Workshop

CyTOF workflow: differential discovery in
high-throughput high-dimensional cytometry
datasets

Malgorzata Nowicka
University of Zurich

BioC 2017: Where Software and Biology Connect
Boston, 28 July 2017



Have you analyzed CyTOF or flow
cytometry data before?



My approach to this workshop

* This is just a shorter version of the original
workflow

* The text is basically the same but maybe try to
not focus on it so much, as you can carefully
read It later

 |deally, | would do the lite coding but because
of the time constrains, | will:

— explain all the code in the vignette (html file)

— copy-paste to R, to follow with you and have the
opportunity to modify some things if needed



Introduction

CyTOF (mass cytometry) experiment
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Introduction

High-dimensional cytometry because it is higher than
before (from ~12 to ~40)

We refer to this differential approach as “classic”

— Common strategy:

« identify cell populations of interest by manual gating or automated
clustering

« determine which of the cell subpopulations or protein markers are
associated with a phenotype of interest using statistical tests

Other approaches:

— Citrus (Bruggner et al. 2014)
— CellCnn (Arvaniti and Claassen 2016)

Hybrid approaches (thanks to the modularity)
This workflow can serve as a template



Overview
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Data description
Data pre-processing (CATALYST pckg)
Data import — flowCore pckg
Data transformation - arcsinh with cofactor 5
Spot checks
—  MDS plots (limma pckg)
Cell clustering with FlowSOM and ClusterConsensusPlus pckgs
— overclustering + manual merging
Visualization of the clusters with
— 1-SNE - Rtsne pckg
— heatmaps - pheatmap pckg
— ggplot pckg
Differential analysis with linear mixed models (Ime4 and multcomp
pckgs)
— diff. cell population abundance
— diff. marker expression



Data description

« Subset of data from the Bodenmiller et al. 2012
study; used mass cytometry to measure PBMC's
— from 8 different patients
— after 11 different stimulation conditions as well as an
unstimulated "Reference’ state
« Here, we use the samples that correspond to
the BCR-crosslinking and Reference

« For each sample, 10 cell surface markers and
14 signaling markers were measured



Data pre-processing

* The pre-processing steps in the Bodenmiller
data, as we can download it, included removal
of debris and de-barcoding

* |In general, pre-processing steps may involve:

— normalization using bead standards
— de-barcoding

— compensation

« CATALYST pckg



Data import

e All the data is avallable at the Robinson Lab

server http://imlspenticton.uzh.ch/robinson_lab/
cytofWorkflow/

« Downloading using the download.file()
— Metadata
— FCS files
— Panel file

— Files with cluster merging



Data import: expr
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Data transformation

Mass cytometry
Linear Arcsinh cofactor 5

« Skewed distributions
— Hard to distinguish between positive and negative populations

« Magic transformation - arcsinh (hyperbolic inverse sine)

with cofactor 5
— linear for the lower expression,
— logarithmic for the higher expression,

— works for the negative and zero values (they do not have to be
excluded from the analysis)

Figure adapted from Bendall et al. Science 2011



Diagnostic plots — quick look on

* Plot with per-sample marker expression
distributions, colored by condition

— ldentity problematic samples or markers

« Cell counts in samples
« MDS plot (or PCA plot)

— Standard usage in the RNA-seq analysis

— Generated with the plotMDS() function from the
limma pckg

— As we want to plot samples we need to summarize
the information about cells to the sample level
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MDS plot

MDS2
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Cell population identification

Manual gating

Comparison of clustering algorithms by Lukas
Weber et al., Cytometry Part A, 2016

FlowSOM (+ ClusterConsensusPlus) one of the best
performing methods and super fast

3 steps:

1. Building of the self-organizing map (SOM) with the
BuildSOM function - cells are assigned according to
their similarities to 100 grid points (or, so-called codes)
of the SOM

2. Building of a minimal spanning tree, which is mainly
used for graphical representation of the clusters

3. Metaclustering of the SOM codes performed directly with
the ConsensusClusterPlus function



Over-clustering

« Some level of over-clustering is necessary, in
order to detect somewhat rare populations

 In addition, merging can always follow an over-
clustering step, but splitting of existing clusters
IS generally not feasible



Over-clustering

Over-clustering into 20 groups

Median marker expression of data normalized to O-1
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Merging by an expert

Median marker expression of data normalized to 0-1
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Statistical testing — differential abundance
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Statistical testing — differential abundance

proportion
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proportion

Statistical testing — differential abundance
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The generalized linear mixed model (GLMM) for each cell population

Y — number of CD4 cells
M — proportion of CD4 cells
m — total number of cells

,...,8 — patient ID
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Statistical testing — differential expression of signaling markers
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Statistical testing — differential expression of signaling markers
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Statistical testing — differential expression of signaling markers
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