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The importance of distance

Any clustering or classification of samples and/or genes involves
combining or identifying objects that are close or similar to each
other.

Distances or similarities are mathematical representations of what
we mean by close or similar.

The choice of distance is extremely important and should not be
taken lightly. In some cases, a Euclidean metric will be sensible
while in others a Manhattan metric will be a better choice.

Generally, some experience or subject matter knowledge is very
helpful in selecting an appropriate distance for a given project.
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Metrics and distances

A metric, d, satisfies the following five properties

(i) non–negativity d(a, b) ≥ 0;

(ii) symmetry d(a, b) = d(b, a);

(iii) identification mark d(a, a) = 0;

(iv) definiteness d(a, b) = 0 if and only if a = b;

(v) triangle inequality d(a, b) + d(b, c) ≥ d(a, c).

We can also consider pairwise distances, which are functions that
are required to satisfy the first three properties only.

We will refer to distances which include metrics and only mention
metrics when the behavior of interest is specific to them.
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Similarity functions

A similarity function S is more loosely defined and satisfies the
three following properties

(i) non–negativity S(a, b) ≥ 0;

(ii) symmetry S(a, b) = S(b, a);

(iii) The more similar the objects a and b, the greater S(a, b).
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Distances

There is a great deal of choice (and hence literature) on selecting a
distance function.

Some books that pay particular attention to distances in the
context of classification and clustering include

• Section 4.7 of Duda, Hart, & Stork (2000);

• Chapter 2 of Gordon (1999);

• Chapter 1 of Kaufman and Rousseeuw (1990);

• Chapter 13 of Mardia, Kent, & Bibby (1979).

When some variables are continuous and others categorical, there
are more choices and the implications of the different choices
should be weighed carefully.
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Examples of distances

• Euclidean metric (possibly standardized);

• Mahalanobis metric;

• Manhattan metric;

• Minkowski metric (special cases are Euclidean and Manhattan
metrics);

• Canberra metric;

• One–minus–correlation;

• etc.
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Distances between clusters

For many clustering algorithms, distances between groups
(clusters) of observations will be necessary. There are a number of
different ways of defining a distance between groups, or between
one observation and a group of observations.

Single linkage The distance between two clusters is the minimum
distance between any two objects, one from each cluster.

Average linkage The distance between two clusters is the average
of all pairwise distances between the members of both clusters.

Complete linkage The distance between two clusters is the
maximum distance between two objects, one from each cluster.

Centroid distance The distance between two clusters is the
distance between their centroids. The definition of centroid
may depend on the clustering algorithm being used.
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Distances between clusters

The choice of distance measure between clusters has a large effect
on the shape of the resulting clusters.

For instance, single linkage leads to long thin clusters, while
average linkage leads to round clusters.
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Gene expression data

Gene expression data on G genes (features) for n mRNA samples
(observations)

mRNA samples

XG×n =




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xG1 xG2 . . . xGn




Genes

xgi = expression measure for gene g in mRNA sample i.

An array of conormalized arrays.
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Table 1: Metrics and distances.

Name Formula

Euclidean metric dE(xi, xj) = {∑
g wg(xgi − xgj)2}1/2

Unstandardized wg = 1

Standardized by s.d. wg = 1/s2
g.

(Karl Pearson distance)

Standardized by range wg = 1/R2
g.

Mahalanobis metric dMl(xi, xj) = {(xi − xj)S−1(xi − xj)
′}1/2

= {∑
g

∑
g′ s

−1
gg′ (xgi − xgj)(x

g′i − x
g′j)}1/2

where S = (s
gg′ ) is any G × G positive definite matrix, usually

the sample covariance matrix of the variables.

When the matrix is the identity, this reduces to the

unstandardized Euclidean distance.

Manhattan metric dMn(xi, xj ) =
∑

g wg|xgi − xgj |
Minkowski metric dMk(xi, xj) = {∑

g wg|xgi − xgj |λ}1/λ, λ ≥ 1.

λ = 1: Manhattan distance

λ = 2: Euclidean distance

Canberra metric dC (xi, xj ) =
∑

g
|xgi−xgj |
(xgi+xgj)

One minus Pearson correlation dcorr(xi, xj ) = 1−
∑

g(xgi−x̄.i)(xgj−x̄.j)

{∑
g(xgi−x̄.i)

2}1/2{∑
g(xgj−x̄.j)2}1/2

The formulae refer to distances between observations (arrays).
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Distances

Distances may need to be extended in various ways to deal with
different types of problems.

Weights may be incorporated in any of the distances above to deal
with different types of variables. For example, mixing patient level
covariates with gene expression values may be best dealt with by
weighting.

In other cases, one might want to consider mixed versions of the
distances. Again, if mixing patient level covariates (e.g. categorical
variables) together with gene expression measures, then the
Euclidean distance might be appropriate for the gene expression
data, but not for the patient level data.

Weighted distances may also be used for the purpose of feature
selection in classification (see lecture on classification).
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Standardization

• Standardization of the features is an important issue when
considering distances between objects.

• Samples or genes are assigned to classes on the basis of their
distance from other objects.

• The distance or similarity function that is used generally has a
large effect on the performance of the classification or
clustering procedure.

• The distance function and its behavior are intimately related to
the scale on which measurements are made.

• There are no objective methods for dealing with this problem.
The solution is generally problem specific.
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Standardization

A common type of data transformation for continuous
measurements is standardization.

For microarray data both genes and/or observations (arrays) can be
standardized. Which of the two should be carried out is dependent
upon whether samples or genes are being clustered or classified.

Standardizing genes

xgi ← (xgi − x̄g.)/sg.,

so that each gene has mean zero and unit variance across arrays.

Standardizing arrays

xgi ← (xgi − x̄.i)/s.i,

so that each array has mean zero and unit variance across genes.
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Standardizing genes

• Gene standardization in some sense puts all genes on an equal
footing and weighs them equally in the classification or
clustering. Common standardization procedures are

• xgi ← xgi−x̄g.

sg.
,

where x̄g. and sg. denote respectively the average and standard deviation

of gene g’s expression levels across the n arrays.

• xgi ← xgi−mg.

madg.
,

where mg. and madg. denote respectively the median and median absolute

deviation (MAD) of gene g’s expression levels across the n arrays. These

are robust estimates of location and scale.

• xgi ← xgi−xg(1)

xg(n)−xg(1)
,

where xg(j) denote the ordered expression levels for gene g,

xg(1) ≤ xg(2) ≤ . . . ≤ xg(n).
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Standardizing arrays

Standardization of arrays can be viewed as part of the
normalization step.

It is consistent with the common practice of using the correlation
between the gene expression profiles of two mRNA samples to
measure their similarity.

In practice, we recommend more general adaptive and robust
normalization methods which correct for intensity, spatial, and
other types of bias using robust local regression (see lecture on
pre–processing).
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Table 2: Impact of standardization of observations and variables on
the distance function.

Distance between observations Standardize Standardize

variables observations

Euclidean, wg = 1 Changed Changed

Euclidean, wg = 1/s2
g. Unchanged Changed

Mahalanobis Changed, unless S diagonal Changed

One minus Pearson correlation Changed Unchanged
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Standardization

Note the relationship between the Euclidean distance dE(·, ·)
between standardized vectors and the distance defined as one
minus the Pearson correlation:

dE(x,y) =
√

2m(1− rxy),

where rxy denotes the Pearson correlation between the m–vectors x
and y.
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Affymetrix versus cDNA arrays

A main difference between these two technologies is that
Affymetrix arrays are typically used to measure the overall
abundance of a probe sequence in a target sample, while cDNA
arrays typically measure the relative abundance of a probe
sequence in two target samples (one of the two samples is often a
reference sample used in multiple experiments).

The expression measures for Affymetrix arrays are typically
absolute (log) intensities, while they are (log) ratios of intensities
for cDNA arrays.
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Affymetrix versus cDNA arrays

Hence, there is a belief that the expression measures of different
genes can be compared directly for cDNA arrays but not for
Affymetrix arrays.

The distinction is somewhat artificial, since one could always take
ratios of expression measures from an Affymetrix experiment with
some reference sample and hence have data that are the equivalent
of cDNA data.

Whether there is any real difference between the use of absolute
and relative expression measures depends on the distance that is
being considered.
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Absolute versus relative expression measures

Consider the standard situation where we have xgi represent the
absolute log expression measure for gene g on patient
sample/array i.

Let ygi = xgi − xgA, where patient A is our reference sample. Then
the relative expression measures ygi represent the standard data
from a cDNA experiment with a common reference sample.

Use of relative expression measures amounts to a location
transformation for each gene, cf. gene centering.
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Absolute versus relative expression measures

For m–vectors x = (x1, . . . , xm) and y = (y1, . . . , ym), consider
distance functions of the form

d(x,y) = F
(
d1(x1, y1), . . . , dm(xm, ym)

)
,

where dk are themselves distance functions.

E.g. the Minkowski metric : dk(xk, yk) = |xk − yk| and
F (z1, . . . , zm) = (

∑m
k=1 zλ

k )1/λ.

The representation is quite general. There is, in particular, no need
for the dk to all be the same.
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Absolute versus relative expression measures

First, suppose that we want to measure the distance between
patient samples i and j. Then

d(y.i,y.j) = F
(
d1(y1i, y1j), . . . , dG(yGi, yGj)

)

= F
(
d1(x1i − x1A, x1j − x1A), . . . , dG(xGi − xGA, xGj − xGA)

)
.

If all of the dk(ak, bk) are simply functions of ak − bk, then
d(y.i,y.j) = d(x.i,x.j) and it does not matter if we look at relative
(the y’s) or absolute (the x’s) expression measures.

Examples include the Minkowski metric.
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Absolute versus relative expression measures

Suppose now that we are interested in the distance between
genes and not samples. If

d(yg.,yj. + a) = d(yg.,yj.)

for any vectors yg. and yj. and for any scalar a, then the distance
will be the same for both absolute expression measurements and
relative expression measurements.

One minus the Pearson correlation is a distance with this property.
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Absolute versus relative expression measures

Thus, for Minkowski distances (e.g. Euclidean), the distance
between samples is the same for relative (cDNA) and absolute
(Affymetrix) expression measures. This does not hold for the
distance between genes.

For the one minus Pearson correlation distance, the distance
between genes is the same for relative (cDNA) and absolute
(Affymetrix) expression measures. This does not hold for the
distance between samples.
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Absolute versus relative expression measures

Distance between

samples genes

Minkowski Unchanged Changed

One–minus–correlation Changed Unchanged

Changed (unchanged) means that absolute and relative expression
measures yield different (the same) results.
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Absolute versus relative expression measures

One can argue in favor of both of these properties, i.e., invariance
of (i) gene distances or (ii) sample distances, for absolute and
relative expression measures.

In general, the correct way in which to analyze the data will
depend on the biological question of interest and the relative merits
of the two types of expression measures.
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