sub> are experiment specific parameters (~level of background noise)

Variance Bias Trade-Off



Signal intensity

## Variance-bias trade-off and shrinkage estimators

#### Shrinkage estimators:

pay a small price in bias for a large decrease of variance, so overall the mean-squared-error (MSE) is reduced.

Particularly useful if you have few replicates.

#### **Generalized log-ratio:**

= a shrinkage estimator for fold change

There are many possible choices, we chose "variancestabilization":

 interpretable even in cases where genes are off in some conditions

+ can subsequently use standard statistical methods (hypothesis testing, ANOVA, clustering, classification...) with less worries about heteroskedasticity than with many alternative methods

#### evaluation: effects of different data transformations





**Theoretical Quantiles** 

## "Single color normalization"

n red-green arrays ( $R_1$ ,  $G_1$ ,  $R_2$ ,  $G_2$ ,...  $R_n$ ,  $G_n$ )

#### within/between slides

for (i=1:n) calculate  $M_i = \log(R_i/G_i)$ ,  $A_i = \frac{1}{2} \log(R_i^*G_i)$ normalize  $M_i$  vs  $A_i$ normalize  $M_1...M_n$ 

#### all at once

normalize the matrix of (R, G) then calculate log-ratios or any other contrast you like

# What about non-linear effects

• Microarrays can be operated in a linear regime, where fluorescence intensity increases proportionally to target abundance (see e.g. Affymetrix dilution series)

Two reasons for non-linearity:

• At the high intensity end: saturation/quenching. This can and should be avoided experimentally - loss of data!

• At the low intensity end: background offsets, instead of  $y=k\cdot x$  we have  $y=k\cdot x+x_0$ , and in the log-log plot this can look curvilinear. But this is an affine-linear effect and can be correct by affine normalization. Nonparametric methods (e.g. loess) risk overfitting and loss of power.

#### Non-linear or affine linear?







linear

affine linear

genuinely non-linear



**Bioinformatics and computational biology solutions using R and Bioconductor,** R. Gentleman, V. Carey, W. Huber, R. Irizarry, S. Dudoit, Springer (2005).

- Variance stabilization applied to microarray data calibration and to the quantification of differential expression. W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, M. Vingron. Bioinformatics 18 suppl. 1 (2002), S96-S104.
- Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. R. Irizarry, B. Hobbs, F. Collins, ..., T. Speed. Biostatistics 4 (2003) 249-264.
- **Error models for microarray intensities.** W. Huber, A. von Heydebreck, and M. Vingron. Encyclopedia of Genomics, Proteomics and Bioinformatics. John Wiley & sons (2005).
- **Differential Expression with the Bioconductor Project**. A. von Heydebreck, W. Huber, and R. Gentleman. Encyclopedia of Genomics, Proteomics and Bioinformatics. John Wiley & sons (2005).

# **Acknowledgements**

Anja von Heydebreck (Darmstadt) **Robert Gentleman (Seattle)** Günther Sawitzki (Heidelberg) Martin Vingron (Berlin) Annemarie Poustka, Holger Sültmann, Andreas Buness, Markus Ruschhaupt (Heidelberg) **Rafael Irizarry (Baltimore) Judith Boer (Leiden) Anke Schroth (Heidelberg) Friederike Wilmer (Hilden)**