
1

Solutions for chapter Processing Affymetrix
Expression Data

Exercise 1

> dataPLMx = fitPLM(CLLB)

> boxplot(dataPLM, main="NUSE", ylim = c(0.95, 1.3),

outline = FALSE, col="lightblue", las=3,

whisklty=0, staplelty=0)

> Mbox(dataPLM, main="RLE", ylim = c(-0.4, 0.4),

outline = FALSE, col="mistyrose", las=3,

whisklty=0, staplelty=0)

Exercise 2

There are lots of ways to do that, some of them are listed below.

> dim(e)[1]

[1] 12625
> nrow(e)

[1] 12625
> dim(exprs(CLLrma))[1]

[1] 12625
> nrow(CLLrma)

Features
12625

> length(featureNames(CLLrma))

[1] 12625

Exercise 3

> par(mfrow=c(1,2))

> myPlot = function(...){

plot(y = CLLtt$dm, pch = ".", ylim = c(-2,2),

ylab = "log-ratio", ...)

abline(h=0, col="blue")

}

> myPlot(x = a, xlab="average intensity")

> myPlot(x = rank(a), xlab="rank of average intensity")

Exercise 4

Plot the two. Perhaps also use an ROC curve?

2

> plot(CLLtt$statistic, CLLeb$t[,2], pch=".")

Exercise 5

> plot(CLLtt$dm, -log10(CLLeb$p.value[,2]), pch=".",

xlab="log-ratio", ylab=expression(log[10]~p))

> abline(h=2)

Exercise 6

> plot(CLLtt$dm, lod, pch=".", xlab="log-ratio",

ylab=expression(log[10]~p))

> o1 = order(abs(CLLtt$dm), decreasing=TRUE)[1:25]

> points(CLLtt$dm[o1], lod[o1], pch=18, col="blue")

Exercise 7

> sum(CLLtt$p.value<=0.01)

[1] 243
> sum(CLLeb$p.value[,2]<=0.01)

[1] 261

Exercise 8

The values, transformed to a log2 scale, can be plotted using the code
below.

> smoothScatter(log2(mms[,1]), log2(pms[,1]),

xlab="Log2 MM values",

ylab="Log2 PM values", asp=1)

> abline(a=0, b=1, col="red")

Let us look at their relative size.

> table(sign(pms-mms))

-1 0 1
1414590 31828 2993182

In a large number of cases, the MM value is larger than the PM value.
The simple story of MM measuring non-specific hybridization and PM the
sum of non-specific and specific hybridization is hard to hold.

3

Exercise 9

The two histograms look very different. And we can confirm that, as sug-
gested by the scatterplot in Figure 8, the intensities of the MM probes
strongly correlate to those of the PM probes. The histogram for low val-
ues is quite skewed, while that corresponding to larger PM values is more
symmetric.

> grouping = cut(log2(pms)[,1], breaks=c(-Inf, log2(2000),

Inf), labels=c("Low", "High"))

> multidensity(log2(mms)[,1] ~ grouping, main="", xlab="",

col=c("red", "blue"), lwd=2)

> legend("topright", levels(grouping), lty=1, lwd=2,

col=c("red", "blue"))

Exercise 10

First, we create a subset sel of 500 randomly selected PM probes – this
is enough to sample the background correction transformation and reduces
the file size of the plots.

> sel = sample(unlist(indexProbes(CLLB, "pm")), 500)

> sel = sel[order(exprs(CLLB)[sel, 1])]

Then we create the vectors yo, yr and yv with the original, RMA
background-corrected and VSN background-corrected intensities for the
first array,

> yo = exprs(CLLB)[sel,1]

> yr = exprs(bgrma)[sel,1]

> yv = exprs(bgvsn)[sel,1]

and plot them. The result is shown in Figure 10.

> par(mfrow=c(1,3))

> plot(yo, yr, xlab="Original", ylab="RMA", log="x",

type="l", asp=1)

> plot(yo, yv, xlab="Original", ylab="VSN", log="x",

type="l", asp=1)

> plot(yr, yv, xlab="RMA", ylab="VSN", type="l", asp=1)

Exercise 11

We need to pay attention to the fact that the non-specific filtering se-
lected different sets of probe sets. In inboth, we determine those that are
in common.

4

> inboth = intersect(featureNames(CLLvsnf),

featureNames(CLLf))

> names(CLLvsntt$statistic) = featureNames(CLLvsnf)

> names(CLLtt$statistic) = featureNames(CLLf)

> plot(CLLtt$statistic[inboth],

CLLvsntt$statistic[inboth],

pch=".", xlab="RMA", ylab="VSN", asp=1)

The scatterplot is shown in Figure 11.

Exercise 12

We can use the matplot function to do this. You should probably either
transform the data to the log scale, or use log-scaling in the plot, as we
have done. PMs are plotted using a P, MMs using a M. It is worth noting
that for many of the probes, there is no clear separation between the MM
values and the PM values (eg probe 1), for others the MM values seem to
be higher(!) than the PM values (eg probe 3), and others the PM values
are larger than the MM values.

> colors = brewer.pal(8, "Dark2")

> Index = indices[["189_s_at"]][seq(along=colors)]

> matplot(t(pms[Index, 1:12]), pch="P", log="y", type="b",

lty=1, main="189_s_at", xlab="samples",

ylab=expression(log[2]~Intensity),

ylim=c(50,2000), col=colors)

> matplot(t(mms[Index, 1:12]), pch="M", log="y", type="b",

lty=3, add=TRUE, col=colors)

The result is shown in Figure 12.

Exercise 13

We can compute the percentage, for each array, by first creating a logical
matrix where TRUE corresponds to a negative value and FALSE corresponds
to a non-negative value. Then the column sums of that matrix are the
proportions, and if we multiply by 100 we get percentages.

> colMeans(newsummary<0)*100

[1] 20.2 19.6 19.4 18.3 21.0 22.6 21.7 19.6 21.7 21.1
[11] 18.9 18.7 20.6 23.1 19.6 21.0 18.6 21.6 21.4 19.6
[21] 19.7 19.8

	Processing Affymetrix Expression Data
	
	
	
	
	
	
	
	
	
	
	
	
	

