A ChIP-Seq Data Analyis

19 November, 2009

Contents

1 Introduction 1
1.1 Example data 1
1.2 The mouse genome 2
2 Coverage, islands, and depth 3
2.1 Processing multiple lanes 5
2.2 Peaks 7
3 Differential expression 10
4 Version information 12

1 Introduction

Our goal in this section of the course is to describe the use of Bioconductor software to perform some basic tasks in the analysis of ChIP-Seq data. We will use the chipseq, IRanges and ShortRead packages, and also use the lattice package for visualization.

```
> library(ChIPseqTutorial)
```


1.1 Example data

The data folder contains two data files, each containing information for three chromosomes from one Solexa lane, one from a mouse ChIP-seq experiment done with CTCF antibodies, and one with GFP antibodies (as a background control). The raw reads were aligned to the reference genome (mouse in this case) using an external program (MAQ), and the results read in using the readAligned function in the ShortRead package. All duplicate reads were removed and a quality score cutoff of 5 was used.

```
> data(ctcf, package="ChIPseqTutorial")
> data(gfp, package="ChIPseqTutorial")
```

```
ctcf and gfp are objects of class AlignedRead.
> ctcf
class: AlignedRead
length: 484957 reads; width: 24 cycles
chromosome: chr10 chr10 ... chr12 chr12
position: 3011944 3012936 ... 121253739 121255103
strand: - + ... + +
alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24
> gfp
class: AlignedRead
length: 316176 reads; width: 24 cycles
chromosome: chr10 chr10 ... chr12 chr12
position: 3002512 3008979 ... 121255999 121256287
strand: + - ... + +
alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24
```

Further information on each alignment can be obtained using various accessor functions whose names are hinted at in the summarized display. For example,

```
> table(strand(ctcf))
- 
> table(chromosome(gfp))
    chr10 chr11 chr12
104970 120707 90499
```


1.2 The mouse genome

The data we have refer to alignments to a genome, and only makes sense in that context. Bioconductor has genome packages containing the full sequences of several genomes. The one relevant for us is

```
> library(BSgenome.Mmusculus.UCSC.mm9)
> mouse.chromlens <- seqlengths(Mmusculus)
> head(mouse.chromlens)
    chr1 chr2 chr3 chr4 chr5 chr6
197195432 181748087 159599783 155630120 152537259149517037
```

We will only make use of the chromosome lengths, but the actual sequence will be needed for motif finding, etc.

2 Coverage, islands, and depth

Extending reads Solexa gives us the first few (24 in this example) bases of each fragment it sequences, but the actual fragment is longer. By design, the sites of interest (transcription factor binding sites) should be somewhere in the fragment, but not necessarily in its initial part. Although the actual lengths of fragments vary, extending the alignment of the short read by a fixed amount in the appropriate direction, depending on whether the alignment was to the positive or negative strand, makes it more likely that we cover the actual site of interest. We will extend the aligned regions to a length of 150 bases.

The extended regions can be summarized by their coverage, that is, how many times each base in the genome was covered by one of them.

```
> cov.ctcf <- coverage(ctcf, width = mouse.chromlens, extend = 126L)
> cov.ctcf
SimpleRleList of length 3
$chr10
'integer' Rle of length 129993255 with 310773 runs
    Lengths: 3011817 150 882 86 5 3 3 2 6 8 ...
    Values : 0 1 0 1 2 3 4 5 6 7 ...
$chr11
'integer' Rle of length }121843856\mathrm{ with }389113\mathrm{ runs
    Lengths: 3001523 150 100 150 182 150 296 150 372 150 ...
    Values : 0 1 0 1 0 1 0 1 0 1 ...
$chr12
'integer' Rle of length 121257530 with 258228 runs
    Lengths: 3015326 150 2738 150 25008 150 2242 150 11892 150 ...
    Values : 0 1 0 1 0 1 0 1 0 1 ...
> cov.ctcf$chr10
'integer' Rle of length 129993255 with 310773 runs
    Lengths: 3011817 150 882 86 5 3 3 2 6 8 ...
    Values : 0 1 0 1 2 3 4 5 6 7 ...
```

For efficiency, the result is stored in a run-length encoded (Rle) form.
The regions of interest are contiguous segments of non-zero coverage, also known as islands. Islands can be identified by slicing the coverage at a depth of 1 :

```
> islands <- slice(cov.ctcf$chr10, lower = 1)
> islands
Views on a 129993255-length Rle subject
```


For each island, we can compute its area, i.e. the sum of the coverage values within the island, and the maximum coverage value (here, we use the function head to display results only for the first few islands).

```
> viewSums(head(islands))
[1] 150 2100}10150 150 150 300
> viewMaxs(head(islands))
[1] }101
> nread.tab <- table(viewSums(islands) / 150L)
> depth.tab <- table(viewMaxs(islands))
> head(nread.tab, 10)
```

1	2	3	4	5	6	7	8	9	10
80172	13548	2756	797	324	209	185	119	116	93

> head(depth.tab, 10)

1	2	3	4	5	6	7	8	9	10
80230	14750	2124	472	240	184	153	121	115	107

Exercise 1

Repeat these steps for the gfp dataset.

2.1 Processing multiple lanes

Although data from one chromosome within one lane is often the natural unit to work with, we typically want to apply any procedure to the data from all chromosomes and from all lanes. We can recursively apply a summary function to all chromosomes using the lapply function. Here is a simple summary function that computes the frequency distribution of the number of reads per island.

```
> islandReadSummary <- function(cov)
+ {
+ s <- slice(cov, lower = 1)
+ tab <- table(viewSums(s) / 150)
+ ans <- data.frame(nread = as.numeric(names(tab)),
+ count = as.numeric(tab))
+ ans
+ }
```

Applying it to our test-case, we get

```
> head(islandReadSummary(cov.ctcf$chr10))
```

 nread count
 $1 \quad 180172$
$2 \quad 213548$
$3 \quad 3 \quad 2756$
$4 \quad 4 \quad 797$
$5 \quad 5 \quad 324$
$6 \quad 6 \quad 209$

We can now use it to summarize the full dataset.

```
> nread.islands <- lapply(cov.ctcf, islandReadSummary)
> nread.islands <- do.call(make.groups, nread.islands)
> head(nread.islands)
    nread count which
chr10.1 1 80172 chr10
chr10.2 2 }13548\mathrm{ chr10
chr10.3 3 2756 chr10
chr10.4 4 797 chr10
chr10.5 5 324 chr10
chr10.6 6 209 chr10
```

Note the use of the make.groups function from the lattice package, which combines several data frames into a single data frame that includes a further column which indicating which of the data frames each row came from.

```
> xyplot(log(count) ~ nread | which, data = nread.islands,
+ subset = (nread <= 20), pch = 16, type = c("p", "g"))
```


If reads were sampled randomly from the genome, then the null distribution of the number of reads per island would have a geometric distribution; that is,

$$
P(X=k)=p^{k-1}(1-p)
$$

where p is the probability a randomly drawn read starts within a given interval of length 150 . In other words, $\log P(X=k)$ is linear in k. Although our samples are not random, we can estimate p if we assume that the islands with just one or two reads are representative of the null distribution.

```
> xyplot(log(count) ~ nread | which, data = nread.islands,
+ subset = (nread <= 20),
+ pch = 16,
+ panel = function(x, y, ...) {
+ panel.grid(h = -1, v = -1)
+ panel.lmline(x[1:2], y[1:2], col = "black")
+ panel.xyplot(x, y, ...)
+ })
```


We can create a similar plot of the distribution of depths.

```
> islandDepthSummary <- function(cov)
+{
+ s <- slice(cov, lower = 1)
+ tab <- table(viewMaxs(s))
+ ans <- data.frame(depth = as.numeric(names(tab)), count = as.numeric(tab))
+ ans
+ }
```

```
> depth.islands <- lapply(cov.ctcf, islandDepthSummary)
> depth.islands <- do.call(make.groups, depth.islands)
> xyplot(log(count) ~ depth | which, depth.islands,
+ subset = (depth <= 20), pch = 16,
+ panel = function(x, y, ...) {
+ panel.grid(h = -1, v = -1)
+ lambda <- 2 * exp(y[2]) / exp(y[1])
+ null.est <- function(xx) {
+ xx * log(lambda) - lambda - lgamma(xx + 1)
+ }
+ log.N.hat <- null.est(1) - y[1]
+ panel.lines(1:10, -log.N.hat + null.est(1:10), col = "black")
+ panel.xyplot(x, y, ...)
+
    })
```

This assumes that the null distribution of depths has a Poisson distribution, which is not strictly true, but seems to give a reasonble fit.

Exercise 2

Produce similar plots for the gfp dataset. What qualitatitve differences do you see? Based on your findings, what would be a reasonbale cutoff for deciding that the depth of an island is too high to be explained by chance, and hence is likely to contain a CTCF binding site?

2.2 Peaks

Going back to our example of chr10 of the first sample, let us define "peaks" to be contiguous regions of the genome where coverage is 8 or more. (More sophisticated, model-based or adaptive algorithms exist, and we refer to the literature in this active area of research).

```
> peaks <- slice(cov.ctcf$chr10, lower = 8)
> peaks
```

Views on a 129993255-length Rle subject
views:
start end width
$\left.\begin{array}{rrrrlrrrrrrrrrrrrrr}{[1]} & 3012963 & 3013104 & 142 & {[8} & 8 & 8 & 8 & 9 & 10 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & \ldots\end{array}\right]$

Interesting properties of peaks are their maximum depth and area under the peak (a relative measure of how localized the peak is).
> peak.depths <- viewMaxs (peaks)
> peak.areas <- viewSums(peaks)
> xyplot(peak.areas ~ peak.depths)

Exercise 3

Produce a similar plot for the gfp dataset. What differences do you see, particularly in terms of the number of peaks and the distribution of depths?

We can order the peaks by depth

```
> wpeaks <- tail(order(peak.depths), 4)
> peaks[wpeaks]
Views on a 129993255-length Rle subject
views:
```


and plot individual peaks using this function:

```
> coverageplot <- function (peaks, xlab = "Position", ylab = "Coverage", ...)
+ {
+ pos1 <- seq(start(peaks[1]), end(peaks[1]))
+ cov1 <- as.integer(peaks[[1]])
+ pos1 <- c(head(pos1, 1), pos1, tail(pos1, 1))
+ cov1 <- c(0, cov1, 0)
+ xyplot(cov1 ~ pos1, ..., panel = panel.polygon,
+ col = "lightgrey", xlab = xlab, ylab = ylab)
+
+ }
> coverageplot(peaks[wpeaks[1]])
```


Exercise 4

How does the amount by which each read is extended affect the analysis? In calls to coverage, we have used extend=126L to get a total length of 150 for each read. Try lengths of 100 and 200 and see how the results change.

3 Differential expression

How can we determined which of the peaks present in the CTCF data are not present in GFP? Here is a list of all peaks, across all chromosomes

```
> allPeaks <- slice(cov.ctcf, lower = 8)
```

reads) under the peak

```
> ctcf.counts <- aggregate(cov.ctcf, allPeaks, sum)
```

The return value is a list-of-integers, each element of the list corresponding to a chromosome, and each member of the integer vector the number of reads under the corresponding peak; in your R session, display ctcf.counts to understand its structure. We can do the same for GFP

```
> cov.gfp <- coverage(gfp, width = mouse.chromlens, extend = 126L)
> gfp.counts <- aggregate(cov.gfp, allPeaks, sum)
```

To coordinate the data, lets put this into a RangedData object, converting the list-of-integers into a simple integer vector

```
> counts <- RangedData(allPeaks,
+ CTCF=as.integer(ctcf.counts),
+ GFP=as.integer(gfp.counts))
```

Finally we can display the counts. We do this by mapping the RangedDatta object into a standard data.frame to make it easier to use in standard R functions, transform the count data using the inverse hyperbolic sin (asinh) as a way of accomodating the non-normal distribution of the data, and use xyplot from lattice to plot the relationship between counts.

```
> xyplot(asinh(CTCF) ~asinh(GFP)|space, as.data.frame(counts),
+ aspect="iso")
```


Each
point represents a peak. Points on the diagonal correspond to peaks of comparable height in CTCF and GFP; these are not biologically interesting. Points parallel ot the y-axis at asinh (GFP) equal to 0 reprsent peaks present exclusively in the CTCF lane, whereas points above the diagonal represent points over-represented in CTCF; these are the biologically interesting peaks. We can retrieve these peaks with straight-forward operations, such as subsetting and ordering the data frame based on (a) absence of GFP and (b) number of reads in the CTCF lane. For instance, on chromosome 10 we have

Exercise 5

There are a number of avenues for exploration at this point. The peaks can be exported to a genome browser (using rtracklayer's export function). Identified peaks can be annotated using Bioconductor annotation packages or ChIPseq Anno. Count data from multiple samples could be compared using the statistical analysis tools available in edgeR or baySeq. And importantly, alternative paths through the analysis can be readily explored. Pursue some of these suggestions!

4 Version information

- R version 2.10.0 Patched (2009-11-16 r50456), x86_64-unknown-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8, LC_MONETARY=C, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, graphics, grDevices, methods, stats, utils
- Other packages: Biostrings 2.14.5, BSgenome 1.14.1, BSgenome.Mmusculus.UCSC.mm9 1.3.16, chipseq 0.2.0, ChIPseqTutorial 0.0.1, IRanges 1.4.6, lattice 0.17-26, ShortRead 1.4.0
- Loaded via a namespace (and not attached): Biobase 2.6.0, grid 2.10.0, hwriter 1.1, tools 2.10.0

