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Tools of Choice

* R and BioConductor:
— Both created by Robert Gentleman;
— Open-source tools;
— Easy to prototype;
— Communicate with C/C++/Fortran;

Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS




About R

Cross-plataform;

Data analysis and visualization;

Fast deployment to users;

Able to interact with C/C++/Fortran;

Thousands of packages:

— Descriptive analyses;

— Clustering and classification;
— Regression Models and Trees;
— Visualization;

— Reproducible research;

— Etc;



About Bioconductor

Software infra-structure that uses R;
Designed for biological data;

Hundreds of packages:

— Mass spectrometry;

— Microarrays;

— Next Generation Sequencing (NGS);
Active community:

— Heavily used by industry;

— Releases in April and October;
— Cutting-edge methods.



Illumina Products

MiSeq HiSeq




Illumina Products

MiSeq HiSeq
e 2x75bp~24h:3.8Gb e 1x36bp~29h:144Gb
* 2x300bp ~65h:15Gb  2x50bp ~ 60h :400Gb

e 2x100bp ~ 120h : 800Gb
e 2x150bp~ 144h:1Tb



lllumina HiSeq X Ten

Considering the Human Genome @ 30x;
320 Genomes per week;
1500 Genomes per month;

18000 Genomes per year;

Note: HiSeq 2500 ~ 10 Genomes per week



How does RNA-Seq work?
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Select RNA fraction of interest
(poly(A), ribo-minus and others)

AAA s AAA
AAA AAA
AAA

s— A AA
l Fragment and reverse transcribe

l Sequence, map onto genome

Quantitate
(relative, absolute, nonmolar and others)

—— o ™ Pepke et. al. (2009)



How does RNA-Seq work?

Intron

pre-mRNA
Exon

MRNA

Short read is split by
intron when aligning
to reference Genome T



Pipeline for Analysis
Raw Data Mappin
¢ (ShortRead)
S * . ﬁ




Relatively Large Files

* |n our pilot experiment (per sample):
— FastQ: 20GB per strand;
— BAM: 8GB;
— Counts: 250KB;
— Temporary Files: 2 x 20GB per strand;
— Total: ~ 130GB!

* The example above: RNA-Seq on Rats;

 For Human samples, when sequencing DNA,
files are in average 10x bigger;



RAW DATA



Instrument
Run ID
Flowcell ID
Lane

Tile number
Xin tile

Y in tile

Mate

Fail filter
Control bits
Index seq

Inside a FASTQ File

[benilton@bioinfl tmp]$ head -n 4 *

==> JCQ1_GCCAAT_LO@1_R1.fastq <==
@HWI-ST932:92:C1EUIACXX:1:1101:1206:2174 1:N:0:GCCAAT
GAAGGCAGCAGGCGCGCAAATTACCCACTCCCGACCCGGGGAGGTAGTGACGAL

+
@@@DD3DBFH8?DCGEHIIIGIICHGHDDGGHEGIGIIBEDCB>5>@CCACBEB

==> JCQ1_GCCAAT_LOQ1_R2.fastq <==
@HWI-ST932:92:C1EUIACKX:1:1101:1206:2174 2:N:0:GCCAAT
CTGCGGTATCCAGGCGGCTCGGGCATGCTTTGAACACTCTAATTTTTTCAAAGT

+

@<@DDDDDDFBFHGGGGBAAGGHB®>FF@F IG@FGEEGIEHE ; CEHHDEE@CCC
[benilton@bioinfl tmp]l$




b

The Mistery of the Quality Scores

S5SS5 555555555555 5555555555555 55555555555 S cceececccccccccccccccscscccscsscsscsssscsssscsssscsssccsccscsses
P $ 9.9 9 0. 999 0.0.0.9.0.0.0.90.0.0.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.0.0.0.9.0.0.0.0 0. QU

3 59 64 73 104 126
Dececccccssscccccccnnnsnsns 26cc031lcccccss 40
-5000 0 oooooooo 9 ooooooooooooooooooooooooooooo 40
Dcecccaansns . 40
D0c2cccccnnscccccsssnsnnss 26cc031lccccccss 41
- Sanger Phred+33, raw reads typically (0, 40)
- Solexa Solexa+64, raw reads typically (-5, 40)
- Illumina 1.3+ Phred+64, raw reads typically (0, 40)
- Illumina 1.8+ Phred+33, raw reads typically (0, 41)



The Mistery of Quality Scores

Base 1:

-G/@

@ =31

PHRED =31
-10*log10(1-P) = 31
P =0.9992057

[benilton@bioinfl tmpl$ head -n 4 *

==> TCO1_GCCAAT_LOQ1_R1.fastq <==
@HWI-ST932:92:C1EUIACXX:1:1101:1206:2174 1:
GAAGGCAGCAGGCGCGCAAATTACCCACTCCCGACCCGGGGAGC
+

@2@@DD3DBFH8?DCGEHITIIGIICHGHDDGGHEGIGIIBEDCB

==> ICO1_GCCAAT_LOQ1_R2.fastq <==
@HWI-ST932:92:C1EUIACXX:1:1101:1206:2174 2:
CTGCGGTATCCAGGCGGCTCGGGCATGCTTTGAACACTCTAA

+
@<@DDDDDDFBFHGGGGBAAGGHB®>FF@F IGRFGEEGIEHE ;(
[benilton@bioinfl tmp]l$




QUALITY ASSESSMENT



FastQC

We have experience with FastQC, but we are
developing our own tool;

FastQC is Java-based;

ncludes the option of pointing and clicking;

nttp://www.bioinformatics.babraham.ac.uk/

projects/fastgc/Help/3%20Analysis

%20Modules/




FastQC — Per Base Seq Quality
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FastQC — Quality S

Good
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FastQC — Sequence Content

Good Poor

Sequence content across all bases Sequence content across all bases
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FastQC — Sequence Duplication

Good
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MAPPING



Principles of Mapping

* Obtain the reference (genome or
transcriptome) for the organism of interest:
* Mapping to the genome:
— Allows for identification of novel genes/isoforms
— Must allow for gaps (really hard)

 Mapping to the transcriptome:
— Fast(er)
— No need for spliced alignments
— Can’t find novel genes/isoforms



Principles of Mapping

Genome alignment (e.g. align to 23 chromosomes):

paired-end read

easy to align hard to align

— L e

exon 1 exon 2 exon 3

— insert size ﬁ

Transcriptome alignment (e.g. align to 150,000 known transcripts):

paired-end read

easy to align easy to align
A “~

I B B (ranscriptome

exon 1 exon 2 exon3

l— insert size —l



Result of Mapping: SAM/BAM

HWI-ST932:92:C1EUIACXX:1:2213:6821:52150 113
1 171448 197 10M1D90M = 171448
100 GTCGCAACTTGGAGCTTGCCTGAACATGCCTCACAGAATCCAAACACA

GGACACAGAGCACAGCAGCCAGGACCATTTAAGAAGGCTTAGCTACTACGCG
8=DCCCeCCCDDDDBCCCEFEDDDCFHHIIGIGIIIIIIFEHF=F?IIHGFGBIII
IGHHIIJIIIIGGFDCIGIJIHEHGGEEJIFGHFDHDDDDFCC@ SA:1:0
SH:1:91 NH:1i:1

op Description

Alignment match (can be a sequence match or mismatch
Insertion to the reference

Deletion from the reference

Skipped region from the reference

Soft clip on the read (clipped sequence present in <seq>)

Hard clip on the read (clipped sequence NOT present in <seq>)

o T 0O 2 0O = =X

Padding (silent deletion from the padded reference sequence)



COUNT TABLE



The BAM isn’t the final file

BAM files give the location of mapped reads;

But, per individual, how many reads should be
considered as from any particular gene?

The count table represents this;

It can be obtained through
GenomicAlignments, HTSeq, Rsubread and
EasyRNASeq;



Count-table Example

(1 (2 3 T1 T2 T3
ENSRNOG00000010603 0 0 0 0 0 1
ENSRNOGO0000033787 4289 7831 12489 5904 5033 4619
ENSRNOGO0000014887 3 / / 1 3 3

ENSRNOG@0000045753 0 0 / 0 0 2
ENSRNOGO0000048290 9 11 /11 6 5
ENSRNOGO000000A1689 233 375 406 489 405 266




STATISTICAL MODELING



What is a model?




Different Transcripts,
Rates and Probabilities

\ ing
laser
light
® //
| cross-section through flow cell at third cycle /) / cycle 3
Number of fra : , |
umber of fragments:
/\/ . " ;,'_,/"/




Different Transcripts,
Rates and Probabilities

* s |
Number of fragments: .\
Poisson Distribution | |




Characteristics of a
Poisson Distribution

e X~ Poisson(Ap)

k _—\p
k! ;

e Mean: Ap

* Variance: Ap




Analysis method: GLM

Noise Part Expected count of
region iin sample j

N;; ~ Poisson (4,9
log ui; = s;+ Z Bik Tk 4
k

Design matrix

Deterministic Library size (Differential) effect
Part effect for region i



Need to account for extra variability

© _
o

] technical rep — consistent with Poison
g — biol. rep — not consistent with Poison
N
o
o _ __—-
o I I I I

1 10 100 1000
mean Based on the data of Nagalakshmi et al.

Science 2008; slide adapted from Huber;



Characteristics of a
Negative Binomial (NB) Distribution

X | Ap ~ Poisson(Ap)
Ap ~ Gamma(a, b)
Mean:

Variance: p/v
O<v<l

Current methods for
DE use NB model!

Allow these to change!!!




Sequencing — Rationale
Biological Replicates
* For subject j, on transcript i:
YijlAij ~ P(Aij)
* Different subjects have different rates, which
we can model through:

)\’ij ™~ F(&a 6)
* This hierarchy changes the distribution of Y:

|
anNB(a, >
1+p




An additional source of variation

N;j|mi; ~ Poisson (n;,)

Tig ’Mz’j ~ (Gamma (51(,“@‘3')7 st(ﬁbij)z1
moot

Ni .~ NB ('uij’ Oé('u’ij)) dispersion-mean

It

lOg quj — Sj -+ Z /B’kak] | relation a

k
Design
matrix
Deterministic Library size (Differential) effect
Part effect for region i



Summary of the
Poisson and Negative Binomial Models

* Poisson(A):

— Mean: A
— Variance: A g’

* Negative Binomial (a, 1/(1+pB)): é e
— Mean: o/B _ h
— Variance: a(1+pB)/p2 mean of normalize

= o/ +o/p? =mmean+ 1/a *

Shot Biological
noise noise



Example: DE / DEU
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Summary of Models
Treatment (x;) as Covariate

Gene Expression / DESeq

Nii o NB(s 55 o
Expression in control tJ ( 352372 (MZ]))
0
log luZ] ™~ 57, _I_ 67, ij Change for treatment

Alternative Exon Usage / DEXSeq

Niji ~ NDB(sjij, a(piji))

log piji ~ B8 +Bixy + By + B v

Fraction of reads falling Change to fraction of reads
onto exon [ in control for exon / due to treatment



dispersion

Variance Shrinkage

Dispersion estimation: shrinkage

o
o
+ —
()

7 :

dispersion outliers:

élr; N log(@gene-est) - log(afit) > 2 Grob
()

. ® gene-est
o * fitted
S * final
1 — ...—
= l I |

1e-01 1e+01 1e+03 1e+05

mean of normalized counts



fold change
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Remember the variance effect!

Variance changes as mean changes...

fold change

This seriously affects visualization;

—r

It also interferes with comparisons; © T eanof normalized o

One needs to adjust variance before
performing clustering, visualization, PCA;

DESeq2 has a “regularized log-transformation”
method designed for that.



Count
0 2 4 6

Color Key
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Clustering

treated : single-read
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The Truth Statistical Models

There is no “correct model”;
Models are approximations of the truth;
There is a “useful model”;

Understand the mechanisms of the system for
better choices of model alternatives;



THINGS THAT STATISTICIAN SAYS...



The Experiment

* A procedure used to answer the questions;

 Comprised of multiple items:
— Population;
— Sample;
— Hypotheses;
— Test statistic;

— Rejection criteria;



Population

* Superset of subjects of interest;

* |deally, every subject in the population is
surveyed;

* |ssues with the “census approach”;



Sample

Select some subjects from the population;

We refer to this subset as sample;

Su
Re

pject in a sample can be called replicate;

olicate: technical vs. biological;



Hypotheses

* Sets that define the “underlying truth”;

* Null Hypothesis (HO): default situation.
— Cannot be proven;
— Reject (in favor of H1) vs. fail to reject;

e Alternative Hypothesis (H1): alternative (duh!)
— Complements HO on the parametric space;
— Assists on the definition of the rejection criteria.



Examples of Hypotheses

* Comparing expression: Tumor vs. Normal:
— Expressions on tumor and normal are the same;

— Expressions on tumor and normal are different;

Ho : pr = pn
Hf“:,uT>,uN
Hf:,uT<,uN

Hy:pr = pun
Hy : pr # pn



Test Statistic

Summary of the data;

Built “under HO”;

Independent of unknown parameters;
Known distributions;

Compatibility between data and HO;



Test Statistic

* What the statistician see...

Xri~ N(ur,0°)  Xr~ N(ur,0°/n)

Xni~ N(un,0%) Xy~ N(un,0%/n)
If Ho :pr = pn

Xr— Xy

Then 7 —
/202 /n

~ N(0,1)



Rejection Criteria

* Function of three factors:
— Test statistic;
— Hypotheses;
— Type | Error (False Positive), a;

* Determines thresholds used to reject HO:
* Defines what is “extreme” for the experiment;



Rejection Criteria

0.3

Ho:pr=pun 5°
H].:ILLT#ILLN 5 -

- V202 /n -



From Rejection Criteria to P-value!

o

p-value

Ho : pr = un i

Hy:pr # pn ;-

e 1.
o

XT L XN -3 -2 -1 0 - 1 2 3

Z — ~ ]V(O7 1) Test Statistic
V202 /n




What if we look at
multiple p-values at a time?
* On a Gene Expression study, we test often 20K
genes for differential expression;
* Each test leads to one p-value;

* Should we trust the p-values in order to make
decisions?



What if we look at
multiple p-values at a time?

Can we simulate this?

Choose an c-level;

Generate two populations with the same pars;
Run t-test;

Is the result smaller than «?
—Yes: reject;
— No: don’t reject;



Multiple Testing

 We are doing high-throughput experiments;
 Comparing thousands of units simultaneously;

e At this scale, we can observe several instances
of rare events just by chance:
— Event A: 1 in 1000 chance of happening;
— Event B: 999 in 1000 chance of happening;
— And the experiment is tried 20,000 times;

— We expect 20 occurrences of Event A to be
observed, although Event B is much more likely;



Multiple Testing

Similar scenario, for example, with DE;

Most genes are not differentially expressed;
High-throughput experiments;

Differential expression is tested for 20K genes;
Need to protect against false positives;

Suggestion:
— use non-specific filtering;
— use adjusted p-values;



Type | and Type Il Errors

.
.
.
-
-

You’re not
pregnant

You’re
pregnant




Non-Specific Filtering

 The majority of the genes are not differentially

expressed — this is the basic hypothesis for
normalization;

* |f we reduce the number of genes to be

tested, the chance of making a wrong decision
is reduced;

* Non-Specific filtering refers to removing genes
that are clearly not DE without looking at the
phenotypic information of the samples;



Using Variance as a Filter

Differentially Expressed Not-Differentially Expressed



FDR — Benjamini Hochberg (BH)

* Sort the p-values by magnitude;
* Get the adjusted values by

Jo=max<{j:p; < —a;p

p
0.00 002 004 006 0.08

0 500 1000 1500 2000

index



ADDITIONAL STUFF TO REMEMBER!



Useful Facts

* The Law of the Large Numbers guarantees
that the larger the sample size is, the closer
the sample average is to the actual mean;

* Normality assumption isn’t that important
with large sample size;

e The Central Limit Theorem states that the
average is asymptotically normal;



Useful Facts

* The Z-score depends on the precise
knowledge of the variance term:

X —
7 =2"F0 U N(0,1)
Vv o2/n
* Estimating the variance changes the
distribution of the test statistic:

X_
T — HO

\V/02/n

~ 1,



Useful Facts

 The Student’s t distribution is similar to the
Normal distribution, but has heavier tails;

e Larger sample size, more d.f.;
* More d.f., closer to Normal;



DO | REALLY NEED A STATISTICIAN
BEFORE | EVEN RUN MY EXPERIMENT?



Sample size is crucial

The larger, the better;
Ideal N = (SS | have) / (SS it costs)

With differential expression, one can observe
this more easily;

RNASegPower BioConductor package;



About Technology

* |s RNA-Seq really worth it when we consider:
— Cost,
— Strategies for analysis, and
— Technical requirements?



Can my experiment answer the
guestion of interest?

112(3|4|5|(6|7|8})1(2|3|4(5|6|7|8)J1|2|3|(4|5|6|7|8)1|2|3|4|5|6|7|38

Flow Cell 1 Flow Cell 2 Flow Cell 3 Flow Cell 4

Group A Group B Group C Group D



Differential Expression Across Groups
Flow Cell Confounded With Group

112(3|4|5|(6|7|8})1(2|3|4(5|6|7|8)J1|2|3|(4|5|6|7|8)1|2|3|4|5|6|7|38

Flow Cell 1 Flow Cell 2 Flow Cell 3 Flow Cell 4

Group A Group B Group C Group D



Differential Expression Across Groups
Randomize Samples wrt Flow Cell

112(3|14,5|6|7|8})1(2|3|4|5|/6|7|8)1|2|3|4|5(6|7|8)1|2|3(4|5|6|7]|8

Flow Cell 1 Flow Cell 2 Flow Cell 3 Flow Cell 4



Differential Expression Across Groups
Barcoding vs. Lane Effect

112|3|4|5|6|7|8Q§1|2|3|4|5|6|7|8Q1|2|3|4|5|6|7|8Q1|2|3|4|5|6|7]8

Flow Cell 1 Flow Cell 2 Flow Cell 3 Flow Cell 4




