Combining Experiments

Educational Materials ©2004 R Gentleman

Outline

In this lecture I will cover the following topics.

- Technical Replicates
- Combining experiments across platforms within tissue type and within species
- Combining experiments across species

The common theme in these subjects is the notion of matching probes to identify similar genes/transcripts and to build statistical models to help determine whether the patterns of expression are similar.

General Comments

- You **must** have a question of interest.
- All data sets of interest **must** be able to answer that question.
- You need to decide on a *gene matching* criterion
- For a single species we will generally match on mRNA but for between species matching on protein similarity might be more sensible
- For single species/tissue we will be interested in matching specific genes.
- For interspecies work homologs, those genes with similar function (hence our interest in using GO to help determine that), genes in the same or similar pathways.

Short Literature Review

- Analysis of matched mRNA measurements from two different microarray technologies, Kuo et al, Bioinformatics, 2002, 405–412.
- A cross-study comparison of gene expression studies for the molecular classification of cancer, Parmigiani et al, Clinical Cancer Research, 2004, 2922–2927.
- *Combining multiple microarray studies and modeling interstudy variation*, Choi *et al*, 2003, i84–i90.
- *matchprobes: a Bioconductor package for the sequence-matching of microarray probe elements.* W. Huber and R. Gentleman, Bioinformatics, to appear, 2004.

Technical Replicates

- the type of experiment will determine how one can identify probes that have *similar* behavior.
- for **cohort studies** correlation, or similar measures of association seem appropriate
- for **designed experiments** we will look for similar effects (or effect sizes).
- for time course experiments some measure of the appropriate behavior over time will be appropriate.

Cohort: Measures of Association

- correlation: Pearson or Spearman or a robust version
- some issues:
 - pairwise
 - some samples do not have the genes expressed while others do
 - these measure linear association is that sufficient
- regression or similar linear models
 - clearly related to correlation
 - asymmetric
 - there are robust versions
 - can be extended to deal with multiple matches

Gene: Matching

- For within tissue comparisons you probably want to match on mRNA sequence. However, matching on GenBank, UniGene, LocusLink are all options.
- For within species but between tissue comparisons, there may be reasons to think more broadly and consider matching based on other things, such as strong GO similarity (perhaps requiring a CC match as well as either a MF or a BP match). Matching on protein homology may also be an alternative.
- For between species comparisons, it seems that matching on protein homology is one approach. Also, function, or pathway matching may be appropriate.

Experiment

- It is hard to see how one can easily combine data from different types of experiments.
- For example, the *estrogen* experiment is based on a breast cancer cell line, which is used as a model organism.
- It is not clear how you would sensibly combine it with a cohort study such as that reported in van'tVeer et al.
- Cohort studies on which treatments are similar can be sensibly combined.
- Additional covariate data can help to make appropriate adjustments.

General Approaches

- Probe sequence matching: *matchprobes*, Huber and Gentleman.
- Integrated correlations: Parmigiani *et. al*, they basically look for genes which demonstrate *reproducibility*.
- They define this having an above average integrative correlations.
- Meta-analysis: Choi *et al*, basically apply standard meta-analysis techniques.
- They account for between study variation, and make adjustments for different biases.
- They provide a short Bayesian interpretation of their work.

matchprobes

- A limited approach to combining data from different Affymetrix chips.
- Take the identical (or perhaps, similar) probes from all chips and create a new *pseudo*-chip that only has those probes.
- Create a new *pseudo*-cdf file and use *affy* to estimate expression levels.
- This has been successfully used on mouse-human and different human arrays (that we know of).

Sequence Software in R

- basecontent in *matchprobes* returns counts of the bases in any sequence.
- complementSeq computes the complementary sequence and reverseSeq reverses a sequence.
- *Biostrings* is an industrial strength sequence matching tool and will likely become the basis for much of our work in this area.

The Parmigiani et al Approach

- They selected a particular disease, lung cancer.
- They matched genes based on UniGene clusters (using Bioconductor!).
- They selected genes according to the original investigators criteria. Different selection criteria for the different experiments could be problematic.
- They found 3171 common genes and of these there were 370 that passed the filtering criteria.

The Parmigiani et al Approach

- First compute all pairwise correlations, between genes, across samples, within studies.
- They denote the correlation between the pair p in study s by ρ^s_p.
- Overall reproducibility is assessed by plotting ρ_p^{s1} against ρ_p^{s2} , for studies s1 and s2.
- The correlation of the correlation coefficients is called the integrative correlation:

$$I(s1, s2) = \sum_{p} (\rho_{p}^{s1} - \rho^{s1})(\rho_{p}^{s2} - \rho^{s2})$$

where ρ^{s1} and ρ^{s2} are the mean correlations for studies s1 and s2 respectively.

The Parmigiani et al Approach

- They obtain bootstrap confidence intervals for *I* by resampling arrays.
- A gene-specific measure of reproducibility across studies s1 and s2 one uses the same approach but now only considers pairs of genes which include g, the gene of interest.
- They had three studies and hence obtained three integrative correlations for each gene.
- They used the average of these to provide a reproducibility score.

The Choi et al Approach • use an *effect size* approach; whic

- use an *effect size* approach; which they claim allows you to make direct comparisons between platforms.
- their approach does draw on a substantial literature (you might want to look at the R package *rmeta* which has some of the standard meta-analysis tools).
- propose methods for dealing with inter-study variation which is clearly important and should be addressed

We let μ denote the overall mean, and let y_i denote the observed effect size in study i = 1, ..., k. The general hierarchical model is:

$$y_i = \theta_i + \epsilon_i, \qquad \epsilon_i \sim N(0, s_i^2)$$

 $\theta_i = \mu + \delta_i, \qquad \delta_i \sim N(0, \tau^2),$

where the between study variance τ^2 represents the between study variance.

• estimate y_i by

$$d = \frac{\bar{X}_t - \bar{X}_n}{S_p}$$

where S_p is the pooled sample variance.

• When a study consists of n samples the unbiased estimate of d is given by $d^* = d - 3d/(4(n-2) - 1)$.

• The estimated variance of the unbiased effect size is

$$\hat{\sigma}_d^2 = (n_t^{-1} + n_n^{-1} + d^2(2(n_t + n_n))^{-1},$$

where n_t and n_n are the samples sizes for treated and control, respectively and in this equation d is the unbiased effect size.

• They use d^* and $\hat{\sigma}_d^2$ as estimates of y and s_i^2 .

- a fixed-effects model (FEM) assumes that the differences in the observed effects sizes are due to sampling error only.
- under a FEM $\tau^2 = 0$ and $y_i \sim N(\mu, s_i^2)$.
- a random effects model (REM) interprets each study as a sample from a population and hence each has a different mean θ_i and variance s_i^2 .
- further, using the model above, that θ_i is itself drawn from a population $N(\mu, \tau^2)$

• assessing which model is most appropriate can be assessed using

$$Q = \sum w_i (y_i - \hat{\mu})^2,$$

- where the $w_i = s_i^2$ and $\hat{\mu} = (\sum w_i y_i) / \sum w_i$, is the weighted least squares estimator that ignores between study variation
- This statistic follows a χ^2_{k-1} distribution under the hypothesis of homogeneity (ie. that the FEM is appropriate)
- they propose computing quantile-quantile plots of Q to assess whether a FEM or REM model is appropriate.

- they demonstrate how to incorporate an FDR approach
- they use this to develop a technique called integration-driven discovery

Return to Technical Replicates

- technical replicates represent a substantial interpretation problem
- also, if we want to combine microarray experiments we need to determine which probes on one microarray to map to the other
- we need to understand whether the probes are measuring the same thing or different things
- if they are measuring the same thing then how do we combine them to get a better estimate

Technical Replicates

- one approach is to use correlations, cor, with method equal to "pearson" or "spearman".
- then cor.test
- but this is probably only appropriate for cohort studies
- for designed experiments, D. Scholtens and E. Whalen have written two packages, *factDesign* and *combineExp*.
- for time course experiments one should determine what concurrence means (same general shape, same model parameters...) and then design tools to assess this question

models approach

We consider models of the form $y = X\beta + \epsilon$

- treat the gene expression values as the response, the y's
- use some design criterion as the covariate, the X's, say group membership (the type A samples vs the type B samples)
- now we might decide that two technical replicates were equivalent - should potentially be combined if their estimated effects, across groups, were equal

models approach

- we can assess that question by combining them into a single response y, and setting up an appropriate design matrix
- so our model would be something like

$$y = \beta_{01} \cdot 1_{g1} + \beta_{11} \cdot 1_{X=A,g1} + \beta_{02} \cdot 1_{g2} + \beta_{12} \cdot 1_{X=A,g2} + \epsilon$$

- so that β_{01} is the mean of the A samples for gene 1, and β_{02} has the same interpretation for gene 2
- we can also fit

$$y = \beta_0 + \beta_1 \cdot \mathbf{1}_{X=A} + \epsilon$$

models approach

- Finally we can compare these two models, since they are nested, and see whether or not the small model provides as good a description of the data
- if we do not reject this test then β_1 is a better estimate of the effect of the *common* gene
- for more complicated designs, situations, the principles are the same, it is just the formula that changes