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Outline
In this lecture I will cover the following topics.

• Technical Replicates
• Combining experiments across platforms within

tissue type and within species
• Combining experiments across species

The common theme in these subjects is the notion of

matching probes to identify similar genes/transcripts

and to build statistical models to help determine

whether the patterns of expression are similar.
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General Comments
• You must have a question of interest.
• All data sets of interestmust be able to answer

that question.
• You need to decide on agene matchingcriterion
• For a single species we will generally match on

mRNA but for between species matching on
protein similarity might be more sensible

• For single species/tissue we will be interested in
matching specific genes.

• For interspecies work homologs, those genes with
similar function (hence our interest in using GO
to help determine that), genes in the same or
similar pathways.
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Short Literature Review
• Analysis of matched mRNA measurements from

two different microarray technologies, Kuo et al,
Bioinformatics, 2002, 405–412.

• A cross-study comparison of gene expression
studies for the molecular classification of cancer,
Parmigianiet al, Clinical Cancer Research, 2004,
2922–2927.

• Combining multiple microarray studies and
modeling interstudy variation, Choiet al, 2003,
i84–i90.

• matchprobes: a Bioconductor package for the
sequence-matching of microarray probe
elements. W. Huber and R. Gentleman,
Bioinformatics, to appear, 2004.
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Technical Replicates
• the type of experiment will determine how one

can identify probes that havesimilar behavior.
• for cohort studies correlation, or similar

measures of association seem appropriate
• for designed experiments we will look for

similar effects (or effect sizes).
• for time course experiments some measure of

the appropriate behavior over time will be
appropriate.
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Cohort: Measures of Associa-
tion

• correlation: Pearson or Spearman or a robust
version

• some issues:
• pairwise
• some samples do not have the genes expressed

while others do
• these measure linear association - is that

sufficient
• regression - or similar linear models

• clearly related to correlation
• asymmetric
• there are robust versions
• can be extended to deal with multiple matches
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Gene: Matching
• For within tissue comparisons you probably want

to match on mRNA sequence. However,
matching on GenBank, UniGene, LocusLink are
all options.

• For within species but between tissue
comparisons, there may be reasons to think more
broadly and consider matching based on other
things, such as strong GO similarity (perhaps
requiring a CC match as well as either a MF or a
BP match). Matching on protein homology may
also be an alternative.

• For between species comparisons, it seems that
matching on protein homology is one approach.
Also, function, or pathway matching may be
appropriate. . – p.7



Experiment
• It is hard to see how one can easily combine data

from different types of experiments.
• For example, theestrogenexperiment is based on

a breast cancer cell line, whichis used as a
model organism.

• It is not clear how you would sensibly combine it
with a cohort study such as that reported in
van’tVeer et al.

• Cohort studies on which treatments are similar
can be sensibly combined.

• Additional covariate data can help to make
appropriate adjustments.
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General Approaches
• Probe sequence matching:matchprobes, Huber

and Gentleman.
• Integrated correlations: Parmigianiet. al, they

basically look for genes which demonstrate
reproducibility.

• They define this having an above average
integrative correlations.

• Meta-analysis: Choiet al, basically apply
standard meta-analysis techniques.

• They account for between study variation, and
make adjustments for different biases.

• They provide a short Bayesian interpretation of
their work.
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matchprobes
• A limited approach to combining data from

different Affymetrix chips.
• Take the identical (or perhaps, similar) probes

from all chips and create a newpseudo-chip that
only has those probes.

• Create a newpseudo-cdf file and useaffy to
estimate expression levels.

• This has been successfully used on mouse-human
and different human arrays (that we know of).

. – p.10



Sequence Software in R
• basecontent in matchprobesreturns counts of

the bases in any sequence.
• complementSeq computes the complementary

sequence andreverseSeq reverses a sequence.
• Biostringsis an industrial strength sequence

matching tool and will likely become the basis for
much of our work in this area.
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The Parmigiani et al Approach
• They selected a particular disease, lung cancer.
• They matched genes based on UniGene clusters

(using Bioconductor!).
• They selected genes according to the original

investigators criteria. Different selection criteria
for the different experiments could be
problematic.

• They found 3171 common genes and of these
there were 370 that passed the filtering criteria.
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The Parmigiani et al Approach
• First compute all pairwise correlations,between

genes,acrosssamples,within studies.
• They denote the correlation between the pairp in

studys by ρs
p.

• Overall reproducibility is assessed by plottingρs1
p

againstρs2
p , for studiess1 ands2.

• The correlation of the correlation coefficients is
called the integrative correlation:

I(s1, s2) =
∑

p

(ρs1
p − ρs1)(ρs2

p − ρs2)

whereρs1 andρs2 are the mean correlations for
studiess1 ands2 respectively. . – p.13



The Parmigiani et al Approach
• They obtain bootstrap confidence intervals forI

by resampling arrays.
• A gene-specific measure of reproducibility across

studiess1 ands2 one uses the same approach but
now only considers pairs of genes which include
g, the gene of interest.

• They had three studies and hence obtained three
integrative correlations for each gene.

• They used the average of these to provide a
reproducibility score.
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The Choi et al Approach
• use aneffect sizeapproach; which they claim

allows you to make direct comparisons between
platforms.

• their approach does draw on a substantial
literature (you might want to look at the R
packagermetawhich has some of the standard
meta-analysis tools).

• propose methods for dealing with inter-study
variation – which is clearly important and should
be addressed
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The Choi et al Approach
We letµ denote the overall mean, and letyi denote the
observed effect size in studyi = 1, . . . , k. The general
hierarchical model is:

yi = θi + ǫi, ǫi ∼ N(0, s2

i )

θi = µ + δi, δi ∼ N(0, τ 2),

where the between study varianceτ 2 represents the
between study variance.
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The Choi et al Approach
• estimateyi by

d =
X̄t − X̄n

Sp

whereSp is the pooled sample variance.
• When a study consists ofn samples the unbiased

estimate ofd is given by
d∗ = d − 3d/(4(n − 2) − 1).
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The Choi et al Approach
• The estimated variance of the unbiased effect size

is

σ̂2

d = (n−1

t + n−1

n + d2(2(nt + nn))
−1,

wherent andnn are the samples sizes for treated
and control, respectively and in this equationd is
the unbiased effect size.

• They used∗ andσ̂2

d as estimates ofy ands2

i .
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The Choi et al Approach
• a fixed-effects model (FEM) assumes that the

differences in the observed effects sizes are due to
sampling error only.

• under a FEMτ 2 = 0 andyi ∼ N(µ, s2

i ).
• a random effects model (REM) interprets each

study as a sample from a population and hence
each has a different meanθi and variances2

i .
• further, using the model above, thatθi is itself

drawn from a populationN(µ, τ 2)
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The Choi et al Approach
• assessing which model is most appropriate can be

assessed using

Q =
∑

wi(yi − µ̂)2,

• where thewi = s2

i andµ̂ = (
∑

wiyi)/
∑

wi, is
the weighted least squares estimator that ignores
between study variation

• This statistic follows aχ2

k−1
distribution under the

hypothesis of homogeneity (ie. that the FEM is
appropriate)

• they propose computing quantile-quantile plots of
Q to assess whether a FEM or REM model is
appropriate.
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The Choi et al Approach
• they demonstrate how to incorporate an FDR

approach
• they use this to develop a technique called

integration-driven discovery
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Return to Technical Replicates
• technical replicates represent a substantial

interpretation problem
• also, if we want to combine microarray

experiments we need to determine which probes
on one microarray to map to the other

• we need to understand whether the probes are
measuring the same thing or different things

• if they are measuring the same thing then how do
we combine them to get a better estimate
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Technical Replicates
• one approach is to use correlations,cor, with
method equal to"pearson" or "spearman".

• thencor.test
• but this is probably only appropriate for cohort

studies
• for designed experiments, D. Scholtens and E.

Whalen have written two packages,factDesign
andcombineExp.

• for time course experiments one should
determine what concurrence means (same general
shape, same model parameters...) and then design
tools to assess this question
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Technical Replicates: A linear
models approach

We consider models of the formy = Xβ + ǫ

• treat the gene expression values as the response,
they′s

• use some design criterion as the covariate, the
X ’s, say group membership (the type A samples
vs the type B samples)

• now we might decide that two technical replicates
were equivalent - should potentially be combined
if their estimated effects, across groups, were
equal
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Technical Replicates: A linear
models approach

• we can assess that question by combining them
into a single responsey, and setting up an
appropriate design matrix

• so our model would be something like

y = β01 · 1g1 + β11 · 1X=A,g1 +

β02 · 1g2 + β12 · 1X=A,g2 + ǫ

• so thatβ01 is the mean of the A samples for gene
1, andβ02 has the same interpretation for gene 2

• we can also fit

y = β0 + β1 · 1X=A + ǫ
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Technical Replicates: A linear
models approach

• Finally we can compare these two models, since
they are nested, and see whether or not the small
model provides as good a description of the data

• if we do not reject this test thenβ1 is a better
estimate of the effect of thecommongene

• for more complicated designs, situations, the
principles are the same, it is just the formula that
changes
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