Machine Learning and Gene Expression Data

M. T. Morgan*

April 14, 2006

Overview

Many biological experiments investigate the relationship between gene ex-
pression patterns and phenotypes. Machine learning algorithms provide a
tool for gaining insight into this relationship. This lecture introduces ma-
chine learning, the diversity of machine learning algorithms available, and
methods for assessing and interpreting the result of machine learning al-
gorithms in light of our fundamental interest in the relationship between
gene expression and phenotype. An accompanying lab provides hands-on
experience.

Introduction to machine learning

Machine learning refers to computation and statistical methods of inference
used to create reusable algorithms for prediction. Let’s use gene expression
profiles and subtypes of acute lymphatic leukemia (ALL) as a running exam-
ple. We might want to develop, with as little direct intervention as possible,
algorithms that will take as input the gene expression array profile observed
in a particular sample, and produce as output a classification of whether or
not the sample came from cancerous tissue. Gene expression arrays provide
an abundance of data; it is often convenient and statistically sound to filter
the data prior to analysis using machine learning algorithms.

The word machine conveys the idea that both the process of specifying
the algorithm and subsequent application of the algorithm for prediction
should occur with a minimum of human intervention. There is, of course,
some human intervention. We have to provide general guidelines about

*based on previous labs by R. Gentleman, W. Huber, V. Carey, R. Irizarry

the nature of the algorithm we wish to use (e.g., neural networks, support
vector machines, classification and regression trees). We have to provide
the algorithm with data to serve as a training set, so that the algorithm can
automatically adjust parameter values for the particular type of data we are
analyzing. Once trained, we normally also use a test set of data to evaluate
algorithm performance.

Our focus is on supervised machine learning. Supervised learning means
that some a priori information is available to guide the learning process.
For instance, in the training set we might know whether the sample tissues
have unique molecular genetic characteristics such as the BCR/ABL centric
fusion. Supervised machine learning algorithms use this a priori information
to automatically adjust parameters of the algorithm so that the predicted
outcomes most closely match the a priori classification.

Supervised machine learning methods contrast with unsupervised meth-
ods (e.g., cluster analysis) where no a priori information on outcome is
available and the main goal is to impose a structure that minimizes some
overall measure of ‘distance’ between sample features.

Data and filtering

An important step in machine learning is to identify an appropriate sample
to be used as a training set. The training set should be representative of
the problem. It should be computationally tractable so that we feel free to
explore our data without running into computational time or memory con-
straints. With gene expression data we likely want to take preliminary steps
to reduce the number of genes included in our analysis. We might do this by
filtering on various criteria like expression levels above a certain threshold,
sufficient variation between samples, and differential expression between a
priori classifications. We might also restrict our analysis to subsets of genes
that are particularly interesting in the context of our research agenda, such
as genes belonging to a particular GO category.

The accompanying lab takes us through some of these steps in more
detail.

Linear machine learning algorithms

There are a great diversity of machine learning algorithms available. Math-
ematically simplest are linear methods such as linear discriminant analysis.
Linear machine learning methods are reminiscent of linear regression, where
prediction is based on linear combinations of observed features x and weight

parameters Wp, W, e.g.,
9(x) = Wo +w'x (1)

In this expression, X corresponds to a sample. It is a vector with number of
elements equal to the number of measured features. The vector of weights w
are parameters determined during the training process (T represents trans-
position). The parameter Wy is used to adjust the threshold for classification,
so that values of g(x) greater than zero indicate classification as one type, val-
ues less than zero correspond to classification as an alternative type. Though
phrased as classification into one of two types, machine learning algorithms
generally allow classification into many different types. Note that ‘linear’
refers to the linear combination of features; log-transforming values of x and
then using the expression above still represents a linear algorithm.

A supervised machine learning algorithm is trained by providing a col-
lection of samples and determining weights w, wp that perform ‘best’ at
classifying the samples to their a priori types. Once trained, a machine
learning algorithm applies classification to data for which prior information
is not available. Linear machine learning algorithms provide a sense of how
data, algorithms, and estimated parameters combine to classify samples.

Additional machine learning algorithms

Linear models like that in eq. [1| are the simplest machine learning algo-
rithms. There are many other machine learning algorithms, and we present
a brief overview of some of them here. A list of functions provided by the
MLInterfaces package is provided in Table [I} Figure 16.1 illustrates some of
the methods for two arbitrarily chosen features (genes ORB6B1, olfactory
receptor 6 B1, and SST, somatostatin).

As their name suggests, non-linear models relax the assumption that
features combine linearly to determine classification. Neural networks (il-
lustrated in figure 16.2) are one commonly used non-linear model. Neural
networks consist of a series of input nodes (representing features) connected
through several layers to output nodes (representing predicted classification).
Each node has several inputs and one output. Each node has a mathematical
function that describes how the inputs are to be transformed to the output.
The function can be as simple as a weighted average of inputs, analogous to
w'x but specific to each node. The parameters of the functions at each node
are adjusted during training. An additional adjustable parameter is the con-
tribution or weight associated with the output of one node as it contributes
to the next layer.

Package Functions covered

1 class knnl, knn.cv, lvql, lvg2, lvg3, olvgl, som
SOM

2 cluster agnes, clara, diana, fanny, silhouette

3 el071 belust, cmeans, cshell, hclust, lca
naweBayes, svm

4 gbm gbm

5 ipred bagging, ipredknn, lda, slda

6 MASS 1soMDS, qda

7 nnet nnet

8 pamr cv, knn, pam, pamr

9 randomForest randomForest

10 rpart rpart

11 stats kmeans

Table 1: Packages and functions covered by MLInterfaces.

One use of neural networks is to start by specifying an overall structure
(e.g., functional forms for calculating each node) of the network. During
training, parameters of the neural network are adjusted to most closely
match predicted with actual classifications. New samples are then classified
by performing the calculations implied by the structure of the neural network
and parameter by the values determined during training.

Regularized models such as support vector machines.

Local models develop classifiers that differ from one another based on
the location of data in feature space, and make predictions by averaging
the prediction of near-by classifiers; the k nearest neighbor (knn) method is
an example of a local classifier. Suppose we have two features. We create
a two-dimensional plot, and color the points corresponding to each sample
in our training set according to their classification, e.g., negative peach,
BCR/ABL positive turquoise. We classify new observations by locating the
new sample on the plot and constructing some kind of average based on the
k nearest neighbors in the training set. With k=1, we predict that each new
sample belongs to the same classification as the nearest point in the training
set. This allows us to divide the feature space into regions corresponding to
classification as BCR/ABL, and to NEG.

Tree-based models such as classification and regression tree (CART)
methods identify a decision tree-like structure that performs classification by
partitioning the data at each node based on feature values (see Figure 16.3).

The overall structure of the tree is specified by how branching occurs (usually
each node has two branches) and a function that describes the trade-off be-
tween greater precision and reduced accuracy of the classification (roughly,
increasing the number of nodes in the tree increases precision, because each
sample in the training set is assigned to its own node, but decreases accuracy,
because the parameters associated with each branch are based on increas-
ingly sparse amounts of information). Training identifies the structure of
the tree, and the cut-off thresholds at each node. To classify a sample, start
at the top of the tree. A sample below the threshold of the first node follows
the left branch, above the threshold the right branch. This repeats until the
terminal node, which represents the sample classification.

Cross-validation and assessing model fit

The diversity of machine learning algorithms provides us with an abun-
dance of outcomes — perhaps an overwhelming abundance! The summary
in Figure 16.1 illustrates both properties of different classifications (e.g., the
division of predicted classifications into 'boxes’ in the CART model) and
differences in possible outcomes. How are we to identify which classification
is best?

As a preliminary to answering this question, note that we need to care-
fully consider the meaning of ‘best’. For instance we might be interested in
maximizing our ability to correctly classify new samples, or to minimize the
uncertainty of each classification. These different ‘best’ measures are not
always consistent with one another. Here we focus on correctly classifying
new samples.

There is a fundamental problem in measuring how good our machine
learning algorithm is at classifying new samples. New samples are not al-
ready classified, so we cannot know when our classification is correct.

The solution to this quandary is to use cross-validation. We divide our
samples previously used for training into two groups. One will be a training
set used to construct the machine learning classifier. The other will be a
test set used to evaluate the effectiveness of the classifier. We have a priori
knowledge of the classification of the samples in the test set, so know when
our trained machine learning algorithm results in the correct classification.
A single cross validation provides us with one observation about how our
algorithm performs, e.g., the number of correct assignments in the test set.

The next step in cross-validation is a little non-intuitive, but the un-
derlying concepts might be familiar to those with exposure to jackknife or
bootstrap techniques. A key idea is that the assignment of samples to test

and training sets sketched in the previous paragraphs was in some sense ar-
bitrary — we could have assigned different samples to different training sets,
and come up with a different observation of how our machine learning algo-
rithm preforms. In fact, we could repeatedly perform this cross-validation,
assigning different samples to the test and to the training set each time.
The result of each cross-validation represents a sample measuring the per-
formance of the machine learning algorithm. The collection of samples from
repeated cross-validation is analogous to samples drawn from a population
— the population of machine learning algorithms generated from our data —
and so we can use these observations to calculate statistics that summarize
the overall performance of our machine learning algorithm.

How should we divide our data into training and testing sets? On the
one hand, we want to use as many samples as possible in the training set, so
that our machine learning algorithm is based on a broad range of samples.
On the other hand, we need at least some samples in the test set to evaluate
the performance of the trained algorithm. Frequently, we divide our data
into a leave-one-out cross-validation. We assign all but one observation to
the training set, so that the trained machine learning algorithm is based on
the most available data. We assess the performance of the trained machine
learning algorithm with the single remaining sample in the test set. Each
cross-validation ‘test’ seems weak — just a single sample subject to test,
classified either correctly or incorrectly. But if we have n = 75 samples to
work with, then we perform n= 75 leave-one-out cross-validations, and have
n = 75 observations with which to assess the performance of our machine
learning algorithm.

The results of leave-one-out cross-validation can be summarized in a
table, or with basic statistics summarizing correct classifications. Statistics
generated from different machine learning algorithms can then be compared
either informally (algorithm X has numerically higher correct classification,
on average, than algorithm Y) or through more formal methods.

There are methods other than leave-one-out cross-validation, and meth-
ods other than cross-validation for the assessing machine learning algo-
rithms.

Using trained machine learning algorithms, and beyond

The discussion so far brings us to the point where we have a trained and
tested machine learning algorithm. We can use this to classify new sam-
ples. We can identify properties of our algorithm that might be useful in
subsequent studies, or that might suggest aspects of our data that we were

not previously aware of. We can also use machine learning algorithms in
creative ways different from the basic scenario outlined here, of classifying
samples based on gene expression profiles, to explore our data.

Feature selection identifies those features or feature combinations that
are particularly important in successful classification. There are a diversity
of ways to assess feature importance. One method is to perform a cross-
validation, with the test set consisting of several samples. Classify the test
set and record the number of correct classifications. Then randomly permute
one feature across the test samples, redo the classification, and note again
the number of correct classifications. Repeat this for each feature, and
for many cross-validations. The idea is that permuting important features
will greatly reduce the number of correct classifications, whereas permuting
unimportant features will have little consequence on correct classification.
The outcome is a ranking of features and their importance, such as that in
Figure 16.4.

One example of a different, creative, use of machine learning to explore
expression data is in the edd package. This package allows us to ask what
the relationship is between gene expression levels and the phenotype of the
samples. For a single gene, we might find that the NEG samples are best
described as a bimodal distribution resulting from a mixture of two Gaussian
(normal) distributions. Where does machine learning fit in? There are many
different possible distributions or combinations of distributions that might
describe gene expression patterns, and deciding that a bimodal distribution
describes a particular genes’ expression pattern represents a classification.
The algorithm that classifies gene expression distributions is a machine learn-
ing algorithm, trained on simulated data sets representing combinations of
the different distributions. Thus edd generates many simulated distributions
of known composition as a training set. Once trained the machine learning
classifier is used on the gene expression samples. We gain insight into the
gene expression patterns of individual genes, of the collection of genes, and
of contrasting gene expression patterns in different experimental groups.

Machine learning laboratory

Data

The lab will use data from the acute lymphatic lukemia (ALL) data set. We
load the data and take a look at its structure:

> library(Biobase)
> library(ALL)

> data(ALL)

> ALL

Expression Set (exprSet) with
12625 genes
128 samples
phenoData object with 21 variables and 128 cases
varLabels
cod: Patient ID
diagnosis: Date of diagnosis
sex: Gender of the patient
age: Age of the patient at entry
BT: does the patient have B-cell or T-cell ALL

remission: Complete remission(CR), refractory(REF) or NA. Derived fr

CR: Original remisson data
date.cr: Date complete remission if achieved

t(4;11): did the patient have t(4;11) translocation. Derived from ci
t(9;22): did the patient have t(9;22) translocation. Derived from ci
cyto.normal: Was cytogenetic test normal? Derived from citog

citog: original citogenetics data, deletions or t(4;11), t(9;22) sta

mol.biol: molecular biology

fusion protein: which of p190, p210 or p190/210 for bcr/able

mdr: multi-drug resistant

kinet: ploidy: either diploid or hyperd.

ccr: Continuous complete remission? Derived from f.u
relapse: Relapse? Derived from f.u

transplant: did the patient receive a bone marrow transplant? Derive

f.u: follow up data available
date last seen: date patient was last seen

Question: What sorts of measurements are included along with the
expression data?

Question: What is the mean age of patients in the sample (hint: look
at the help page for mean, and pay attention to ‘NA’ values)? The average
female?

Question: Do you think it will be helpful to have more than just the
expression data available in a single variable?

Filtering: samples

Our goal in filtering samples is to focus our initial efforts on a relatively
simple problem. We start by restricting the number of molecular biological
features under investigation. Identify those samples whose mol.biol level
is BCR/ABL (fusion of the BCR and ABL genes) or NEG (no characterized
molecular biology abnormalities).

> fusion <- ALL$mol.biol 7inj; c("BCR/ABL", "NEG")

Question: Explain, to yourself or someone nearby, what the previous
statement is doing. What does fusion contain? Any guesses on how this
might be used to select a subset of ALL$mol.biol?

Next we identify samples from patients with B-cell ALL. This done to
further simplify the data for analysis.

> btLevels <- levels(ALL$BT)
> btLevels

[1] ||Bll ||B1I| ||B2ll ||B3ll "B4ll ||T|| IIT1|| IIT2|| IIT3|| IIT4||
> isB <- ALL$BT J,inj), btLevels[1:5]

Question: What are each of these statements doing?

Question: How would you identify samples from patients with T-cell
ALL?

Question: How might you combine the information in fusion and isB
to produce something that indicates samples satisfying both conditions?

Having identified the samples we want to use, we make a subset of the
data containing only those samples satisfying both conditions.

> ALLsubset <- ALL[, fusion & isB]

Question: Check that ALLsubset contains just the samples you expect.

Notice (in the first lines below) that in ALLsubset$mol.biol there are
only two levels present in the data column, but that 6 levels are summarized.
Correct this by recoding the factor:

> levels(ALLsubset$mol.biol)
[1] "ALL1/AF4" "BCR/ABL" "E2A/PBX1" "NEG" "NUP-98" "p15/p16"

> ALLsubset$mol.biol

[1] BCR/ABL NEG BCR/ABL NEG NEG NEG NEG NEG
[10] BCR/ABL NEG NEG BCR/ABL NEG BCR/ABL BCR/ABL BCR/ABL
[19] NEG BCR/ABL BCR/ABL NEG BCR/ABL NEG BCR/ABL NEG
[28] NEG BCR/ABL BCR/ABL NEG BCR/ABL BCR/ABL BCR/ABL NEG
[37] NEG NEG NEG BCR/ABL BCR/ABL BCR/ABL NEG NEG
[46] NEG BCR/ABL BCR/ABL NEG NEG NEG NEG BCR/ABL
[55] NEG NEG NEG NEG BCR/ABL BCR/ABL NEG NEG
[64] BCR/ABL NEG NEG NEG NEG BCR/ABL NEG BCR/ABL
[73] BCR/ABL NEG NEG BCR/ABL NEG BCR/ABL BCR/ABL

Levels: ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16
> ALLsubset$mol.biol <- factor (ALLsubset$mol.biol)

Question: Check that there are now only two levels in ALLsubset$mol.biol

Filtering: genes

To maximize the discriminatory ability of our classification algorithm, se-
lect the top 500 genes that show greatest differential expression between

BCR/ABL and NEG samples

> library(limma)

> modelMatrix <- model.matrix(~ALLsubset$mol.biol)
> fit <- 1mFit(ALLsubset, modelMatrix)

> eFit <- eBayes(fit)

> topGenes <- topTable(eFit, coef = 2, 500)

Question: What is a model matrix? Can you figure out what “ALL-
subset$mol.biol represents (this is hard).

Question: What are IDs of the the top 5 genes? Any ideas about how
to find out more information about these genes?

Finally, reduce our sample of genes to the top 500.

> ALLsubset <- ALLsubset[as.numeric(rownames (topGenes)),]

Question: Explain the previous line of code.
Question: Check that ALLsubset contains the genes that you expect.

Machine learning: k nearest neighbors

We will use the MLInterfaces package. Load the library and explore its
documentation:

10

BCR/ABL
BCR/ABL
BCR/ABL
BCR/ABL
NEG

NEG

BCR/ABL
BCR/ABL

> library(MLInterfaces)

Question: Use library (help=MLInterfaces), ?"MLearn-methods" and
openVignette() to explore the package.

Question: Can you follow the example at the bottom of the MLearn-
methods help page? Depending on the packages installed on your computer,
you might have luck with the command example ("MLearn-methods").

A key function is MLearn. MLearn is designed for easy use with expres-
sion data. The first argument is the name of variable containing a priori
classification information, e.g., mol.biol. The second argument is the ex—
prSet, the third argument the name of the machine learning algorithm, and
the fourth argument the individuals to be used for training. So to use the k
nearest neighbors machine learning algorithm using the first 50 samples for
training, do the following:

> knnResult <- MLearn("mol.biol", ALLsubset, "knn", 1:50)
> knnResult

MLOutput instance, method= knn

Call:

knnB(exprObj = data, classiflab = formula, trainInd = as.integer(trainInd))
predicted class distribution:

BCR/ABL NEG
16 13
summary of class assignment quality scores:
Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1 1

Question: Interpret each line of the input to MLearn. What would you
do to change the training set? To use every second sample as the training
set? To use all but the last sample for training? To use a training set of
50 individuals, chosen at random from the samples in ALLsubset (hint: use
the sample function).

Question: Interpret the output of MLearn. In particular, look at the
predicted class distribution and check that the right number of samples are
being used for testing.

The confusion matrix compares the known classification of the testing
set with the predicted classification based on the tuned machine learning
algorithm.

> confuMat (knnResult)

11

predicted

given BCR/ABL NEG
BCR/ABL 12 0
NEG 4 13

Question: Interpret the confusion matrix. How well do you think the
algorithm is doing? What might you do to improve the classification?

Question: What other information can you extract from the fitted
model?

Machine learning: other methods

As an advanced exercise, explore other methods of machine learning. Some
methods are available through the MLearn interface of the previous section.
For other options you’ll have to explore the vignettes available with the
package and especially the help page 7allClass.

Cross-validation

The MLInterfaces package has a method for performing cross-validation. The
method is called xval. Ponder its help page (?xval) and think about how
you might perform cross-validation of ALLsubset.

From the xval help page, it looks like we should be able to perform cross
validation with a command like:

> knnXval <- xval(ALLsubset, "mol.biol", knnB, xvalMethod = "L0O0O")

The first two arguments should be familiar. The third argument, knnB,
specifies that we will use the knn algorithm. The final argument, xval-
Method, indicates the method that will be used for cross-validation. The
cryptic LOO stands for leave-one-out. So...

Question: Describe in words the operation that xval is performing.

xval for leave-one-out cross-validation returns a list, with each element
in the list being the result of a single cross validation.

Question: What is the length of knnXval? Why?

Question: Interpret the meaning of each element in knnXval.

Question: What information is provided by the following command?
How would you use this to assess the performance of this machine learning
algorithm?

> table(given = ALLsubset$mol.biol, predicted = knnXval)

12

predicted

given BCR/ABL NEG
BCR/ABL 35 2
NEG 5 37

Feature selection

As an advanced exercise, use randomForest on ALLsubset to construct and
tune a random forest machine learning algorithm. The help page for get-
VarImp can be used to help formulate the appropriate commands. Consult
chapter 16 of the book for guidance on interpretation.

As another advanced exercise, use the edd package and ALLsubset to
explore how gene expression patterns differ between tissues. Use chapter 16
and the help and vignettes of edd to guide you.

Conclusions

We have covered a great deal of material in this lecture and lab, investigat-
ing how supervised machine learning provides insight into gene expression
patterns. There are many machine learning algorithms available. A basic
technique for assessing different algorithms is to use cross-validation on data
divided into training and test sets. The result of machine learning can be an
algorithm for classification. This can be used to classify new samples, or its
properties can shed light on the relationship between gene expression and
phenotype. R provides a very flexible environment for analyzing data in a
machine learning context, with the MLInterfaces package being a particularly
useful tool. We have only scratched the surface of machine learning, and of
how machine learning can be used to gain insight into gene expression and
other high-throughput biological data.

13

