Lab 6: Classification Using R and Bioconductor

June 4, 2003

We continue our extended example involving the dataset from ?. In this lab, we will
use some of the different R routines.
We will concentrate on the following list

e knn
e lda
® sSvin

neural networks

The R packages you will need to carry out this tutorial are
e Biobase, annotate, genefilter

e 1071

e nnet, MASS (from the VR bundle)

library(Biobase)
library(annotate)
library(golubEsets)
library(genefilter)
library(nnet)
library(mva)
library(e1071)
library(class)
library(bioclabs)
library (MASS)

vV VVVVVVVVYV

We will set up the data from scratch once again.

VVVVVVVVVVYV+4++++++V ++++ + +V

mmfilt <- function(r = 5, d = 500, na.rm = TRUE) {
function(x) {
minval <- min(2°x, na.rm = na.rm)
maxval <- max(2°x, na.rm = na.rm)
(maxval/minval > r) && (maxval - minval > d)

}
}
GolubTrans <- function(eSet) {

X <- exprs(eSet)

X[X < 100] <- 100

X[X > 16000] <- 16000

X <- log2(X)

eSet@exprs <- X

eSet
}
data(golubTrain)
data(golubMerge)
data(golubTest)
gTrn <- GolubTrans(golubTrain)
gTest <- GolubTrans(golubTest)
gMerge <- GolubTrans(golubMerge)
mmfun <- mmfilt()
ffun <- filterfun (mmfun)
sub <- genefilter(gTrn, ffun)
sub[c (2401, 3398, 4168)] <- FALSE
sum (sub)

[1] 3051

V VVVVVVVYV

gTrnS <- gTrn[sub,]

gTestS <- gTest[sub,]

gMergeS <- gMerge[sub,]

Ytr <- paste(golubTrain$ALL.AML, golubTrain$T.B.cell)
Ytr <- sub("NA", "", Ytr)

Ytest <- paste(golubTest$ALL.AML, golubTest$T.B.cell)
Ytest <- sub("NA", "", Ytest)

Ymerge <- paste(golubMerge$ALL.AML, golubMerge$T.B.cell)

Ymerge <- sub("NA", "", Ymerge)

For the most part we will concentrate on developing supervised learning models for
the ALL.AML categories. We will rely on the training set to build a model and then use

the test set to establish its prediction error.

Since this is reasonably wasteful of the data resources, we will, if time permits, explore
the use of the whole data set and cross-validation.

In this tutorial we make the assumption that all the data have been obtained, pro-
cessed (expression levels estimated and normalization has been carried out). Performing
those tasks is the subject of a separate tutorial.

In some sense the purpose of classification is to develop a model and to estimate all
of its parameters so that when a new case is provided its class can be predicted. One
problem that will arise with microarray data (and many other types of high throughput
data) is that comparison of microarrays relies on co-normalization and none of the nor-
malization methods in common use let you normalize a new array with out access to all
arrays. This new normalization generally alters the estimated expression values on all
arrays (although typically by only a small amount).

We now outline the four steps that need to be carried out for classification.

1. Feature selection: includes transformation.

2. Model selection: select a distance, model etc.

3. Model fitting: use the training set to determine the model parameters.
4. Model assessment: use the test set to estimate the error rate.

In all cases much more can be learned by referring to the manual pages and other
resources such as 7. For Bioconductor packages there are additional documentation re-
sources in the form of vignettes and How'To’s that are supplied with each of the packages
or from the Bioconductor web site (www.bioconductor.org).

1 Gene filtering

One of the first tasks that must be carried out when analysing expression data is to filter
out those genes that are unlikely to be of interest. The Affymetrix U68 gene chips have
measurements on 7129 different expressed sequence tags (ESTS). Some of these ESTs
map to the same genes and others are there for quality control purposes. However,
the chips provide estimates of the expression of mRNA for about 6000 different human
genes.

In any particular tissue (for these data the tissue of interest is either blood or bone
marrow) it has been estimated that about 40 percent of the genome is expressed. There
are also certain genes that are expressed at more or less constant levels in all samples,
these genes are sometimes referred to as house—keeping genes. Our first step is to remove
the unexpressed genes and the house keeping genes so that the computational burden is
reduced and we have a better chance of finding relevant information.

Once the filtering has been done the vector sub is a logical vector (it contains TRUE
or FALSE) indicating which ESTs have passed the tests. The datasets can then be subset
using this vector and we can proceed with our analysis.

www.bioconductor.org

Feature Selection

We still have far too many genes to do much with and so we must filter them down a
bit. There are many different ways that this can be done.

You could for example use edd to find those genes that look like they are mixtures
and use only those genes. You could select genes that are used in a particular pathway;,
genes that show much more variation in one group than in the other. There a very, very
many different ways to select genes.

In the interest of expediency we will use the genes selected in Lab 2 by Anova filtering.

> data(gfaF)

> gTrA <- gTrnS[gfaF,]

> gTedA <- gTestS[gfaF,]

> gMeA <- gMergeS[gfaF,]

> whBadl <- (apply(gTrA@exprs, 1, mad) == 0)
> whBad2 <- (apply(gTeA@exprs, 1, mad) == 0)
> whBad <- whBadl | whBad2

> sum(whBad)

[1] 37

> gTrA <- gTrA[!whBad,]
> gTeA <- gTeA[!whBad,]
> gMeA <- gMeA[!whBad,]

A problem with the methods used to filter genes now surfaces. We have a number
of genes that really are not showing much variation and we will have to remove them to
proceed with the analysis. Our standardization procedure will be to subtract the median
and divide by the MAD. So we remove all genes for which the MAD is 0. We are now
down to 150 genes.

> star <- function(x) (x - median(x))/mad(x)
> TrExprs <- t(apply(exprs(gTrA), 1, star))
> TeExprs <- t(apply(exprs(gTeA), 1, star))
> MeExprs <- t(apply(exprs(gMeA), 1, star))

This transoformation makes all the genes comparable. This is often reasonable since
we have no a priori reason to favor one gene over another. Other choices may be
appropriate for other situations.

Classification

We now consider some of the different classification tools that are available.
First we consider the discriminant analysis functions.

4

Discriminant Analysis

> gTr.lda <- lda(t(TrExprs), Ytr)
> plot(gTr.1lda)
> preds.lda <- predict(gTr.lda, t(TeExprs))
> table(preds.lda$class, Ytest)
Ytest
ALL B-cell ALL T-cell AML

ALL B-cell 12 0 1

ALL T-cell 7 1 1

AML 0 0 12

An alternative to linear discriminant analysis is logistic discrimination.

> library(nnet)
> gTr.mult <- multinom(factor(Ytr) ~ ., data = data.frame(t(TrExprs)),
+ maxit = 250)

weights: 456 (302 variable)
initial value 41.747267

iter 10 value 0.007824

iter 20 value 0.000461

iter 30 value 0.000127

final wvalue 0.000097
converged

> tEdf <- data.frame(t(TeExprs))
> log.preds <- predict(gTr.mult, data.frame(t(TeExprs)))
> table(log.preds, Ytest)

Ytest
log.preds ALL B-cell ALL T-cell AML
ALL B-cell 6 0 1
ALL T-cell 10 1 1
AML 3 0 12

2 Non-parametric rules

Among the most popular of the non-parametric methods is k-nearest neighbors. The
idea is to classify each point according the majority vote of its k£ nearest neighbors.

Small values of k£ make the classifier quite local. Large values of k£ make it more
global. The selection of k could be made via cross-validation.

All distances are Euclidean (and there is currently no option to allow you you set it).

So even though most people cluster genomic data using one minus the correlation
much of the classification is done on Euclidean distances. This is mainly due to a lack
of software that is flexible enough to allow the user to select any distance that they feel
is appropriate.

> knnl <- knn(t(TrExprs), t(TeExprs), factor(Ytr), k = 1)
> table(knnl, Ytest)

Ytest
knn1 ALL B-cell ALL T-cell AML
ALL B-cell 8 0 1
ALL T-cell 7 1 1
AML 4 0 12

> knn3 <- knn(t(TrExprs), t(TeExprs), factor(Ytr), k = 3)
> table(knn3, Ytest)

Ytest
knn3 ALL B-cell ALL T-cell AML
ALL B-cell 6 0 3
ALL T-cell 9 1 2
AML 4 0 9

> knnb5 <- knn(t(TrExprs), t(TeExprs), factor(Ytr), k = 5)
> table(knnb, Ytest)

Ytest
knnb ALL B-cell ALL T-cell AML
ALL B-cell 2 0 1
ALL T-cell 13 1 3
AML 4 0 10

Cross-validation

We now use the expression values from the merged data set and the knn.cv function
from the class library. This function leaves out each observation in turn and predicts its
class on the basis of distances to those samples retained.

> knnl.cvpreds <- knn.cv(t(MeExprs), factor(Ymerge), k = 1)
> table(knnl.cvpreds, Ymerge)

Ymerge
knnl.cvpreds ALL B-cell ALL T-cell AML

ALL B-cell 35 1 1
ALL T-cell O 8 0
AML 3 0 24

> knn3.cvpreds <- knn.cv(t(MeExprs), factor(Ymerge), k = 3)
> table(knn3.cvpreds, Ymerge)

Ymerge
knn3.cvpreds ALL B-cell ALL T-cell AML
ALL B-cell 36 1 3
ALL T-cell O 8 0
AML 2 0 22

> knnb5.cvpreds <- knn.cv(t(MeExprs), factor(Ymerge), k = 5)
> table(knnb5.cvpreds, Ymerge)

Ymerge
knnb5.cvpreds ALL B-cell ALL T-cell AML
ALL B-cell 36 0 2
ALL T-cell O 8 0
AML 2 1 23

	Gene filtering
	Non-parametric rules

