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General Comments

• in this talk I will outline some open 
problems rather than give solutions to 
them

• graphs are a rich data structure and it 
seems that there will be many interesting 
statistical challenges associated with them

• these will be both mathematical and 
computational



General Comments

• perhaps the biggest lesson to be learned 
here is to be careful to interpret the data 
correctly

• not all graphs are the same
• pair-wise information is different from 

whole-set information 



General Comments

• in statistical research social network 
analysis and graphical models are the two 
areas that have historically used graphs

• Social Network Analysis, Wasserman and 
Faust, is a good reference

• for graphical models the books by 
Edwards and Lauritzen are good 
references



Software

• as part of the Bioconductor project we are 
producing software for describing, 
rendering and interacting with graphs

• three R packages released
• graph: basic definitions/classes etc
• Rgraphviz: interface to graphviz
• RBGL: interface to the Boost graph library



The Central Dogma

• DNA makes RNA (transcription)
• RNA makes protein (translation)
• the physical operations and interactions 

that are involved in these processes are 
very complex

• they almost always represent many to 
many relationships



Some Examples

• a transcription factor is a gene product that 
enhances or inhibits the transcription of 
other genes

• transcription factors are not generally 
specific (they have many targets)

• these targets have many targets …
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Medical Literature

• co-citation in papers often indicates a 
relationship

• a paper may discuss multiple genes; each 
gene may be documented in multiple 
papers

• what graph are we interested in?
• what graph do we have data about?



From Masys et al.



Gene Ontology

• Gene Ontology Consortium: a set of terms 
(or vocabulary) for documenting molecular 
function, cellular component or biological 
process

• some method (an oracle) associates 
genes with terms 

• a gene can be associated with multiple 
terms, a term has multiple genes (it is a bit 
more complicated)



Adapted from Lord et al



Protein-protein Interaction

• proteins seldom act individually
• they tend to act in pairs or groups to carry 

out their objectives
• some proteins are involved in many 

different groupings, others in only one
• different data sources (literature, MIPS, 

Y2H and TAP)



PPI

• are we interested in protein-protein 
interactions?

• are we interested in protein complexes 
that carry out biological processes?

• the data are usually consistent with the 
first question

• the inference is often oriented towards the 
second!





Other Data Sources

• there are many other data sources 
available to us

• DNA microarrays, arrayCGH, SAGE, 
protein data, …

• how do we integrate these different data 
sources to better understand and explore 
the data at hand

• to focus the set of reasonable hypotheses 
and determine the next experiment



Combining Data

• there is a lot of evidence that there is an 
association between coordinated gene 
expression and participation in a protein 
complex

• in the last part of this talk we will directly 
address that question (raised in Ge et al, 
Correlation Between Transcriptome and 
Interactome…)



Basics

• a graph is a collection of vertices (V) and 
edges (E) between the vertices 

• G=(V,E) to denotes the graph G
• |V| denotes the cardinality of the set V
• two vertices, vi and vj are said to be 

adjacent if they have an edge between 
them



Exploratory Data Analysis

• idea is to reveal structure or patterns in the 
data

• this depends on what you are looking for
• in classical statistics much of EDA is 

carried out with visualization methods
• with graphs/networks it is not yet clear 

what strategies will be useful



EDA

• graph layout is a hard problem
• it is often controlled by some form of 

specific optimization
– minimum edge crossings
– minimum edge length
– etc

• but seldom optimized for information 
visualization



EDA

• there is a need for experiments, along the 
lines of those carried out by Cleveland and 
associates in the 1970s for visual 
perception

• what are you trying to show, does the 
audience see that?

• H. Purchase (UK) has done some 
experiments but more are needed



EDA

• does a graph conform or not to some sort 
of model?

• from a statistical or applications 
perspective graphs are being constructed 
on data – and are hence imperfect

• we must deal with missing edges: 
– edges that were not found
– edges that were not looked for



Tools

• we can look at:
– node characteristics 

• in and out degrees
• notions of centrality

– cohesive subgroups 
• cliques and near cliques

– cut-points and cut-sets 
• separation



Tools
– the boundary of various subgraphs
– relationships to other graphs 

• intersection, union, complement
– often we are in the setting where we have 

multiple graphs all defined on the same set of 
nodes and so we have a different set of 
definitions for union, intersection, and 
complement than a mathematician might



Tools

• in addition to these static or structural 
properties there is clear benefit to 
interactivity
– moving nodes/edges
– collapsing node sets
– interrogating nodes
– interrogating edges
– linked plots (brushing)



Bipartite Graphs

• if the nodes of a graph can be partitioned 
into two disjoint sets, N1 and N2, say

• such that all edges are between an 
element of  N1 and an element of N2 (ie. all 
edges go from one set to the other; no 
within-set edges)

• then the graph is called a bipartite graph
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Bipartite Graphs

• how should we layout bipartite graphs?
• horizontal? vertical?
• minimize edge crossings?
• order from left to right according to degree 

for the top and then for the bottom either 
to minimize crossings or by degree?

• what are we trying to see in this?



Affiliation Networks

• in social network analysis a bipartite graph 
that associates individuals (actors) with 
events is often called an affiliation network

• we will use the term single-mode graph
when we are interested in understanding 
properties about one type of node (either 
actors or events)



Affiliation Networks

• two examples of biological affiliation 
networks:
– genes are one type of node and papers that 

discuss those genes are the other
– genes/proteins are one type of node and 

protein complexes are the other



Affiliation Networks

• the adjacency matrix for an affiliation 
network is N by M (where N is the number 
of nodes of the first type and M the 
number of nodes of the second)

• the matrix is filled with zeros and ones
– a one in row i column j indicates that 

individual i participates in activity j
• we will label this matrix A



Affiliation Networks
• interest often focuses on either the rows 

(genes) or the columns (papers/protein 
complexes)

• a one-mode graph is obtained by considering 
the matrix product AA' or A'A

• in many cases the matrix multiplication is 
Boolean (we only see 1's and 0's in the matrix 
products)

• the diagonal is often not interesting (observed)



Affiliation Networks: PubMed

• we can derive a graph on genes where 
edges are created between genes that 
share citations

• or a graph on papers where the edges 
represent shared genes

• in both cases the resulting graph is 
undirected and valued



Affiliation Networks

• edge weights could be important
• in the gene/paper graph we might want to 

down-weight papers that have lots of 
genes

• we might think of each paper as having 
constant weight/impact and so if paper j 
has in-degree m then each in-edge 
receives weight 1/m



Affiliation Networks

• because the one-mode graphs are 
constructed by using pairwise information 
(shared nodes of the other mode) you can 
only make pairwise inference from them

• thus, cliques and other subgroups in the 
one-mode graphs can arise in many 
(undetectablely) different ways
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Affiliation Networks

• if we see a clique in the PubMed graph 
between genes A, B and C we cannot tell 
from that source alone whether there were 
three papers that cited pairs or one paper 
that cited all three

• if all we see is the single-mode graph our 
inference must be restricted to pairwise 
relationships



Affiliation Networks

• let us consider protein-protein interactions
• the general objective is to identify protein 

complexes
• that is, sets of two or more proteins that 

form a unit that carries out a particular 
biological objective

• a number of technologies are appearing 
that provide data of this sort



Tandem Affinity Purification

• TAP data arise from a bait-prey 
experiment (Gavin et al, Ho et al)

• marked proteins are used as bait, they are 
introduced into the cell and then retrieved 
together with all things that they interacted 
with

• in a sense, the observed data are of the 
form of AA' and we want to know about A



TAP

• but the map from AA' to A is one-to-many 
so some statistics are needed

• more importantly the relationships are not 
quite so simple

• there are three types of edges
– edges found
– edges not found and probed for
– edges not found and not probed for



TAP

• a protein used as a bait has looked for all 
other proteins (and hence all edges)

• some experimental error is involved (as 
well as some structural issues) so that the 
resulting edges are imperfect (found but 
not real and real but not found)

• proteins not used as baits can only have 
in-edges



TAP

• the next few pictures represent a protein 
complex

• red edges represent reciprocity
• blue edges indicate that one found the 

other (bait to bait)
• gray edges represent bait to prey 

relationships



Gavin et al



Scholtens



Complexes

• So, what is a complex?
• the first picture is representative of what 

you will get from MIPS (and other sources) 
and is based on data from Gavin et al.

• the second is due to work with D. 
Scholtens, and there are 4 papers that 
support the existence of 3 complexes 
based on these proteins (one not in the 
data)



TAP

• by making better use of the data (different 
types of edges) we identified two clusters 
rather than one

• we also use data on cellular location of the 
proteins in our model

• this observation (two not one) is supported 
by the literature



Ge et al – PPI and Transcriptome

• they asked an interesting question
– is there a relationship between gene 

expression (from a time course experiment) 
and which proteins interact?

• data from a microarray experiment were 
clustered

• two PPI data sets (literature and y2h) were 
used to ask whether there are more within 
group PPI than between group PPI



Interactome-Transcriptome

• this can be phrased as a question about 
graphs

• the clusters can form a graph
– all genes in the same cluster have edges
– there are no edges between clusters

• now we can easily identify within and 
between cluster interactions by standard 
operations on graphs



Interactome-Transcriptome

• the intersection of the cluster-graph and 
the PPI graph yields within cluster edges

• we can take the clusters, find the induced 
subgraphs and attribute edges per cluster



The Literature Cluster interactions

Some obvious 
questions:

which clusters 
have lots?

which have 
few?

are there other 
edges and 
where?



Computational Biology

• to test the hypothesis that there was a 
relationship between the transcriptome 
and the interactome they tested the 
hypothesis that there were more edges 
within clusters than you would expect by 
chance.

• their test was based on the Erdos-Renyi
model for random graphs

• random edge model



Observed Data
A realization from the 
Erdos-Renyi model



A different model
• it might be better to keep the subgraph 

structure and permute the node labels
• this is basically a conditioning argument
• with the permuted node labels compare to 

the clusters (fixed) and count the number 
of within cluster edges

• note the symmetry with permuting the 
labels for the clusters and keeping the 
graph fixed



Inference
• a test the independence of the row 

classification and the column classification 
can be phrased in terms of  graphs G1 
and G2

• we can apply either the hypergeometric 
test (Erdos-Renyi model) or the node label 
permutation test 

• in some examples the node-permutation 
method is equivalent to Fisher’s exact test!
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we can view this as data on 8 individuals

the row and column totals should be conditioned on

there are 8 nodes and 28 edges in the complete 
graph
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Inference

• the row graph has 12 edges, as does the 
column graph

• for the Hypergeometric distribution we 
have (28, 12, 12) as parameters

• but this ignores the structure – the row (or 
column graphs) have 12 edges by virtue of 
being two clusters of size 4

• the edges are not random



Inference

• the random permutation of node labels (in 
either graph) yields Fisher’s exact test

• it would be nice to explore the other 
connections that arise from considering 
the commonalities between the graph 
approach and standard independence 
testing



Conclusions

• describing the questions (and data) in 
terms of graphs greatly simplifies the 
analysis – in the sense that I just think 
about operations on graphs

• graphs present many computational, 
analytic and graphical challenges 
(opportunities)
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