
Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

The rtracklayer package
Manipulating and visualizing genomic annotations

Michael Lawrence

January 20, 2009



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

1 Introduction

2 Managing Genomic Data (Tracks)
Constructing a track object
Accessing feature information
Subsetting tracks
Exporting and importing tracks

3 Interacting with a Genome Browser
Starting and loading tracks into a session
Displaying and configuring browser views
The browser as a data resource

4 Conclusion



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Outline

1 Introduction

2 Managing Genomic Data (Tracks)
Constructing a track object
Accessing feature information
Subsetting tracks
Exporting and importing tracks

3 Interacting with a Genome Browser
Starting and loading tracks into a session
Displaying and configuring browser views
The browser as a data resource

4 Conclusion



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Tracks and experimental data analysis

� Many data types have natural mapping to genome:
� SNPs
� Chip-seq peaks
� Methylation

� Annotation databases contain wealth of knowledge:
� Genes and exons (biomaRt)
� Conservation scores
� Transcription factor binding sites, TransFac



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Tracks and experimental data analysis

� Many data types have natural mapping to genome:
� SNPs
� Chip-seq peaks
� Methylation

� Annotation databases contain wealth of knowledge:
� Genes and exons (biomaRt)
� Conservation scores
� Transcription factor binding sites, TransFac

Goal

Integrate the analysis of experimental data with existing
annotations.



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

The rtracklayer package

The rtracklayer package is an interface (or layer) between R,
genome browsers and genomic annotations.

Feature overview

� Annotation track representation and import/export (files and
online databases)

� The control and querying of external genome browser sessions
and views.

� Currently supports UCSC browser and database.



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Case Study: Gene expression and microRNAs

Data Microarray time course of human stem cell
differentiation

Source Tewari lab at the FHCRC

Question Are microRNAs regulating gene expression during
differentiation?

Analysis

1 Find the differentially expressed genes
2 Create a track with microRNA target sites on

DE genes
3 Upload track to genome browser to view in

genomic context



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Outline

1 Introduction

2 Managing Genomic Data (Tracks)
Constructing a track object
Accessing feature information
Subsetting tracks
Exporting and importing tracks

3 Interacting with a Genome Browser
Starting and loading tracks into a session
Displaying and configuring browser views
The browser as a data resource

4 Conclusion



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Storing data on intervals
The RangedData object

� RangedData objects, defined by the IRanges package, hold
data on (genomic) intervals.

� Two components

1 The interval starts and widths, segregated by chromosome
2 The variables describing the intervals



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Constructing a track object

Preparing the data

� Used limma to find genes with changed expression after
differentiation

� Obtained microRNA target sites from MiRBase, available
from microRNA package

� Filtered the target sites for those near DE genes

� Available as dataset in rtracklayer package



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Constructing a track object

Preparing the data

� Used limma to find genes with changed expression after
differentiation

� Obtained microRNA target sites from MiRBase, available
from microRNA package

� Filtered the target sites for those near DE genes

� Available as dataset in rtracklayer package

Code

> library(rtracklayer)

> data(targets)



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Constructing a track object

Constructing the RangedData instance

1 Construct IRanges instance holding the endpoints of each
target site

2 Construct RangedData with ranges, strand, chromosome and
Ensembl transcript IDs



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Constructing a track object

Constructing the RangedData instance

1 Construct IRanges instance holding the endpoints of each
target site

Code

> targetRanges <- IRanges(targets$start, targets$end)

2 Construct RangedData with ranges, strand, chromosome and
Ensembl transcript IDs



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Constructing a track object

Constructing the RangedData instance

1 Construct IRanges instance holding the endpoints of each
target site

2 Construct RangedData with ranges, strand, chromosome and
Ensembl transcript IDs



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Constructing a track object

Constructing the RangedData instance

1 Construct IRanges instance holding the endpoints of each
target site

2 Construct RangedData with ranges, strand, chromosome and
Ensembl transcript IDs

Code

> targetTrack <- with(targets,

+ GenomicData(targetRanges, target,

+ strand = strand,

+ chrom = chrom, genome = "hg18"))



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Accessing feature information

Accessing built-in attributes

Each built-in feature attribute has a corresponding accessor
method: start, end, chrom, strand, genome

Example

> head(start(targetTrack))

[1] 7762840 11957570 91921292
[4] 86981576 54270236 195970022

Exercises

1 Get the strand of each feature in the track

2 Get the genome for the track



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Accessing feature information

Accessing built-in attributes

Each built-in feature attribute has a corresponding accessor
method: start, end, chrom, strand, genome

Exercises

1 Get the strand of each feature in the track

> head(strand(targetTrack))

[1] + + - + - -
Levels: - + *

2 Get the genome for the track



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Accessing feature information

Accessing built-in attributes

Each built-in feature attribute has a corresponding accessor
method: start, end, chrom, strand, genome

Exercises

1 Get the strand of each feature in the track

> head(strand(targetTrack))

[1] + + - + - -
Levels: - + *

2 Get the genome for the track

> genome(targetTrack)

[1] "hg18"



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Accessing feature information

Accessing data columns

Any data column (including strand) is accessible via $ and [[.

Example

> head(targetTrack$target)

[1] ENST00000054666 ENST00000196061
[3] ENST00000212355 ENST00000212369
[5] ENST00000234831 ENST00000235453
34507 Levels: ENST00000000233 ...

Exercise

Reconstruct (partially) the targets data.frame



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Accessing feature information

Accessing data columns

Any data column (including strand) is accessible via $ and [[.

Example

> head(targetTrack$target)

[1] ENST00000054666 ENST00000196061
[3] ENST00000212355 ENST00000212369
[5] ENST00000234831 ENST00000235453
34507 Levels: ENST00000000233 ...

Exercise

Reconstruct (partially) the targets data.frame

> data.frame(chrom = chrom(targetTrack),

+ start = start(targetTrack),

+ end = end(targetTrack),

+ strand = strand(targetTrack))



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Subsetting tracks

Overview of RangedData subsetting

� Often need to subset track features and data columns

� Example: limit the amount transferred to a genome browser

� Matrix style: track[i, j], where i is feature index and j is
column index

� By chromosome: track[i], where i indexes the chromosome



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Subsetting tracks

Subsetting examples and exercises

Examples

> ## get the first 10 targets

> first10 <- targetTrack[1:10,]

> ## get pos strand targets

> posTargets <- targetTrack[strand(targetTrack)=="+",]

> ## get chromosome 1 features

> chr1Targets <- targetTrack[1]

Exercise

Subset the track for all features on the negative strand of
chromosome 2



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Subsetting tracks

Subsetting examples and exercises

Examples

> ## get the first 10 targets

> first10 <- targetTrack[1:10,]

> ## get pos strand targets

> posTargets <- targetTrack[strand(targetTrack)=="+",]

> ## get chromosome 1 features

> chr1Targets <- targetTrack[1]

Exercise

Subset the track for all features on the negative strand of
chromosome 2

> chr2 <- targetTrack["2"]

> negChr2 <- chr2[strand(chr2) == "-",]



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Exporting and importing tracks

Overview of import/export

� Supported formats

BED Browser Extended Display, display-oriented,
native format of UCSC

WIG Wiggle, sparse format for quantitative data
GFF General Feature Format (versions 1, 2, and 3),

general storage, popular at EBI

� Functions: import and export

� Extensible via plugin system



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Exporting and importing tracks

Import/export examples and exercises

Examples

> export(targetTrack, "targets.bed")

> restoredTrack <- import("targets.bed")

> ## as character vector

> targetChar <- export(targetTrack, format = "gff1")

Exercises

1 Output the track to a file in the“gff” format.

2 Read the track back into R.



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Exporting and importing tracks

Import/export examples and exercises

Examples

> export(targetTrack, "targets.bed")

> restoredTrack <- import("targets.bed")

> ## as character vector

> targetChar <- export(targetTrack, format = "gff1")

Exercises

1 Output the track to a file in the“gff” format.

> export(targetTrack, "targets.gff")

2 Read the track back into R.



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Exporting and importing tracks

Import/export examples and exercises

Examples

> export(targetTrack, "targets.bed")

> restoredTrack <- import("targets.bed")

> ## as character vector

> targetChar <- export(targetTrack, format = "gff1")

Exercises

1 Output the track to a file in the“gff” format.

> export(targetTrack, "targets.gff")

2 Read the track back into R.

> targetGff <- import("targets.gff",

+ genome = "hg18")



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Outline

1 Introduction

2 Managing Genomic Data (Tracks)
Constructing a track object
Accessing feature information
Subsetting tracks
Exporting and importing tracks

3 Interacting with a Genome Browser
Starting and loading tracks into a session
Displaying and configuring browser views
The browser as a data resource

4 Conclusion



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

The genome browser interface

� rtracklayer interfaces with the UCSC genome browser

� Easily extended to support other browsers

� Workflow

1 Start a browser session
2 Load one or more tracks
3 Open one or more browser views of specific regions
4 Possibly download interesting annotations into R



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Starting and loading tracks into a session

Starting a browser session

Code

> session <- browserSession("UCSC")

The session object is a BrowserSession instance. With a session
object, one may:

� Upload and download tracks to/from the genome browser

� Create browser views

The argument "UCSC" creates a session for the UCSC browser. To
list all supported browsers:

Code

> genomeBrowsers()

[1] "UCSC"



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Starting and loading tracks into a session

Laying the target site track

Tracks may be loaded into a session with the track<-, [[<- and
$<- functions.

Example

> track(session, "targets") <- targetTrack

> ## equivalently

> session$targets <- targetTrack

Exercise

Lay a track with the first 100 features of targetTrack



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Starting and loading tracks into a session

Laying the target site track

Tracks may be loaded into a session with the track<-, [[<- and
$<- functions.

Example

> track(session, "targets") <- targetTrack

> ## equivalently

> session$targets <- targetTrack

Exercise

Lay a track with the first 100 features of targetTrack

> session$target100 <- targetTrack[1:100,]



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Displaying and configuring browser views

Choosing a region to view

� The range function returns an object representing the
genomic range of a track

� Assume we want to view a region around the first target site

1 Get the range of the first feature
2 Zoom out by a factor of 10



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Displaying and configuring browser views

Choosing a region to view

� The range function returns an object representing the
genomic range of a track

� Assume we want to view a region around the first target site

1 Get the range of the first feature

Code

> region <- range(targetTrack[1,])

2 Zoom out by a factor of 10



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Displaying and configuring browser views

Choosing a region to view

� The range function returns an object representing the
genomic range of a track

� Assume we want to view a region around the first target site

1 Get the range of the first feature
2 Zoom out by a factor of 10

Code

> region <- region * -10



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Displaying and configuring browser views

Creating a view

Code

> view <- browserView(session, region)

The view object is a BrowserView instance. With a view object,
one may:

� Change the currently visible region (pan/zoom)

� Change the visibility of tracks (show/hide)

Exercise

Create a new view with the same region as view, except zoomed
out 2X.



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Displaying and configuring browser views

Creating a view

Code

> view <- browserView(session, region)

The view object is a BrowserView instance. With a view object,
one may:

� Change the currently visible region (pan/zoom)

� Change the visibility of tracks (show/hide)

Exercise

Create a new view with the same region as view, except zoomed
out 2X.

> viewOut <- browserView(session, range(view) * -2)



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Displaying and configuring browser views

A shortcut

All of the above in a single step:

> browseGenome(targetTrack,

+ range = range(targetTrack[1,]) * -10)

A session is started, the track is loaded and a view is created
around the first target site.



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Displaying and configuring browser views

Changing view range

The range<- function sets a new visible range on a view.

Example

> ## zoom in 2X

> range(view) <- range(view) * 2

Exercise

Shift the view to the second target site



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Displaying and configuring browser views

Changing view range

The range<- function sets a new visible range on a view.

Example

> ## zoom in 2X

> range(view) <- range(view) * 2

Exercise

Shift the view to the second target site

> range(view) <- range(targetTrack[2,]) * -5



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Displaying and configuring browser views

Changing track visibility

Tracks may be shown or hidden with the visible<- function.

Example

> ## hide the Conservation track

> visible(view)["Conservation"] <- FALSE

Exercise

Make the“Ensembl Genes” track visible



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Displaying and configuring browser views

Changing track visibility

Tracks may be shown or hidden with the visible<- function.

Example

> ## hide the Conservation track

> visible(view)["Conservation"] <- FALSE

Exercise

Make the“Ensembl Genes” track visible

> visible(view)["Ensembl Genes"] <- TRUE



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

The browser as a data resource

Overview

� Many browsers are built upon large databases

� Often want to incorporate the data into an R analysis

� For UCSC, this interacts with the table browser



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

The browser as a data resource

Retrieving browser tracks

1 List available tracks

2 Download named track (e.g. “Conservation”) in currently
viewed region



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

The browser as a data resource

Retrieving browser tracks

1 List available tracks

Code

> head(trackNames(session))

targets Base Position
"ct_targets" "ruler"

Chromosome Band STS Markers
"cytoBand" "stsMap"
FISH Clones Recomb Rate
"fishClones" "recombRate"

2 Download named track (e.g. “Conservation”) in currently
viewed region



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

The browser as a data resource

Retrieving browser tracks

1 List available tracks

2 Download named track (e.g. “Conservation”) in currently
viewed region

Code

> cons <- track(session, "Conservation")

> ## or specific region

> cons <- track(session, "Conservation",

+ range(view) * 2)

> ## shortcut

> cons <- session$Conservation



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Outline

1 Introduction

2 Managing Genomic Data (Tracks)
Constructing a track object
Accessing feature information
Subsetting tracks
Exporting and importing tracks

3 Interacting with a Genome Browser
Starting and loading tracks into a session
Displaying and configuring browser views
The browser as a data resource

4 Conclusion



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Beyond rtracklayer

� rtracklayer operates in the context of genome browsers

� Bioconductor has other sources of annotations:
� The annotation packages
� biomaRt



Outline Introduction Managing Genomic Data (Tracks) Interacting with a Genome Browser Conclusion

Session info

> sessionInfo()

R version 2.9.0 Under development (unstable) (--)

i686-pc-linux-gnu

locale:

C

attached base packages:

[1] stats graphics grDevices

[4] utils datasets methods

[7] base

other attached packages:

[1] rtracklayer_1.3.7 RCurl_0.91-0

loaded via a namespace (and not attached):

[1] BSgenome_1.11.9

[2] Biostrings_2.11.18

[3] IRanges_1.1.33

[4] Matrix_0.999375-17

[5] XML_1.98-1

[6] grid_2.9.0

[7] lattice_0.17-20

[8] tools_2.9.0


	Outline
	Introduction
	Managing Genomic Data (Tracks)
	Constructing a track object
	Accessing feature information
	Subsetting tracks
	Exporting and importing tracks

	Interacting with a Genome Browser
	Starting and loading tracks into a session
	Displaying and configuring browser views
	The browser as a data resource

	Conclusion

