Workshop

CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets

Malgorzata Nowicka

University of Zurich

BioC 2017: Where Software and Biology Connect

Boston, 28 July 2017

Have you analyzed CyTOF or flow cytometry data before?

My approach to this workshop

- This is just a shorter version of the original workflow
- The text is basically the same but maybe try to not focus on it so much, as you can carefully read it later
- Ideally, I would do the life coding but because of the time constrains, I will:
 - explain all the code in the vignette (html file)
 - copy-paste to R, to follow with you and have the opportunity to modify some things if needed

Introduction

CyTOF (mass cytometry) experiment

Introduction

- High-dimensional cytometry because it is higher than before (from ~12 to ~40)
- We refer to this differential approach as "classic"
 - Common strategy:
 - identify cell populations of interest by manual gating or automated clustering
 - determine which of the cell subpopulations or protein markers are associated with a phenotype of interest using statistical tests
- Other approaches:
 - Citrus (Bruggner et al. 2014)
 - CellCnn (Arvaniti and Claassen 2016)
- Hybrid approaches (thanks to the modularity)
- This workflow can serve as a template

Overview

- Data description
- Data pre-processing (CATALYST pckg)
- Data import flowCore pckg
- 4. Data transformation arcsinh with cofactor 5
- 5. Spot checks
 - MDS plots (limma pckg)
- 6. Cell clustering with FlowSOM and ClusterConsensusPlus pckgs
 - overclustering + manual merging
- Visualization of the clusters with
 - t-SNE Rtsne pckg
 - heatmaps pheatmap pckg
 - ggplot pckg
- 8. Differential analysis with linear mixed models (Ime4 and multcomp pckgs)
 - diff. cell population abundance
 - diff. marker expression

Data description

- Subset of data from the Bodenmiller et al. 2012 study; used mass cytometry to measure PBMC's
 - from 8 different patients
 - after 11 different stimulation conditions as well as an unstimulated "Reference" state
- Here, we use the samples that correspond to the BCR-crosslinking and Reference
- For each sample, 10 cell surface markers and 14 signaling markers were measured

Data pre-processing

- The pre-processing steps in the Bodenmiller data, as we can download it, included removal of debris and de-barcoding
- In general, pre-processing steps may involve:
 - normalization using bead standards
 - de-barcoding
 - compensation
- CATALYST pckg

Data import

- All the data is available at the Robinson Lab server http://imlspenticton.uzh.ch/robinson_lab/ cytofWorkflow/
- Downloading using the download.file()
 - Metadata
 - FCS files
 - Panel file
 - Files with cluster merging

Data import: expr

Data transformation

- Skewed distributions
 - Hard to distinguish between positive and negative populations
- Magic transformation arcsinh (hyperbolic inverse sine) with cofactor 5
 - linear for the lower expression,
 - logarithmic for the higher expression,
 - works for the negative and zero values (they do not have to be excluded from the analysis)

Diagnostic plots – quick look on

- Plot with per-sample marker expression distributions, colored by condition
 - Identify problematic samples or markers
- Cell counts in samples
- MDS plot (or PCA plot)
 - Standard usage in the RNA-seq analysis
 - Generated with the plotMDS() function from the limma pckg
 - As we want to plot samples we need to summarize the information about cells to the sample level

MDS plot: expr_median_sample_tbl

MDS plot

Cell population identification

- Manual gating
- Comparison of clustering algorithms by Lukas Weber et al., Cytometry Part A, 2016
- FlowSOM (+ ClusterConsensusPlus) one of the best performing methods and super fast
- 3 steps:
 - Building of the self-organizing map (SOM) with the BuildSOM function - cells are assigned according to their similarities to 100 grid points (or, so-called codes) of the SOM
 - 2. Building of a minimal spanning tree, which is mainly used for graphical representation of the clusters
 - Metaclustering of the SOM codes performed directly with the ConsensusClusterPlus function

Over-clustering

- Some level of over-clustering is necessary, in order to detect somewhat rare populations
- In addition, merging can always follow an overclustering step, but splitting of existing clusters is generally not feasible

Over-clustering

Over-clustering into 20 groups

CD45

CD3

CD123

Merging by an expert

Statistical testing – differential abundance

Statistical testing – differential abundance

Statistical testing – differential abundance

The generalized linear mixed model (GLMM) for each cell population

Y - number of CD4 cells

 π – proportion of CD4 cells

m – total number of cells

$$i = 1,...,8 - patient ID$$

j = 1, 2 - condition

$$Y \sim Bin(m,\pi)$$

$$logit(\pi_{ij}) = \beta_0 + \beta_1 x_{ij} + \xi_{ij} + \gamma_i$$

- observation-level random effects $|\xi_{ij}| \sim N(0,\sigma_{\xi}^2)$
- random intercept for each patient $\gamma_i \sim N(0, \sigma_\gamma^2)$

Statistical testing – differential expression of signaling markers

Statistical testing – differential expression of signaling markers

Statistical testing – differential expression of signaling markers

The linear mixed model (LMM) for each cell population

Y – median expression of marker in CD4 cells

$$Y \sim N(\mu, \sigma^2)$$

$$i = 1,...,8 - patient ID$$

 $j = 1, 2 - condition$

$$Y_{ij} = \beta_0 + \beta_1 x_{ij} + \epsilon_{ij} + \gamma_i$$

$$\epsilon_{ij} \sim N(0, \sigma^2)$$

random intercept for each patient

$$\gamma_i \sim N(0, \sigma_\gamma^2)$$