Analysis of Biological Images with EBlImage
BioC-2006 Practicals

Oleg Sklyar
osklyar@ebi.ac.uk

July 27, 2006

1 Introduction

In this lab we will use the EBImage Bioconductor package to preprocess and analyse a subset
of images from a large-scale RNAi microscopy screen. The aim of the lab is to learn how to
extract simple object descriptors that describe cellular or nuclear phenotypes from the images.
The descriptors will be such as size, density, shape factor or intensity of cells and nuclei. These
descriptors can then be analysed statistically to cluster genes by their phenotypic effect, generate a
list of genes that should be studied further in more detail (hit list), e. g. genes that have a specific
phenotypic effect of interest.

The package vignette provides an overview of the EBImage functionality for the analysis of cell-
based assays. It also contains many example that can assist in completing the exercises in this
course. If you want to access the vignette before you install the package, download it from:

www.ebi.ac.uk/ osklyar/projects/EBImage/help/EBImageHOWTO.pdf|

2 Software, Data and Manual

2.1 Dependencies

EBImage depends on Magick++ of the ImageMagick image processing library. Install it before
installing the package. To enable TIFF and PNG file support in ImageMagick, and thus in EBImage,
'libtiff” and 'libpng’ have to be installed before ImageMagick is compiled.

The ImageMagick library can be compiled and installed from source available from www.imagemagick.org,.
This also installs Magick++ headers required to compile EBImage. Alternatively, precompiled
binary rpm and deb packages are available for many Linux distributions. The FINK project
(fink.sourceforge.net) contains precompiled binaries of ImageMagick-dev, libtiff, libpng for MacOS
(untested). If installing precompiled binaries, please ensure that you include Magick++-devel (or
similarly named depending on the distribution) and that you also install libtiff and libpng if those
are not automatically required by dependency tracking.

MacOS users, do not use ImageMagick that comes with your system, install it new — either from
source or from FINK. If you want to keep your system’s ImageMagick version, please refer to the
'INSTALL’ file included in the EBImage tarball for further instructions.

mailto:osklyar@ebi.ac.uk
http://www.imagemagick.org
http://fink.sourceforge.net

2.2 Download repositories

The package can be compiled and installed from source on Linux/UNIX and with minor limitations
on MacOS. At the moment, there is no MS Windows version available.

This workshop assumes that EBImage version 1.3.102 and later is used. The Bioconductor release
1.8 contains version 1.2.2, which cannot be used in the course.

The source-code tarball can be downloaded from:

www.ebi.ac.uk/huber-srv/data/Rrepos/src/contrib/

The package can be installed or updated either from the source tarball or by issuing:

> install.packages("EBImage",
+ repos="http://www.ebi.ac.uk/huber-srv/data/Rrepos")

After a successful installation, use the library function to load the package:

> library(EBImage)

2.3 Data files

Images used in this lab are available for download in as a single gzipped file:
www.ebi.ac.uk/ osklyar/projects/ EBImage /examples/BioC2006images.tar.gz

Please download and unpack this file in an empty directory, which will be used as your working
directory for this lab. You do this with the following shell command

tar -zxvf BioC2006images.tar.gz

After unpacking, a subdirectory named 'images’ will be created containing 33 images. These are
raw data —images saved directly by the microscope control software. The images are 16-bit grayscale
TIFF’s, in which only 12 bits are used for data because of the CCD camera specs. Therefore, when
displayed they all look black because the data range (0...4095) is only a fraction of the 16-bit range
(0...65535). The 33 images are 11 randomly selected probes measured with 3 different wavelengths
(channels) per probe. Different channels are marked with suffixes w1, w2 and w3 in the file names,
and they constitute the nuclear channel, tubulin distribution and cellular membranes, respectively.
An additional false-colour RGB image, combining data of different wavelengths in different colour
channels, is available on the network to practice reading files over the network. A copy of this file
is included in the 'images’ subfolder in case the network is not available.

If you are unable to install libtiff to support TIFF files, there is an analogous set of JPG files,
already normalized, that can be obtained here:

www.ebi.ac.uk/ osklyar/projects/EBImage /examples /BioC2006imagesJPG.tar.gz

http://www.ebi.ac.uk/huber-srv/data/Rrepos/src/contrib
http://www.ebi.ac.uk/~osklyar/projects/EBImage/examples/BioC2006images.tar.gz
http://www.ebi.ac.uk/~osklyar/projects/EBImage/examples/BioC2006imagesJPG.tar.gz

2.4 Limitations and known bugs

display can only show one window at a time; close the display window before you call display
again otherwise an error message is generated.
The function display will not work on MacOS and via ssh. As a temporary workaround,
please use plot.image. This function supports only grayscale images, therefore one can use the
plot.image (toGray (myRGBimage)) to display grayscale previews of RGF images. Furthermore, it
can only display signle 2D images and does not provide image browsing like display, use therefore
the following synax for image stacks (multiple 2D images, 3D images): plot.image (toGray (myRGBimage [mi]))
or plot.image (myGrayImage [mi]).

3 Handling images

In this section we will exercise reading images, creating new images and storing them in files.

The EBImage function read.image can read local or network files. Multiple files can be loaded
into a single variable producing an image stack (a 3D matrix). The size of images in a stack is
determined by the size of the first read: other images, if bigger — are cropped, if smaller — a black
background is generated.

Hereafter, to get help on the package functions use help.start () to start the help browser and
browse to the package help files, or call help (EBImage) before or after issuing help.start().

Exercise 1

Read the supplied images into three separate objects depending on the channel, wl, w2 and w3.
Investigate the class and the structure of objects created using class, slotNames, str and other R
functions. Try loading images for one channel as RGB and then converting them to grayscales.
Ensure that final images are grayscales or converted to grayscales after loading: we will need
grayscale images for further analysis. Tip: use dir supplying a matching pattern to select files
for every channel.

> f1 <- paste("images", dir("images", pattern = "wl"), sep = "/")
> w1l <- read.image(f1)

> class(wl)

[1] "Image"

> slotNames (w1)

[1] H.Datall llrgbll

> f2 <- paste("images", dir("images", pattern = "w2"), sep = "/")
> w2 <- read.image(f2)

> f3 <- paste("images", dir("images", pattern = "w3"), sep = "/")
> w3 <- read.image(f3, rgb = TRUE)

> w30@rghb

(1] TRUE

> w3 <- toGray(w3)
> w30@rghb

[1] FALSE

The analysis below requires a lot of memory and processing resources. You will need about 500
Mb RAM to perform the analysis on all 36 images (3 added later). If you have less memory, reduce
the number of images you analyse to 5-6 as follows. This will still ocupy about 150-200 Mb of RAM:

> wl <- wi[, , 1:5]
> w2 <- w2[, , 1:5]
> w3 <- w3[, , 1:5]

As mentioned above, images use 12-bit out of 16-bit scale. Therefore they need to be normalized
before further analysis can be performed. Because different images in one stack can have different
intensity range, they have to be normalized separately (independent = TRUE in calls to normalize).

Exercise 2

Normalize images w1, w2 and w3 saving results in objects nl, n2 and n3. Using another variable, say
nx, try normalizing with independent=FALSE. Display nl and nx one after the other and check the
differences, also make histograms of n1 and nx excluding background (pixels with intensity smaller
than 0.05). Why is nx darker?

> nl <- normalize(wl, independent = TRUE)
> hist(nl[n1 > 0.05], 50)

> nx <- normalize(wl)

> hist(nx[nx > 0.05], 50)

> n2 <- normalize(w2, independent = TRUE)
> n3 <- normalize(w3, independent = TRUE)

EBImage can read remote files via HI'TP and FTP protocols. For this lab, one RGB image is
provided on the package examples’ page:

www.ebi.ac.uk/ osklyar/projects/EBImage/examples/N16_RGB.TIF

This image is a false-colour RGB combination of three different channels for one probe. Channel
1 is given in red, channel 2 in green and channel 3 in blue. In this image, channels were initially
normalized to the full grayscale range [0, 1].

Exercise 3

If a network connection is available, read the above RGB file into an R object, w, otherwise read it lo-
cally from the 'images’ directory. Ensure that you ontained an RGB image, check if wergb == TRUE
and display the image on the screen for visual inspection. Tip: read.image does not use R con-
nections, URL’s should be passed as characters.

> url <- "http://www.ebi.ac.uk/ osklyar/projects/EBImage/examples/N16_RGB.TIF"
> w <- read.image(url, rgb = TRUE)
> display (w)

http://www.ebi.ac.uk/~osklyar/projects/EBImage/examples/N16_RGB.TIF

Exercise 4

Check if the downloaded image has the same size as nl (stack size, 3rd dimension is different).
Split the false-colour image into three grayscale images, one for each channel, c1, c2 and c3. Tip:
getRed and similar functions can be used to extract channels from RGB images.

> dim(w)

[1] 696 520 1
> dim(n1)

[1] 696 520 11

> c1 <- getRed(w)
> c2 <- getGreen(w)
> ¢3 <- getBlue(w)

One can use the Image function to create new images or combine existing ones into a single
image. The function accepts three arguments: data, dim and rgb. The vignette explains how
new images can be created and the following example demonstrates how c1 can be added to nl
containing the rest of the images for channel 1 (we assume that x and y dimensions of nl1 and c1
are equal and that only the stack depth, dimension 3, is different):

> newdim <- dim(n1)

> newdim[3] <- newdim[3] + dim(c1) [3]
> n1 <- Image(c(nl, c1), newdim, FALSE)
> dim(n1)

[1] 696 520 12

Exercise 5

Following the above example, combine c2 and c¢3 with n2 and n3, respectively. Ensure that objects
nl, n2 and n3 have equal dimensions. Tip: if you did not decrease the number of images before,
the result of dim should produce 696,520,12, i.e. 12 images of size 696 to 520 pixels.

> n2 <- Image(c(n2, c2), newdim, FALSE)
> n3 <- Image(c(n3, c3), newdim, FALSE)
> dim(n2)

[1] 696 520 12
> dim(n3)
[1] 696 520 12

Now all images are loaded into the R session.

Before we proceed, try saving images onto your local disk. EBImage supports all formats sup-
ported by ImageMagick. The only restriction at the moment is that it saves images with standard
values of resolution and compression. This will be changed in future versions. One does not need to
specify the format for writing, it is selected internally by the file extension. A correct file extension
must be supplied, which can be in lower or higher case, i.e. both "TIFF'" and '.tiff’" are supported
(as well as probably ".TiFf" etc.).

Exercise 6

Generate a false-colour RGB image by adding together normalized images nl, n2, and n3 first
making copies of those converted to red, green and blue, respectively. Refer to the vignette for an
example. Write the RGB image to a TIFF file and to a PNG file passing both times just one file
name as argument to write.image. Check what was written in the TIFF file using ping.image.
What is the difference in files generated and why? Tip: in a new terminal window, the shell
command 'display’ can be used to display resulting files on the screen.

> rgb <- toRed(nl) + toGreen(n2) + toBlue(n3)

> write.image (rgb, "images/output.tif")
> ping.image ("images/output.tif")
> write.image(rgb, "images/output.png")

Exercise 7
If you have other images of your own in different formats, use those to practice read/write operations
and displaying images with EBlmage (please do not alter the variables created above).

4 Basic image processing

The package provides two complementary ways to perform image processing. One is to use simple
mathematical and arithmetical functions on images using the fact that images are arrays. The other
one is using high-level image filters.

4.1 Mathematics and arithmetics with images

Images in EBImage are objects of class Image. This class is derived from array, therefore most
of operations that are valid for arrays can be performed on images. These include arithmetic
operations (+, -, *, /, ~), mathematical functions like sin, cos, exp, sqrt etc., functions like
summary, mean, median, hist, range, rank etc. Although one can use the above functions on
both, grayscale and RGB images, due to the nature of data storage the results will be meaningless
for RGB images (RGB images are stored as integers with one-colour-per-byte coding).

Subscripting can be used in exactly the same manner as with arrays to retrieve or substitute
data.

In many cases, microscopy images contain just a few very bright objects, whereas the majority
are dark. One can try to correct the contrast in such situations using power functions, for example
sqrt. We use {0,1} as the fix points for the power transformation x — 2% (meaning that the valus
in these points do not change in the transformation). For a < 1, dark objects become lighter while
keeping light objects at about the same gray level; for « > 1, darker objects become even darker
thus allowing brighter objects to stand out clearer.

Exercise 8

Try applying power function ~0.7 followed by ~1.2 to nl and inspect the differences. Although
stated above, try to explain why the former is lighter than the original image? Tip: evaluate the
shape of v — 27 in the range [0, 1]. Why applying ~1.2 makes the image darker again? Experiment
with sqrt and ~2.

> display(n1-0.7)

> display((n170.7)°1.2)

> display(n1-0.7 - (n170.7)°1.2)
> display(sqrt(ni))

Exercise 9

(Optional) Write a simple normalize function for grayscale images, transforming them to the range
[0,1], using image airthmetics (+, -, / operators). Apply the function to wi. Inspect ranges or
histograms before and after normalization.

> donorm <- function(x) {
+ r <- range(x)
+ if (diff(r) == 0)
+ return(x)
+ return((x - r[1])/diff(r))
+

> range (w1)

[1] 0.001907378 0.022034028
> range (donorm(wi1))
[1] 01

Image thresholding is an integral part of preprocessing microcopy images for object detection.
Simple thresholding can be performed by setting a certain subset of an image to 0 (for background)
or to 1 (for foreground), or to any other value. If for example, we want all pixels of image 2 of a
copy of n1 lower than 0.1 to be background, we can use the following syntax:

> nx <- nl

> nx2 <- ni1[, , 2]

> nx2[nx2 < 0.1] <- 0
> nx[, , 2] <- nx2

Here, we made modifications on the extracted image nx2, which is then reinserted back instead
of image 2 of n1.

Exercise 10

(Optional) Explain why we could not call nx[nx < 0.1] <- 0 in the above example. Use 0.3
threshold to reset parts of image nx to foreground (1). Create an RGB copy of nx and reset all
regions of this image that are above the threshold 0.3 in nx to 255 (red). Display the result to
observe what was done.

Exercise 11
(Optional) Now perform the same thresholding as in the previous example (with converting to RGB)
with nx <- n170.5. Compare the final RGB image to the previous case, what has changed?

> nx[nx > 0.3] =1
> nxrgb <- toRGB(nx)
> nxrgb[nx == 1] <- 255

> display(nxrgb)

nx <- n170.5

nx[nx > 0.3] = 1
nxrgb <- toRGB(nx)
nxrgb[nx == 1] <- 255

vV VvV Vv Vv

> display(nxrgb)

For practical use, EBImage has a powerful threshold function thresh used below.

4.2 Image filters

The package comes with a substantial number of image filters, many of which are interfaced from
ImageMagick. For preprocessing microscopy data, one will generally need the following fitlers:
gaussFilter, despeckle, thresh, mOpen and mClose, and distMap. Please use the R help com-
mand to get more information on these filters and their arguments.

Utilising these filters, the preprocessing workflow for microscopy images used in the lab can look
as follows.

e Load images from files (already done)
e Normalize images independently (already done)
e Reduce or remove noise if necessary — despeckle filter

e Threshold images to obain object masks: locations of objects will be marked with white
(1), whereas the rest will be marked with black (0) — thresh filter. thresh can use some
preprocessing, which is effectively the blurring gaussFilter used to reduce the noise in images

e Use morphological opening and closing to refine thresholding — mOpen and mClose filters

e Obtain distance map transforms for all masks, which will be used to identify objects, see the
vignette for more details, — function distMap

We will omit the despeckle step (although some users may try it before continuing) and go
directly to thresholding.

Refer to the help page of function thresh for the description of its arguments. Generally, it
is reasonable to use frame sizes that can fully accomodate several average-sized objects that are
expected. Therefore, for the dimensions of objects in the images supplied, reasonable values for
thresholding nuclei images (n1) are about 100 and for cellular images (n2) about 300. The value of
offset should be determined empirically as such that gives the best object separation but still does
not make objects too small. It is an offset from the mean value used as threshold for data that is
assumed to be in the range [0, 1], try the range [0.0,0.05].

Hereafter, we continue working with channel 1 (images n1) and channel 2 (n2) only.

Exercise 12

Threshold images nl and n2 into objects t1 and t2 enable preprocessing. Find an optimum between
different values of frame size and offset. Check what happens with cellular images if the threshold
is set to a low value of —0.02.

> t1 <- thresh(nl, 100, 100, 0.01, TRUE)
> t2 <- thresh(n2, 300, 300, 0, TRUE)

> display(thresh(n2, 300, 300, -0.02, TRUE))

Morphological operators of opening and closing allow for refining the thresholded images elim-
inating sharp edges and small noise. Ususally both filters are applied sequentially and produce
different outputs depending on the order in which they are applied. A kernel plays the major role
in the results obtained from these filters. A kernel defines a pixel mask, that, scanning either back-
ground (opening) or foreground (closing), defines which pixels stay and which are reset. Function
mKernel generates kernels of different sizes of either round of square shape. Reasonable kernel sizes
for nuclear images are between 3 and 7 and for cellular images between 5 and 9. The vignette
provides a good example of the usage of these operators.

Exercise 13
Use mOpen and mClose sequentially to refine t1 and t2. Try different execution order and different
kernels and find optimal parameters.

> t1 <- mClose(mOpen(tl, 1, mKernel(7)), 1, mKernel(7))
> t2 <- mOpen(mClose(t2, 1, mKernel(9)), 1, mKernel(9))

The next step in the preprocessing workflow is generating distance maps. distMap function does
not have any additional arguments except the image itself. The image argument must be supplied
a thresholded binary image with values 0, 1, if a grayscale image is supplied, all non-zero pixels will
be treated as 1. In the result, every non-zero pixel vaule will be assigne the distance from this pixel
to the nearest background. The resulting image will be grayscale but the data range will be much
larger than [0, 1], therefore for displaying it should be normalized.

Exercise 14
Generate distance maps dml and dm2 from thresholded t1 and t2. Tip: do not store normalized
values of distance maps, use normalize only for display purposes.

> dm1 <- distMap(t1)
> dm2 <- distMap(t2)

5 Analysis

In this section we will use distance maps generated in the previous section to perform the extraction
of basic image descriptors for normalized images n1 and n2. As a result, we want to obtain tables
of image descriptors for our 12 probes, which we could further evaluate using statistical methods.
The statistical evaluation is out of scope of this course.

5.1 Detecting nuclei

EBImage provides the wsObjects function that identifies objects taking distance map images as
input. Please read help(wsObjects) for full description of this function. More description is also
provided in the vignette, where also the arguments and the value of the function are discussed.

When detecting nuclei we do not supply seeds as we do not have any preferred locations at this
moment. We will value for seeds that contains nuclei locations to wsObjects when detecting cells.

This should significantly improve the detection.

Values of mind and minr are determined empirically, such that no oversegmentation is observed
(not too small) and small objects are not merged into large ones (not too large). As a hint, for
nuclei detection, the reasonable range of mind is about [10,20] and of minr about [5,15]; for cells,

[20, 50] and [10, 20] respectively.

Exercise 15

Use wsObjects to detect nuclei from images dml, supply nl as a reference, save results to x1.
Investigate the structure of x1, where is the information about objects size and intensity located?
What is the reference image used for? Ity performing the detection without a reference image,

what has changed in the result?

> x1 <- wsObjects(dml, 15, 10, 0.2, ref

> x1[[1]]$objects[1:2,]

(.11 [,2] [,3] (,4] [,5] [,6]

[1,] 468 440 377 85.68125 80 0
[2,] 191 413 644 85.96354 93 0

> xx1 <- wsObjects(dml, 15, 10, 0.2)
> xx1[[1]]$objects([1:2,]

(,11 [,2]1 [,3] [,4] [,5] [,6]

[1,] 468 440 377 0 80 0
[2,] 191 413 644 0 93 0

5.2 Detecting cells

ni)

Cells can be detected in exactly the same as nuclei supplying seeds with detected nuclei locations:

> x1[[1]]$objects[1:3,]

(.11 [,2] [,3] (,4]1 [,5] [,6]

[1,] 468 440 377 85.68125 80
[2,] 191 413 644 85.96354 93
[3,] 173 235 1205 214.45000 128

> seeds <- lapply(x1, function(x) {
+ x$objects[, 1:2]

+ 1)

> seeds[[1]][1:2,]

[,11 [,2]
[1,]1 468 440
[2,] 191 413

0
0
0

10

Exercise 16
Analogously to the previous exercise, detect cells from dm2 supplying seeds; store results in x2. Try
the same function without seeds, store results in other variables for future visual evaluation.

> x2 <- wsObjects(dm2, 35, 15, 0.2, seeds, ref = n2)
> xx2 <- wsObjects(dm2, 35, 15, 0.2, ref = n2)

The above method for cell detection has, however, its drawbacks. Cellular images are much
more difficult to threshold than nuclear ones, which leads to poor object identification. To omit
thresholding, we can supply the scaled original image instead of a distance map to wsObjects as in
the example below. Here is the explanation why.

Whereas we are guaranteed to have the highest values for points in the object centres on distance
maps, we can assume the same for cellular images due to their nature. The images are not that
sharp as distance maps, and values are different, otherwise they represent a similar 3D surface
suitable for watershed detection.

To assist the detection we supply seeds from previously detected nuclei. Images need to be
scaled from the range [0, 1] to a significantly large range usually achieved in distance maps, e.g.
[0,200]: the algorithm will internally segment the images to integer-based levels, therefore the need
for scaling (the top value should not be much larger than the expected object radius):

> nx <- n2 * 200
> xx <- wsObjects(nx, 35, 15, 0.2, seeds, ref = n2)

The results of wsObjects will be visualized in the following section.

5.3 Visualisation

One can use the wsPaint function to draw outlines of detected objects on a reference image and
fill objects with different semi-transparent colours for controlling the quality of detection by visual
inspection. The value of wsPaint is an image that can be used as input for marking further objects.
In the example below, we first draw detected cells on n2 and then use the result to draw detected
nuclei on top:

> im2 <- wsPaint(x2, n2, opac = 0.15)
> im2 <- wsPaint(x1, im2, opac = 0.15)

> display(im2)
> plot.image (toGray (im2))

In this way, im2 is an RGB preview of detected objects.

Exercise 17

Generate preview image iml for x1 and reference nl. Repeat the last example for cells detected
without seeds, compare the differences. Repeat the same for for object xx from the last example
in the previous subsetion, compare the differences.

11

iml <- wsPaint(x1l, nl, opac = 0.3)
im2x <- wsPaint (xx2, n2, opac = 0.15)
im2x <- wsPaint(x1, im2x, opac = 0.15)
imx <- wsPaint(xx, n2, opac = 0.15)
imx <- wsPaint(x1, imx, opac = 0.15)

vV V. Vv Vv V

Exercise 18

Use wsImages to generate single-object image previews from xx, prev. Tip: the result will be a
list of 3D images, use display(prev[[1]]) to display the results, this object will be used below to
generate a tiled image.

> prev <- wsImages(xx, n2)

5.4 Image descriptors

We will use data from fields $objects in x1[[i]] and x2[[i]] to build summary tables of the
following image descriptors (one row per image): image index, number of objects in an image
(nuclei for x1 and cells for x2), average object size, average intensity and average perimeter. One
can implement many other descriptors by analysing single-object images in prev, but this is out of
scope of this course.

nimages <- dim(n1) [3]

objl <- matrix(0, ncol = 5, nrow = nimages)

obj2 <- matrix(0, ncol = 5, nrow = nimages)

colnames(objl) <- c("index", "nobj", "size", "intens", "perim")
colnames(obj2) <- colnames(obj1)

V VvV Vv Vv Vv

The number of detected objects in an image can be obtained from the number of rows in the
corresponding the $objects matrix. Furthermore, the average size can be obtained by finding the
mean value over the corresponding column in the $objects matrix:

> obj1[, 1] <- 1:nimages
> obj1[, 2] <- as.integer(lapply(x1, function(x) {
+ dim(x$objects) [1]
+ 1)
> obj1[, 3] <- as.numeric(lapply(x1, function(x) {
+ mean (x$objects[, 3])
+ 1)
> print(obj1[1:2,])
index nobj size intens perim
[1,] 1 102 706.5882 0 0
[2,] 2 27 829.7407 0 0

Exercise 19
Calculate obj1[,4] — average intensity, and obj1[,5] — average perimeter, analogously to the above
example using data from x1. Calculate all data for obj2 using data of x2 analogously.

12

> obj2[, 1] <- 1:nimages
> obj2[, 2] <- as.integer(lapply(x2, function(x) {

+ dim(x$objects) [1]
+ 1))
> for (i in 3:5) {
+ obj1[, i] <- as.numeric(lapply(x1, function(x) {
+ mean (x$objects[, il)
+ })
+ obj2[, i] <- as.numeric(lapply(x2, function(x) {
+ mean (x$objects[, i])
+ })
+ }
> print(obj2[1:2, 1)
index nobj size intens perim
[1,] 1 76 1863.658 443.3452 177.4211
[2,] 2 23 2067.609 373.0148 181.6957

Exercise 20

Sort data in objl by the average number of nuclei accending. Display images for the first indexed
in the first and in the last rows - minimum and maximum number of nuclei — was the detection
correct?

> obj1 <- obji[order(obji[, 2]),]

> display(n1l[, , obj1[1, 1]1)
> display(ni[, , objl[nimages, 1]])

The tables obj1 and obj2 can now be updated with data for further images from the whole
screen. These data can be analysed further using statistical methods, this, however, is out of scope
of this course, because the image analysis step is finished at this point.

5.5 Further visualization possiblities

The following function (will be integrated in the package in future) will allow you to make a tiled
image from an image stack that is more suitable for simultaneous inspection of multiple images:

> dotile <- function(x, width = 5) {

+ .dim <- dim(x)

+ nrow <- as.integer((.dim[3] - 1)/width) + 1

+ res <- Image(0, c(.dim[1] * width, .dim[2] * nrow, 1), rgb = x@rgb)
+ for (i in 1:width) for (j in 1:nrow) if (i + (§j - 1) * width <=

+ .dim[3]) {

+ si <- (i - 1) * .dim[1] + 1

+ ei <- si + .dim[1] - 1

+ sj <= (j - 1) * .dim[2] + 1

+ ej <- sj + .dim[2] - 1

13

+ res[si:ei, sj:ej, 1] <- x[, , i + (j - 1) * width]

+ }

+ return (res)

+ }

Exercise 21

Use the above function with im1, im2, im2x and imx to generate images like in Figures|IH4, display
the results for visual inspection. Tip: use width = 3. Do the same for prev[[1]] or prev[[2]]
or any other using width = 10; you should obtain something similar to Figure [j]

tiledl <- dotile(imi1, 3)

tiled2 <- dotile(im2, 3)

tiled2x <- dotile(im2x, 3)

tiledx <- dotile(imx, 3)
tiledprev <- dotile(prev[[1]], 10)

vV V. Vv Vv V

Using the following code (assuming 12 images, 3x4) you one draw the grid lines:

dx <- dim(n1)[1]

dy <- dim(n1) [2]

w <- dim(tiled1) [1]

h <- dim(tiled1) [2]

x1 <= ¢(1, 1, 1, 1, dx, 2 * dx)

x2 <- c(w, w, w, w, dx, 2 * dx)

y1 <- c¢(dy, 2 * dy, 3 * dy, 4 * dy, 1, 1)
y2 <- c¢(dy, 2 * dy, 3 * dy, 4 * dy, h, h)
ls <- DrawableLine(x1, yl1, x2, y2)
ls@strokeColor <- "red"

1s@doFill <- FALSE

tiledl <- draw(tiledl, 1s)

tiled2 <- draw(tiled2, 1ls)

tiled2x <- draw(tiled2x, 1s)

tiledx <- draw(tiledx, ls)

VVVVVVVVVVVVVVYV

14

Figure 1: Detected nuclei

15

Figure 2: Cells detected using image thresholding (with seeds)

16

Figure 3: Cells detected using image thresholding (no seeds)

17

Figure 4: Cells detected by scaling the image without thresholding

18

Figure 5: Single-cell images for prev[[1]], tiled

19

	Introduction
	Software, Data and Manual
	Dependencies
	Download repositories
	Data files
	Limitations and known bugs

	Handling images
	Basic image processing
	Mathematics and arithmetics with images
	Image filters

	Analysis
	Detecting nuclei
	Detecting cells
	Visualisation
	Image descriptors
	Further visualization possiblities

