
How to Use DBI: Connecting to Databases with

R

Seth Falcon

January 17, 2006

1 Introduction

DBI stands for DataBase Interface. In this vignette you will learn how to use
the DBI package to interact with database systems from within R.

The DBI package defines a generic interface for accessing an arbitrary RDBMS.
For each RDBMS, a DBI compliant driver implements the generic interface. DBI
drivers are available for Oracle, MySQL, and SQLite.

In theory, using DBI’s generic interface allows the same code to work with
different RDBMS’s. In practice, this depends on how closely the particular
RDBMS’s adhere to the SQL standard and the degree to which developers are
careful to avoid RDBMS-specific features.

For this vignette, we will use a SQLite database containing annotation data
for the Affymetrix hgu95av2 microarray chip. We begin by loading the required
packages.

> library(tools)

> library("RBioinf")

> library("DBI")

> library("RSQLite")

> dbPath <- "hgu95av2-sqlite.db"

2 Connecting to a SQLite database using DBI

Connecting to a RDBMS using DBI requires two steps. First, one creates an
instance of a driver appropriate for the particular RDBMS using dbDriver.
Then a connection to the database is established using dbConnect.

For SQLite, only the path to the file containing the database needs to be
specified. For client/server RDBMS’s such as MySQL and Oracle, one would
need to specify network location, username, and password information.

> drv <- dbDriver("SQLite")

> db <- dbConnect(drv, dbPath)

> db

1

<SQLiteConnection:(2175,0)>

To disconnect from a RDBMS, use dbDisconnect. The call to dbDisconnect
will be the same regardless of the RDBMS.

> dbDisconnect(db)

[1] TRUE

3 Exploring database structure using DBI

You can interogate the database and find out what tables are available and what
columns individual tables contain using dbListTables and dbListFields.

> db <- dbConnect(drv, dbPath)

> dbListTables(db)

[1] "acc" "go_evi" "go_ont" "go_ont_name" "go_probe"
[6] "pubmed"

> dbListFields(db, "go_probe")

[1] "affy_id" "go_id" "evi"

4 Queries using DBI

You can execute any SQL statement using dbSendQuery. This function returns
a instance of a subclass of DBIResult from which the results of the query can be
obtained using fetch. In order to release the resources allocated to the result
set, one must call dbClearResult when the result set is no longer of use.

The fetch function returns the result of the query as a data.frame. Infor-
mation about the result set can be obtained from the functions dbColumnInfo,
dbGetRowsAffected, and dbGetRowCount, all demonstrated below.

Here we query two columns from the go_probe table. dbSendQuery returns
a SQLiteResult instance, a subclass of DBIResult .

> sql <- "select affy_id, evi from go_probe"

> rs <- dbSendQuery(db, sql)

> rs

<SQLiteResult:(2175,1,3)>

A DBIResult instance contains information about the query performed.

> dbColumnInfo(rs)

name Sclass type len precision scale nullOK
1 affy_id character SQL92_TYPE_CHAR_VAR -1 -1 -1 TRUE
2 evi character SQL92_TYPE_CHAR_VAR -1 -1 -1 TRUE

2

> dbGetStatement(rs)

[1] "select affy_id, evi from go_probe"

> dbGetRowsAffected(rs)

[1] 71896

The actual results are retreived using fetch and returned as a data.frame.

> chunk <- fetch(rs, n = 5)

> chunk

affy_id evi
1 986_at IEA
2 986_at TAS
3 986_at IEA
4 986_at TAS
5 986_at NR

The dbGetRowCount function returns the number of rows fetched so far.

> dbGetRowCount(rs)

[1] 5

When a DBIResult instance is no longer needed, it must be cleared.

> dbClearResult(rs)

[1] TRUE

> rs

<Expired SQLiteResult:(2175,1,3)>

Exercise 1
Execute a query using dbSendQuery without capturing the result (that is, with-
out saving the return value). Use dbListResults to obtain a reference to the
result set. Try closing the database connection with dbDisconnect before clear-
ing the result set. Try making repeated calls to dbSendQuery without clearing
any result sets.

Exercise 2
Execute a query that only returns 10 rows using SQL’s LIMIT directive. Call
fetch with n=6 repeatedly.

Exercise 3
Fetch the results for a query that returns no results.

3

5 Building R data structures from query results

> sql <- "select * from go_probe"

> rs <- dbSendQuery(db, sql)

> dat <- fetch(rs, n = 500)

> goList <- split(datgo_id, dataffy_id)

Exercise 4
Modify the goList creation to include the evidence code information.

Exercise 5
Write a function to retrieve descriptive information for a GO id.

6 Using ODBC

The RODBC package allows you to connect to ODBC data sources provided
that you have an appropriate driver installed on your machine.

The R Data Import/Export manual gives some examples of using the RODBC
package and includes an example of connecting to an Excel spreadsheet (this
only works on Windows).

To connect to a RDBMS using ODBC, you need to configure an ODBC data
service. How you do this is system dependent. You will also need an ODBC
driver for the particular database you wish to connect to.

The RBioinf package includes AP-MS protein complex experiment results
from Gavin and Ho as pcomplex.txt and pcomplex.xls. We will use this data
to demonstrate the use of RODBC . The data is organized in three columns:
bait-protein, experiment, and prey-protein. The rows matching a given bait-
protein identifier give the prey-proteins identified in that experiment.

The following will only work if you are using Windows.

> library("RODBC")

> if (.Platform$OS.type == "Windows") {

+ pcomplexXls <- system.file("extdata/pcomplex.xls", package = "RBioinf")

+ db <- odbcConnectExcel(pcomplexXls)

+ }

> if (!is.null(db)) {

+ sqlTables(db)

+ sqlQuery(db, "select * from [Sheet1$] limit 5")

+ }

Exercise 6
If you are not using Windows, use the pcomplex.txt to create a SQLite database,
then use RSQLite for the remaining excercises.

4

Exercise 7
Use the protein complex database to discover how many distinct bait proteins
and distint prey proteins are listed in the database.

Exercise 8
Find all interactions with TY1B_A as a bait.

5

	Introduction
	Connecting to a SQLite database using DBI
	Exploring database structure using DBI
	Queries using DBI
	Building R data structures from query results
	Using ODBC

