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Why single cells?

Y, vector of expression values.
Bulk gene expression: >, Y;.
But what about:

o The cell-to-cell variance of
each gene (Var Y})?

o Clusters of cells or latent
structure (E[Y]Z])?

o Cellular coexpression
(CovY)? or probabilistic
independences?

Biological averaging has
convolved over variables of
interest.




Bimodality and single cell gene expression

A defining characteristic is
bimodality in expression (Flatz
2011, Powell 2012, McDavid
2013, Marinov 2014).

Some (gene dependent)
fraction of the time, little or no
expression is detected.

Given detection, expression is
symmetric and bounded away
from zero.
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Cause of bimodality

o Fluorescent in-situ hybridization
experiments: mRNA often
zero-inflated, log-normal
distributed.

o Transcription occurs in bursts while "= 16 Cxelt
DNA is uncoiled and accessible,
followed by stochastic decay.

01‘0“ 10" 102 10° 10° 10" 102 10°
o Consistent with zero-inflation of Log mRNA count + 1 (FISH)
single-cell gPCR and sequencing.

Shalek, et al, 2013
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Are zeros limits of detection or censoring?

o N 10-cell equivalents = 10N the
expression of a single cell
equivalent

o Single molecule capture efficiency
varies from 90% to 20%
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» Similar relationships for the frequency of expression



Hurdle models

o Both rate of zeros and mean % [HJURP| [KIF23 [TOP2A Proportion
. € 15- Expressing
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Hurdle model
Y; is log-expression in cell i. Then

Yi=U;V; and U; LV,
U; ~ Normal(y;, 72),
V; ~ Bernoulli(p;).
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Hurdle models
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Hurdle linear model

Let

pi =X/ 8,
logit p; = X/ '
be linear functions of covariates. Then we can do ANOVA and

linear regression using the Hurdle model.
The log-likelihood of a sample of n cells, given p;(3) and p;(3’) is

n

L(pi, piry) = Z [1[)/,-#0] logit p; + log(1 — p,-)} +

i=1 d

Bernoulli
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Cell cycle experiment (Dennis, et al [2014])

o 333 genes, 930 cells, sorted by cell cycle (GO/G1, S, G2/M)

o 119 known, ranked genes associated with cell cycle from a
bulk expression data base (cyclebase.org)

o Compare number of ranked and unranked genes discovered at
a given P-values using:
Binomial: logistic regression on 1), = 1,
Gaussian: linear regression on y
Hurdle: joint regressions on 1, and y
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Hurdle model extensions and applications

@ Empirical Bayesian regularization to borrow strength across
genes.

Uj ~ Normal(,u,-j,TJ?),

7'1-2 ~ Inverse-Gamma(a, b).

@ Stablity under linear separation with Cauchy prior on
logistic coefficients.

® Mixed models, in which the between-individual and
within-individual variability is parametrized.

@ Parametric graphical modeling on zero-inflated data to
estimate gene-gene interactions

® Competitive gene set enrichment analysis.
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Tfh and HIV (Swiss Institute for Vaccine Research)

o Scientific question: how does HIV alter
the expression profile of Tfh-maturation
and signaling genes?

o 16 donors, recent HIV naive to
anti-retroviral therapy, and healthy
controls. Lymph biopsies.

o Two cell populations: CXCR5-PD1T,
CXCR5+PD1+ (Tth)
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Tfh and HIV (Swiss Institute for Vaccine Research)
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Competitive Gene Set Enrichment

@ Vector of expression estimates ﬁAg and 32, for genes
8 = 1, ey Nc;.

@ Geneset C

1 Gene gisin set
C.| =
(] {o Else

and its complement D =1 — C.

@ Expression in the set vs expression outside the set:

_Cc7B B D73
ICll. D1

by comparing ¢ to Normal(0, Var(¢)).
@ Need an estimate of Var(J).
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Var(d) and non-independence

Expression between genes dependent, so Cov(ﬁ;,Bj) # 0 in general.
Estimate covariance matrix A = [\;] = Cov(j;, 3;), then

Var C’™3\ C'AC
1Cll1 ICllf
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Proximate and future work

o Power/sample size calculations

o Gene expression matrices Y, in donor k for condition i over
genes j=1,...,J.
Test condition effect 5; # 0 over the donor
super-population.

Super-population variability Var(5;;) might be similar between
genes, like shrinkage models for dispersions: 1imma, deseq?2,
edgeR, etc.

o More useful decompositions of parameters for Hurdle models

o Clustering on zero-inflated data
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More Reading

o Finak G., McDavid A., Yajima M, et al (2015). MAST: a
flexible statistical framework for assessing transcriptional
changes and characterizing heterogeneity in single-cell RNA
sequencing data. Genome Biology.

o Dennis, L., McDavid, A., Danaher, P., et al (2014). Modeling
bi-modality improves characterization of cell cycle on gene
expression in single cells. PLoS Computational Biology.

o McDavid, A., Finak, G., Chattopadyay, P. K., et al (2013).
Data Exploration, Quality Control and Testing in Single-Cell
gPCR-Based Gene Expression Experiments. Bioinformatics.

o http://github.com/RGLab/MAST — use branch
summarizedExpt
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http://github.com/RGLab/MAST

Goal

o Learn how to filter, explore and test for differential expression.
o Join me in eating this delicious dog food.
o Package to be submitted to Bioconductor for fall release, on

github in the meantime.

i

1
i

HEREIYOU.GO!IBOY:
SOUPSION:

MAITAnalysis Vignette

devtools::install_github(’RGLab/MAST@summarizedExpt’)

library (MAST)

vignette (’MAITAnalysis’)

file.edit(system.file(’doc/MAITAnalysis.R’,
package="MAST’))




o Want a unique key for rows (ENSEMBLE ids vs entrez ids vs
UCSC transcript ids)

o Also want a human-readable default key for plots
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Infelicities

o Want a unique key for rows (ENSEMBLE ids vs entrez ids vs
UCSC transcript ids)

o Also want a human-readable default key for plots

o Hard to tell what your contrasts are with model .matrix.

Easy to get the wrong answer. Important for power
calculations.

17 /18



Infelicities

o Want a unique key for rows (ENSEMBLE ids vs entrez ids vs
UCSC transcript ids)

o Also want a human-readable default key for plots

o Hard to tell what your contrasts are with model .matrix.
Easy to get the wrong answer. Important for power
calculations.

o heatmap, heatmap2

17 /18



Infelicities

o Want a unique key for rows (ENSEMBLE ids vs entrez ids vs
UCSC transcript ids)

o Also want a human-readable default key for plots

o Hard to tell what your contrasts are with model .matrix.
Easy to get the wrong answer. Important for power
calculations.

o heatmap, heatmap2, pheatmap

17 /18



Infelicities

o Want a unique key for rows (ENSEMBLE ids vs entrez ids vs
UCSC transcript ids)

o Also want a human-readable default key for plots

o Hard to tell what your contrasts are with model .matrix.
Easy to get the wrong answer. Important for power
calculations.

o heatmap, heatmap2, pheatmap, aheatmap

17 /18



Infelicities

o Want a unique key for rows (ENSEMBLE ids vs entrez ids vs
UCSC transcript ids)

o Also want a human-readable default key for plots

o Hard to tell what your contrasts are with model .matrix.
Easy to get the wrong answer. Important for power
calculations.

o heatmap, heatmap2, pheatmap, aheatmap,
complexheatmap

17 /18



Infelicities

o Want a unique key for rows (ENSEMBLE ids vs entrez ids vs
UCSC transcript ids)

o Also want a human-readable default key for plots

o Hard to tell what your contrasts are with model .matrix.
Easy to get the wrong answer. Important for power
calculations.

o heatmap, heatmap2, pheatmap, aheatmap,
complexheatmap, heatmapTheAwakening

17 /18



Acknowledgments

External Collaborators

Mario Roederer mxﬁxfyﬁmmem nanoString
Lucas Dennis Infectious Diseases ra——— S A
Martin Prlic ’f/‘ FREDHUTCH  SWISSVJACCINE
Giuseppe Pantaleo ]

Dan Lu and Bill LY Stanfor

Roblnson MEDICINE

Fred Hutch and UW

Statistics RO1 EB008400 from the
Raphael Gottardo National Institute of

Greg Finak Biomedical Imaging and
Masanao Yajima Bioengineering

18 /18



