Programming with R

BIOCONDUCTOR

Educational Materials
(©)2006 S. Falcon, R. Thaka, and R. Gentleman

Data Structures

e R has a rich set of self-describing data structures.
> class(z)
[1] "character"
> class(x)
[1] "data.frame"
> x[1:2,]

type time
1 case 0.822737
2 case 1.964191

e There is no need to declare the types of the variables.

Data Structures (continued)

e vector - arrays of the same type

list - can contain objects of different types
environment - hashtable

data.frame - table-like
factor - categorical

Classes - arbitrary record type

function

Atomic Data Structures

e In R, vectors are the “base” type, not scalars.

e A vector contains an indexed set of values that are all of the
same type:
— logical
— numeric
— complex
— character

e The numeric type can be further broken down into integer,

single, and double types (but this is only important when
making calls to foreign functions, eg. C or Fortran.)

Creating Vectors
There are two symbols that can be used for assignment: <- and =.

> v <-1
> Vv

[1] 1

> v <-c(1, 2, 3)
> v

[1] 1 2 3

> s <= "a string"
> t <- TRUE
> length(letters)

[1] 26
> letters

[1] |lall llbll IICII lldll llell |lfll llgll Ilhll llill IIJ‘ n |lkll lllll Ilmll llnll lloll llpll

[17] Ilqll llrll Ilsll Iltll llull Ilvll IIWII IIXH Ilyll Ilzll

Creating Vectors with Functions
e C - concatenate
e seq (also :) and rep - patterns

e vector - new vector with default value.
> seq(1, 3)
[1] 1 2 3
> 1:3
[1] 1 2 3
> rep(c(1, 2), 3)
[1] 121212
> vector (mode = "character", length = 5)

[1] nmwoonwnonnownonn

Matrices and Arrays
e Can be created using matrix and array.
e Are represented as a vector with a dimension attribute.

e R is column oriented for matrices.

Matrix Examples

> x <- matrix(1:10, nrow = 2)
> dim(x)

[1] 2 5

> X

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> as.vector(x)

[1] 1 2 3 4 5 6 7 8 9 10

Naming

The elements of a vector can (and often should) be given names.

Names can be specified
e at creation time

e using names, dimnames, rownames, colnames

>x <-c(a=0, b=2)

> X

ab
0 2

> names (x) <- c("Australia", "Brazil')
> x

Australia Brazil
0 2

Naming (continued)

> x <- matrix(c(4, 8, 5, 6), nrow = 2)
> dimnames (x) <- 1list(c("2005", "2006"), c("plane", "bus"))

> X

plane bus
2005 4 5
2006 8 6

10

Subsetting

e One of the most powerful features of R is its ability to

manipulate subsets of vectors and arrays.
e Subsetting is indicated by [,].

e Note that [is actually a function (try get (" [")). The
behavior can be customized for particular classes of objects.

11

Subsetting with Positive Indices
e A subscript consisting of a vector of positive integer values is
taken to indicate a set of indices to be extracted.

> x <-1:10
> x[2]

[1] 2
> x[1:3]
[1] 1 2 3
e A subscript which is larger than the length of the vector being
subsetted produces an NA in the returned value.
> x[9:11]
[1] 9 10 NA

12

Subsetting with Positive Indices (continued)
e Subscripts which are zero are ignored and produce no
corresponding values in the result.
> x[0:1]
[1] 1
> x[c(0, 0, 0)]

numeric (0)

e Subscripts which are NA produce an NA in the result.
> x[c(10, 2, NA)]
[1] 10 2 NA

13

Assignments with Positive Indices

e Subset expressions can appear on the left side of an
assignment. In this case the given subset is assigned the values
on the right (recycling the values if necessary).

> x[2] <- 200
> x[8:10] <- 10
> X

[1] 1200 3 4 5 6 7 10 10 10

e If a zero or NA occurs as a subscript in this situation, it is

ignored.

14

Subsetting with Negative Indexes

e A subscript consisting of a vector of negative integer values is
taken to indicate the indices which are not to be extracted.

> x[-(1:3)]
[1] 4 5 6 7 10 10 10

e Subscripts which are zero are ignored and produce no

corresponding values in the result.
e NA subscripts are not allowed.

e Positive and negative subscripts cannot be mixed.

15

Assignments with Negative Indexes

e Negative subscripts can appear on the the left side of an
assignment. In this case the given subset is assigned the values
on the right (recycling the values if necessary).

> x =1:10
> x[-(8:10)] = 10
> X

[1] 10 10 10 10 10 10 10 8 9 10
e Zero subscripts are ignored.

e NA subscripts are not permitted.

16

Subsetting by Logical Predicates
e Vector subsets can also be specified by a logical vector of TRUES
and FALSESs.
>x =1:10
>x >5
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> x[x > 5]

[1] 6 7 8 9 10

e NA values used as logical subscripts produce NA values in the
output.

e The subscript vector can be shorter than the vector being
subsetted. The subscripts are recycled in this case.

e The subscript vector can be longer than the vector being
subsetted. Values selected beyond the end of the vector
produce NAs.

17

Subsetting by Name
e If a vector has named elements, it is possible to extract subsets
by specifying the names of the desired elements.

>x <-c(a=1, b=2, ¢ = 3)

> X[C(”C”, nau, ”fOO”)J

C a <NA>
3 1 NA

e If several elements have the same name, only the first of them

will be returned.

e Specifying a non-existent name produces an NA in the result.

18

Exercises

1. Determine (precisely) how R handles non-integer subscripts

(e.g. 1.2). How might this produce problems?

2. What value do the following expressions produce.

x = 1:10
x[-11]

3. How could you choose all elements of a vector which have odd

subscripts? Even subscripts?

4. How are complex subscripts treated?

19

Subsetting matrices

e when subsetting a matrix, missing subscripts are treated as if
all elements are named; so x[1,] corresponds to the first row
and x[,3] to the third column.

e for arrays, the treatment is similar, for example y[,1,].

e these can also be used for assignment, x[1,]1=20

20

Subsetting Arrays

e Rectangular subsets of arrays obey similar rules to those which

apply to vectors.

e One point to note is that arrays can be treated as either
matrices or vectors. This can be quite useful.

> x = matrix(1:9, ncol = 3)
> x[x > 6]

[1] 7 8 9
> x[row(x) > col(x)] = 0

> X

[,11 [,2] [,3]
[1,] 1 4 7
[2,] 0 5 8
[3,] 0 0 9

21

Custom Subsetting Example

> library("Biobase")
> data(sample.ExpressionSet)

> class(sample.ExpressionSet)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

> dim(sample.ExpressionSet)

Rows Samples
500 26

> slotNames (sample.ExpressionSet)

[1] "assayData" "phenoData"

[4] "annotation"

22

"experimentData"

Custom Subsetting Example
> sample.ExpressionSet

Instance of ExpressionSet

assayData
Storage mode: lockedEnvironment
featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at, AFFX-MurlIl4_at,
Dimensions:

Se.exXprs exprs

Rows 500 500

Samples 26 26

phenoData
sampleNames: A, B, C, ..., Y, Z (26 total)
varLabels:

sex: Female/Male

23

type: Case/Control

score: Testing Score

Experiment data
Experimenter name: Pierre Fermat
Laboratory: Francis Galton Lab
Contact information: pfermat@lab.not.exist
Title: Smoking-Cancer Experiment
URL: www.lab.not.exist
PMIDs:

Abstract: A 8 word abstract is available. Use 'abstract' method.

Annotation [1] "hgu95av2"

24

Custom Subsetting Example
> sample.ExpressionSet[1:2, 2:5]

Instance of ExpressionSet

assayData
Storage mode: lockedEnvironment
featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at
Dimensions:

Se.exXprs exprs

Rows 2 2
Samples 4 4
phenoData

sampleNames: B, C, D, E
varLabels:

sex: Female/Male

25

type: Case/Control

score: Testing Score

Experiment data
Experimenter name: Pierre Fermat
Laboratory: Francis Galton Lab
Contact information: pfermat@lab.not.exist
Title: Smoking-Cancer Experiment
URL: www.lab.not.exist
PMIDs:

Abstract: A 8 word abstract is available. Use 'abstract' method.

Annotation [1] "hgu95av2"

26

Vectorized Arithmetic
e Most arithmetic operations in the R language are vectorized.
That means that the operation is applied element-wise.
> 1:3 + 10:12
[1] 11 13 15
e In cases where one operand is shorter than the other the short

operand is recycled, until it is the same length as the longer
operand.

> 1+ 1:5

[1] 23456

> paste(1:5, "A", sep = "")
[1] "1A™ "2A" "3A"™ "4A" "BA"

e Many operations which need to have explicit loops in other
languages do not need them with R. You should vectorize any

functions you write.

27

Lists

e In addition to atomic vectors, R has a number of recursive data
structures. Among the important members of this class are

lists and environments.

e A list is a vector which can contain vectors and other lists (in
fact arbitrary R objects) as elements. In contrast to atomic
vectors, whose elements are homogeneous, lists and
environments contain heterogeneous elements.

> 1st = list(a = 1:3, b = "a 1list")

> 1st

$a

[1] 1 2 3
$b

[1] "a list"

28

Environments

e One difference between lists and environments is that there is
no concept of ordering in an environment. All objects are

stored and retrieved by name.

> el = new.env(hash = TRUE)
> el[["a"]] <- 1:3

> assign("b", "a list", el)
> 1s(el)

[1] llall llbll

e Another difference is that for lists partial matching of names is

used, for environments it is not.

29

Subsetting and Lists

e Lists are useful as containers for grouping related thing

together (many R functions return lists as their values).

e Because lists are a recursive structure it is useful to have two

ways of extracting subsets.

e The [] form of subsetting produces a sub-list of the list being
subsetted.

e The [[]] form of subsetting can be used to extract a single

element from a list.

30

List Subsetting Examples

e Using the [] operator to extract a sublist.
> 1st[1]

$a
[1] 1 2 3

e Using the [[1] operator to extract a list element.
> 1st[[1]]
[1] 1 2 3

e As with vectors, indexing using logical expressions and names
are also possible.

31

List Subsetting by Name

e The dollar operator provides a short-hand way of accessing list
elements by name. This operator is different from all other
operators in R, it does not evaluate its second operand (the
string).
> lst$a
[11] 1 23
> 1st[["a"]]

[11 1 23

e For these accessors partial matching (!) is used.

32

Environment Accessing Elements

e Access to elements in environments can be through, get,
assign, mget.

e You can also use the dollar operator and the [[]] operator,
with character arguments only. No partial matching is done.
> el$a
[11] 1 2 3
> el[["b"]]

[1] "a list"

33

Assigning values in Lists and Environments

e Items in lists and environments can be replaced in much the
same way as items in vectors are replaced.

> 1st[[1]] = list(2, 3)
> 1st[[1]]

[[1]1]
[1] 2

[[2]]
[1] 3

> el$b = 1:10
> el$b

(1] 1 2 3 4 5 6 7 8 9 10

34

Data Frames

e Data frames are a special R structure used to hold a set of
related variables. They are the R representation of a statistical
data matriz. In a data.frame, the observations are the rows

and the covariates are the columns.

e Data frames can be treated like matrices, and indexed with two
subscripts. The first subscript refers to the observation, the

second to the variable.

e Data frames are really lists, and list subsetting can also be used

on them.

35

Data Frames (continued)

> df <- data.frame(type = rep(c("case", "control"), c(2,
3)), time = rexp(5))
> df

type time
case 0.5388906
case 1.8223102
control 1.2595001
control 0.4415987
control 1.8353047

g s N -

> df$time

[1] 0.5388906 1.8223102 1.2595001 0.4415987 1.8353047
> names (df)

[1] "type" "time"

> rn <- paste("id", 1:5, sep = "")
> rownames (df) <- rn
> df[1:2,]

type time
idl case 0.5388906
id2 case 1.8223102

36

Classes

e A class consists of a set of slots each containing a specific type
(character, numeric, etc.).

e methods can be defined for classes. A rectangle class that has
slots for length and width could have an area method.

e Slots are accessed using @, but accessor methods are preferred.

37

Classes (example)

> setClass("Person", representation(name = "character",

+ height = "numeric", country = "character"))
[1] "Person"

> p <- new("Person", name = "Alice", height = 5, country = "UK")
> p

An object of class "Person"
Slot "name":
[1] "Alice"

Slot "height":
[1] 5

Slot "country":

[1] uUKu
> p@name
[1] "Alice"

38

Getting Help There are a number of ways of getting help:
e help and 7: help("data.frame")
e help.search, apropos
e RSiteSearch (requires internet connection)
e help.start
e sessionInfo
¢ Online manuals

e Mailing lists (sessionInfo)

39

Packages

In R one of primary mechanisms for distributing software is via

packages
CRAN is the major repository for getting packages.

You can either download packages manually or use
install.packages or update.packages to install and update
packages.

In addition, on Windows and in some other GUIs, there are
menu items that facilitate package downloading and updating.

It is important that you use the R package installation
facilities. You cannot simply unpack the archive in some
directory and expect it to work.

40

Packages - Bioconductor

e Bioconductor packages are hosted in CRAN-style repositories

and are accessible using install.packages.

e The most reliable way to install Bioconductor packages (and
their dependencies) is to use biocLite.

e Bioconductor has both a release branch and a development
branch. Each Bioconductor release is compatible with a specific

R release.

e Bioconductor packages all have vignettes.

41

Packages

e Having, and needing many more packages can cause some

problems.

e When packages are loaded into R, they are essentially attached

to the search list, see search.

e This greatly increases the probabilities of variable masking,
that is one package provides a function that has the same name
as a different function in another package.

e Name spaces were introduced in R 1.7.0 to provide tools that
would help alleviate some of the problems.

42

Control-Flow R has a standard set of control flow functions:
e Looping: for, while and repeat.

e (Conditional evaluation: if and switch.

43

Two Useful String Functions
1. Concatenate strings: paste

2. Search strings: grep

44

Example: paste
> S <_ C(”a” Hb” ”C")
> paste(s, "X", sep = "_")

[1] na-xn "b_X" "C_X"

> paste(s, collapse =", ")

J

[1] ua, b, C"

45

Example: grep

> library ("ALL")
> data(ALL)
> class(ALL$mol.biol)

[1] "factor"

> negldx <- grep("NEG", ALL$mol.biol)
> negldx[1:10]

[1] NA NA NA NA NA NA NA NA NA NA

46

The apply Family

¢ A natural programming construct in R is to apply the same
function to elements of a list, of a vector, rows of a matrix, or

elements of an environment.

e The members of this family of functions are different with
regard to the data structures they work on and how the

answers are dealt with.

e Some examples, apply, sapply, lapply, mapply, eapply.

47

Using apply
e apply applies a function over the margins of an array.

e For example,
> apply(x, 2, mean)
computes the column means of a matrix x, while
> apply(x, 1, median)

computes the row medians.

e (apply) is implemented in a way which avoids the overhead
associated with looping. (But it is still slow and you might use

rowSums or colSums).

48

Writing Functions

Writing R functions provides a means of adding new

functionality to the language.

Functions that a user writes have the same status as those

which are provided with R.

Reading the functions provided with the R system is a good

way to learn how to write functions.

If a user chooses she can make modifications to the system
functions and use her modified ones, in preference to the

system ones.

49

A Simple Function

e Here is a function that computes the square of its argument.

> square = function(x) x * x
> square(10)

[1] 100

e Because the underlying arithmetic is vectorized, so is this
function.

> square(1:4)
(1] 1 4 9 16

50

Composition of Functions

e Once a function is defined, it is possible to call it from other
functions.

> sumsq = function(x) sum(square(x))
> sumsq(1:10)

[1] 385

51

Returning Values

Any single R object can be returned as the value of a function;

including a function.

If you want to return more than one object, you should put
them in a list (usually with names), or an S4 object, and return
that.

The value returned by a function is either the value of the last

statement executed, or the value of an explicit call to return.

return takes a single argument, and can be called from any

where in a function.

return is lexically scoped, and can be passed out to other

functions, to effect non-local returns.

52

Control of Evaluation

¢ In some cases you want to evaluate a function that may fail,

but you do not want to exit from the middle of an evaluation.
e In these cases the function try can be used.

e try(expr) will either return the value of the expression expr,
or an object of class try-error

e tryCatch provides a much more substantial mechanism for

condition handling and error recovery.

53

Name Spaces

e Name spaces were introduced in R 1.7.0, see R News, Vol 3/1
for more details.

e They provide a mechanism that allows package writers to
control what functions they import (and hence use) and export
(and hence let others use).

¢ Related functions: loadedNamespaces and ::.

54

Object Oriented Programming

e Object oriented programming is a style of programming where
one attempts to have software reflections of real-world objects
and to write functions (methods) that operate on these objects.

e The R language has two different object oriented paradigms,
one S3 is older and should not be used for new projects. The

second, S4 is newer and is currently under active development.

e These objects systems are more like OOP in Scheme, Lisp or
Dylan than they are like OOP in Java or C++.

55

Classes
e In OOP there are two basic ingredients, objects and methods.

e An object is an instance of a class, and most OOP
implementations have mechanisms to ensure that all objects of

a particular class have some common characteristics.

e In most implementations there is some notion of inheritance or
class extension. Class B is said to extend class A if a member
of B has all the attributes that a member of A does, plus some

other attributes.

56

Generic Functions

e A generic function is an interface, or a dispatcher, that
examines the type or class of its arguments and invokes the
most appropriate method.

e A method is registered with a generic function, by indicating
its existence together with the number and types (classes) of its

arguments.

e In the previous example, if a generic function is called with an
instance of class B and there is no class B method, a class A
method could be used.

57

S3

S3 OOP has no real mechanism for defining classes or for

creating objects from a specific class.

One can make any object an instance of class foo, by assigning

a class attribute, class(x) = "foo".

S3 handles inheritance by setting several different class

attributes (but these are not always handled correctly).

S3 is not suitable for the development of large scale complex

systems.

58

S3 Generic Functions

e The relationship between a generic function and its methods is
done by a naming convention. The generic function must have
a call to UseMethod and the method must have a name that is
the name of the generic function concatenated with the name
of the class, with the two names separated by a dot.

> mean

function (x, ...)
UseMethod ("mean")
<environment: namespace:base>

> methods("mean")

[1] mean.Date mean.P0SIXct mean.P0SIX1lt mean.data.frame
[5] mean.default mean.difftime

59

References

The New S Language, Statistical models in S, Programming

with Data, by John Chambers and various co-authors.

Modern Applied Statistics, S Programming by W. N. Venables
and B. D. Ripley.

Introductory Statistics with R by P. Dalgaard.
Data Analysis and Graphics Using R by J. Maindonald and J.

Braun.

60

