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Outline

Data acquisition & Pre-processing (chap. 4) 
Image analysis
Quality assessment
Pre-processing

Differential expression (chap. 14, 15 & 23 )

Lab : case studies (chap 4 & 23)
marray & arrayQuality (Y.H Yang & A.C. Paquet)

limma (G.K Symth)



Terminology

• Target: DNA hybridized to 
the array, mobile 
substrate.

• Probe: DNA spotted on 
the array (spot).

• print-tip-group :
collection of spots printed 
using the same print-tip 
(or pin), aka. grid.

• G, Gb: Cy 3 signal and 
background intensities

• R, Rb: Cy5 signal and  
background intensities

• M = log2(R) - log2(G) 

• A = 1/2(log2(R) - log2(G))



Image Analysis
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Quality Filtering
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Quality Assessment

For each array:
Diagnostics plots of spot statistics

e.g. R and G log-intensities, M, A, spot area.
– Boxplots;
– 2D spatial images;
– Scatter-plots, e.g. MA-plots;
– Density plots.

Stratify plots according to layout parameters, e.g.
print-tip-group, plate.



PCR Plates - Boxplots



Spatial Effects – Image Plots
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Spatial Effects

1 pin 1 block



Spotting Pin Quality Decline

after delivery of 3x105 spots

H. Sueltmann DKFZ/MGA

after delivery of 5x105 spots



Print-tip Effects – ECDF plot
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Diagnostic plot with arrayQuality



Data Exploration with limma

(Limma user Guide)



Quality Assessment: Summary

For each array:
Diagnostics plots
Stratify

BioC packages:
arrayQuality
arrayMagic
…



Outline

• Data acquisition & Pre-processing (chap. 4) 
– Image analysis
– Quality assessment
– Pre-processing

• Differential expression (chap. 14, 15 & 23 )

• Lab : case studies (chap 4 & 23)
– marray & arrayQuality (Y.H Yang & A.C. Paquet)
– limma (G.K Symth)
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Sources of Variation

PCR 
DNA concentration
Printing or pin
cross-hybridization
…

RNA extraction 
reverse transcription 
labeling efficiencies
Scanner settings

Systematic 
•similar effect on many 
measurements
•corrections can be 
estimated from data

Stochastic
• too random to be ex-
plicitely accounted for 
• “noise”

Calibration

Error Model



Background Correction

none

subtraction, movingmin

Minimun,edwards, normexp,…

More details … limma
>?backgroundCorrect



Background Correction

none substraction normexp



Why Normalize?
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Normalization
Identify and remove the effects of systematic variation

Normalization is closely related to quality 
assessment. In a ideal experiment, no normalization 
would be necessary, as the technical variations 
would have been avoided.

Normalization is needed to ensure that differences in 
intensities are indeed due to  differential expression, 
and not some printing, hybridization, or scanning 
artifact.

Normalization is necessary before any analysis which 
involves within or between slide comparisons of 
intensities, e.g., clustering, testing.



Data Transformation

measured intensity  =  offset  +       gain   × true abundance

Yik = Bik +     αik Sk

Intensity measurements adapt a distribution
that is closer to the normal distribution

Muliplicative noise becomes additive noise:
variance more independent of intensity

Example: log transformation



Normalization methods

• median
• loess 
• 2D loess
• print-tip loess 
• variance stabilisation

Smyth, G. K., and Speed, T. P. (2003). In: METHODS: Selecting Candidate 
Genes from DNA Array Screens: Application to Neuroscience

Two-channel

Separate-channel



Two channel normalization

Location: centers log-ratios around zero using A 
and spatial dependent bias



Two channel normalization

Location: centers log-ratios around zero using A 
and spatial dependent bias

Scale: adjust for different in scale between 
multiple arrays

median centered median centered & MAD scaled

Scaling



One channel normalization

• As technology improves the spot-to-spot 
varation is reduced

• Development of normalization techniques that 
work on the absolute intensities

Ex: quantile normalization (limma)
variance stabilization (vsn)



Quantile Normalization

Bolstand et al.(2003)

Before After



Variance Statibilizing 
Transformation

(Huber et al. 2004)

intensity
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Meaningful around 0
Original intensities may be negatives



Variance stabilization (vsn)

linear log arsinh



Variance stabilization (vsn)
log-ratio

'glog' (generalized 
log-ratio)

- interpretation as "fold change"
+ interpretation even in cases where genes are off in some 
conditions (negative values)
+ visualization
+ can use standard statistical methods (hypothesis testing, 
ANOVA, clustering, classification…) without the worries about 
low-level variability that are often warranted on the log-scale

+ +

+ +
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Preprocessing : Summary

For each array:
Background correction or not
Normalization: bias-variance trade-off
Diagnostic plots

BioC pacakges:
marray
limma
…



Outline

• Data acquisition & Pre-processing (chap. 4) 
– Image analysis
– Quality assessment
– Pre-processing

• Differential Expression (chap. 14, 15 & 23 )

• Lab : case studies (chap 4 & 23)
– marray & arrayQuality (Y.H Yang & A.C. Paquet)
– limma (G.K Symth)



Experimental Designs

Yang, Y. H. et Speed, T. (2002). Design issues for cDNA 
microarray experiments. Nat.Rev.Genet., 3: 579-588.

Avoid Confounding effect
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Experimental Designs

• Simple comparisons
• Technical replicates
• Dye swap
• Within array replicate spots
• Two groups
• Several groups
• Direct two color designs
• Factorial design
• Time Course
• …

Case Studies Chap. 23



Differentially Express Genes

Fold change

But no assessment of statistical significance 



Differentially Express Genes

Example: The two–sample
t–statistic is used to test equality of the
group means μ1, μ2.

The p–value pg is the
probability under the null
hypothesis (here: μ1 = μ2) that
the test statistic is at least as
extreme as the observed value
Tg. Under the null hypothesis,
Pr(pg < α ) = α.



Differentially Express Genes

Fold change
Parametric test

standard t-test
Welch t-test

Non parametric
Wilcoxon test
Mann-Whitney

Permutation test



Gene significance level Number of 
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Multiple  testing

Test of Thousands of hypotheses simultaneously!

Increased chance of false positives

Test of Thousands of hypotheses simultaneously!

Increased chance of false positives

Individual p-values of 0.01 no longer correspond to significant findings.

Drǎghici (Chapman &Hall 2003)

-> Adjust for multiple testing



Nonspecific filtering

• Remove genes :
– Low intensities
– Do not show sufficient variation across all samples

• Select genes :
– Known to interact in a specific biological process, 

e.g. GO  (Chap 14.)



Type of Error

Ho is true Ho is false

Ho not 
rejected

True negatives
1- α

False negatives
(Type II error)

β

Ho rejected False positives
(type I error)

α

True positives
(Power)

1-β



Control of Error

• Type II error or Minimizing False negatives 

->power of tests, sample size

• Type I error

-> Control false positive rate (FWER,FDR) or p-value

– Family Wise Error Rate

control probability of false positive on entire set of genes

– False Discovery Rate

control false discovery rate on set of identified genes



Control of Type Error I
Control Method Pros/Cons

FWER

Bonferroni

Šidák 

Holm

Hochberg

Modified Westfall & Young

Very conservative

Very conservative

Assumption free, conservative

Independent variables

Exploit joint distribution of test 
statistics, need replicates

FDR

Benjamini & Hochberg

Benjamini & Yekutieli

Tusher

Independent variables
conservatives
Sensitive to the number of 
replicates

Ge, Y & Dudoit, S. (2003) Technical report #633



FWER vs FDR

• FWER if high 
confidence in all
selected genes is 
desired. Loss of power 
due to large number of 
tests: many differentially 
expressed genes may 
not appear significant.

• If a certain proportion of 
false positives is 
tolerable: Procedures
based on FDR are more 
flexible; the researcher 
can decide how many 
genes to select, based on 
practical considerations



Moderated t-statistics

t–test estimate the variance of each gene individually.
> Ok if we have enough replicates, 
but with few replicates (say 2–5 per group), these variance 
estimates are highly variable.

moderated t–statistic, the estimated gene–specific variance sg
2 is 

replaced by a weighted average of sg
2 and s0

2 , which is a global
variance estimator obtained from pooling all genes.

This gives an interpolation between the t–test and a fold–change
criterion.

Examples: packages limma, siggenes



limma moderated t-statistic

complex experiments: linear models, 
contrasts
empirical Bayes methods for differential 
expression: t-tests, F-tests, posterior odds
inference methods for duplicate spots, 
technical replication
control of FDR across genes and contrasts



Differential Expr. : Summary

Permutation tests
Multiple testing
Pre-filtering or subsetting
Rank genes

BioC pacakges:
limma
multtest
…



BioC Task View: TwoChannel



Outline

• Data acquisition & Pre-processing (chap. 4) 
– Image analysis
– Quality assessment
– Pre-processing

• Differential expression (chap. 14, 15 & 23 )

• Lab : case studies (chap 4 & 23)
– marray & arrayQuality (Y.H Yang & A.C. Paquet)
– limma (G.K Symth)



Getting started

Action Function Class - Object marray Class - Object

read target file readTargets dataframe read.marrayInfo marrayInfo

read image file read.maimages RGList 
read.marrayRaw, 
read.GenePix, read.Spot, 
read.SMD, read.Agilent

marrayRaw

read gene list readGAL RGList$genes read.Galfile
marrayInfo, 
marrayLayout

read spot type
readSpotTypes, 
controlStatus

RGList$genes$status

array layout getLayout RGList$printer read.marrayLayout, Layout marrayLayout

background correction backgroundCorrect

one array normalization 
normalizeWithinArrays, 
MA.RG

MAList maNormMain marrayNorm

normalization between 
arrays

normalizeBetweenArra
ys

MAList

Preprocessing
marray packagelimma package
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