
Lecture: S4 classes and methods

Martin Morgan, Robert Gentleman
Fred Hutchinson Cancer Research Center

Seattle, WA, USA

14 February, 2008

Object oriented programming

class Data encapsulation

method Set / get, show, transformation

inheritance For data and method reuse

Flavors

S3 Convenient, ad hoc, single inheritance, single
dispatch, instance-based.

S4 Formal, multiple inheritance & dispatch.
Introspection.

Benefits

I Abstract data types – interface to data.

I Reuse – data components (e.g., experiment description),
inheritance (e.g., Sequences vs. DNASequences)

Examples: S3

> example(lm)

> class(lm.D90)

[1] "lm"

> head(names(lm.D90), n = 4)

[1] "coefficients" "residuals"
[3] "effects" "rank"

> head(methods("summary"), n = 4)

[1] "summary.aov" "summary.aovlist"
[3] "summary.connection" "summary.data.frame"

> head(methods(class = "lm"), n = 4)

[1] "add1.lm" "alias.lm"
[3] "anova.lm" "case.names.lm"

Examples: S4 I

> library(Biobase)

> data(sample.ExpressionSet)

> class(sample.ExpressionSet)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

Examples: S4 II

> getClass("ExpressionSet")

Slots:

Name: assayData phenoData
Class: AssayData AnnotatedDataFrame

Name: featureData experimentData
Class: AnnotatedDataFrame MIAME

Name: annotation .__classVersion__
Class: character Versions

Extends:
Class "eSet", directly
Class "VersionedBiobase", by class "eSet", distance 2
Class "Versioned", by class "eSet", distance 3

Examples: S4 III

Class introspection

I getClass

I getSlots, slotNames

I extends

Method introspection

I showMethods("exprs"),
showMethods(class="ExpressionSet")

I getMethod("exprs", "ExpressionSet")

Class definition: setClass

> setClass("Sequences",

+ representation=representation(

+ sequences="character"))

> setClass("DNASequences",

+ contains="Sequences",

+ representation=representation(

+ chromosome="character"))

Class definition

> names(formals(setClass))

[1] "Class" "representation"
[3] "prototype" "contains"
[5] "validity" "access"
[7] "where" "version"
[9] "sealed" "package"

I representation: named list of ‘slots’ and their classes

I prototype: named list of slots and default (e.g.,
character(0) values

I contains: character vector of contained (inheritted) classes

I validity : programatic constraints on object contents; also
setValidity

Validity

> setValidity("DNASequences", function(object) {

+ msg <- NULL

+ atgc <- grep("[^atcg]", sequences(object))

+ if (length(atgc)>0)

+ msg <- c(msg, "'sequences' must be a, t, c, or g")

+ if (is.null(msg)) TRUE

+ else msg

+ })

I Implicitly called when object instantiated.

I Explicit usage: validObject(dnaSeq)

Validity

I Impose constraints beyond type

I Argument to setClass, or call to setValidity

I Function returns TRUE or character string describing invalid
aspect(s)

I Automatically called during object creation, or with
validObjecct

I (Advanced) Special dispatch: do not callNextMethod; check
only validity of specific class

Slot access

I Get: @, slot

I Set: @<-, slot<-

Usually, use accessor methods instead

I Goal: separate interface from implementation.

I ‘Getters’ for all (publically accessible) slots

I ‘Setters’ for slots intended to be mutable

Get: a simple method

> setGeneric("sequences",

+ function(object) {

+ standardGeneric("sequences")

+ })

> setMethod("sequences",

+ signature(object="Sequences"),

+ function(object) {

+ slot(object, "sequences")

+ })

Usage: sequences(dnaSeq)

Set: a replacement method

> setGeneric("sequences<-",

+ function(object, value) {

+ standardGeneric("sequences<-")

+ })

> setReplaceMethod("sequences",

+ signature(object="Sequences"),

+ function(object, value) {

+ slot(object, "sequences") <-

+ tolower(value)

+ validObject(object)

+ object

+ })

Usage: sequences(dnaSeq) <- "aaacccttt"

Defining generics

> names(formals(setGeneric))

[1] "name" "def"
[3] "group" "valueClass"
[5] "where" "package"
[7] "signature" "useAsDefault"
[9] "genericFunction"

name Name of an existing function (to be used as the
default) or a new name.

def Function definition with named argumments and
defintion. def Used for dispatch rather than
evaluation; body usually
standardGeneric(<name>).

signature Character vector of named arugments to be used for
dispatch (some details below).

Defining methods

> names(formals(setMethod))

[1] "f" "signature" "definition"
[4] "where" "valueClass" "sealed"

f Name of the generic

signature Named character vector matching argument names to
types. Implicit type is ANY, another type is missing

definition function definition, matching generic.

Reuse and inheritance: show

> setMethod("show",

+ signature=signature(

+ object="Sequences"),

+ function(object) {

+ cat("class:", class(object), "\n")

+ cat("sequences:", sequences(object), "\n")

+ })

> setMethod("show",

+ signature=signature(

+ object="DNASequences"),

+ function(object) {

+ callNextMethod()

+ cat("chromosome:", chromosome(object), "\n")

+ })

Instantiation: new

> dnaSeq <- new("DNASequences", sequences = "aatat",

+ chromosome = "X")

> dnaSeq

class: DNASequences
sequences: aatat
chromosome: X

initialize

> setMethod("initialize",

+ signature(.Object="Sequences"),

+ function(.Object, ..., sequences=character(0)) {

+ sequences <- tolower(sequences)

+ callNextMethod(.Object, ...,

+ sequences=sequences)

+ })

> new("DNASequences", sequences = "AATAT",

+ chromosome = "X")

class: DNASequences
sequences: aatat
chromosome: X

Instantiation

> names(formals(new))

[1] "Class" "..."

I Typically: ... at most one unnamed element (e.g., .Data, used
to initialize super class) and additional named arguments
(names often correspond to slots).

I The class prototype is used as a template, updated by named
arguments

Mutliple inheritance, virtual classes

I Multiple inheritance: several contains classes

I Virtual classes: group related data types

I setClassUnion: establish ‘extends’ relationships between
existing classes

Multiple inheritance and class unions I

> setClass("A",

+ representation = representation(

+ x="numeric"))

[1] "A"

> setClass("B",

+ representation = representation(

+ y="numeric"))

[1] "B"

> setClass("AB",

+ contains=c("A", "B"))

[1] "AB"

Multiple inheritance and class unions II

> new("AB")

An object of class "AB"
Slot "x":
numeric(0)

Slot "y":
numeric(0)

setClassUnion I

> setClassUnion("AOrB", c("A", "B"))

[1] "AOrB"

> getClass("AOrB")

Extended class definition ("ClassUnionRepresentation")
Virtual Class

No Slots, prototype of class "NULL"

Known Subclasses:
Class "A", directly
Class "B", directly
Class "AB", by class "A", distance 2
Class "AB", by class "B", distance 2

setClassUnion II

> getClass("A")

Slots:

Name: x
Class: numeric

Extends: "AOrB"

Known Subclasses: "AB"

I A now extends AOrB!

Real example: class union

> getClass("AssayData")

Extended class definition ("ClassUnionRepresentation")
Virtual Class

No Slots, prototype of class "NULL"

Known Subclasses:
Class "list", directly
Class "environment", directly
Class "Versions", by class "list", distance 2
Class "VersionsNull", by class "list", distance 3

Dispatch and inheritance

I Multiple dispatch when more than one argument in signature,
e.g., "["

I Dispatch to first matching signature in linearized method list

I ‘Matching’ signature: compare class of supplied object(s) with
classes names in method definition.

I Possibly several signatures match:
I Inheritance (e.g., B extends A; method foo for classes A, B;

argument is instance of B; both foo possible)
I Multiple arugments, some with signature ANY
I Both inheritance and multiple arguments
I Methods ordered in terms of ‘distance’ from suplied

arguments; complex method lists lead to (very) complex
distance calculations

I callNextMethod calls ‘next’ method in linearized method list.

S4 and packages

DESCIPTION

I Depends: methods

I Imports: other package classes and methods

NAMESPACE

I importClassesFrom

I import: usually generics or regular functions

I exportClasses

I export: including generics

I exportMethods: for methods on generics defined in other
packages, e.g., show, initialize

Documentation

I promptClass, promptMethods

new and initialize I

MTM: Implicitly:

I new("Sequences") must work (used during validity
checking).

I new("DNASequences", obj, chromosome="Y") is a copy
constructor, using obj as a template for creating a new
DNASequences object.

I callNextMethod() should work, without special effort, for
derived classes.

Consequently. . .

new and initialize II

> setMethod("initialize",

+ signature=signature(

+ .Object="DNASequences"),

+ function(.Object, ..., sequences=character(0)) {

+ sequences <- toupper(sequences)

+ callNextMethod(.Object, ...,

+ sequences=sequences)

+ })

[1] "initialize"

I Only slot names as argument to initialize methods.

I Only include arguments for slots defined in the class for which
initialize is specialized to.

I Force arguments to initialize to be named.

Constructors I

MTM: new is a ‘low-level’ function, suitable for class authors but
perhaps not the users.

I Exposes class structure, breaking the abstraction layer.

I Restricts arguments to slot names.

I Provides no hints to user about appropriate arguments.

I Requires class author and user to employ same methods for
object creation.

Constructors II

Solution

> DNASequences <- function(uri, format = "fasta",

+ ...) {

+ sequences <- paste(readLines(uri)[-1],

+ collaspe = "")

+ new("DNASequences", sequences = sequences,

+ ...)

+ }

I initialize does not need to be exported

I Constructor can be a generic, with methods.

Creating accessors programatically

I Getters and setters are very standardized.

I Makes sense to write a function .accessors to create
appropriate generics and methods (see
GSEABase:::.accessors for an example)

Example: getters and setters created with

> GSEABase:::.accessors("Sequences")

> GSEABase:::.accessors("DNASequences")

	Introduction
	Examples
	S3
	S4

	Working with S4
	Class definition
	Class validity
	Slot access
	Instantiation

	Mutliple inheritance, virtual classes
	Method dispatch
	S4 and packages
	Advanced initialization

