Bioconductor Workshop
 Using R for Genome-Wide Analyses

Ken Rice

UW Biostatistics

Seattle, July 2009

Introduction

- Assistant Prof, UW Biostat
- Currently veRy busy with Genome-Wide Studies
- Chair, Analyis Committee, for the CHARGE Consortium

My experience with R is as a (frequent) user - much of today's material is from a short course I teach with Thomas Lumley.

Motivation

- Learning about diseases via genomics - the 'first pass' is to do millions of e.g. case-control tests
- How to do this quickly? accurately? for free?

Examples

A competitive field! 'Findings' are high impact...

Examples

A competitive field! 'Findings' are high impact...

Examples

A competitive field! 'Findings' are high impact...

Examples

A competitive field! 'Findings' are high impact...

$\begin{aligned} & \text { BBC } \\ & \text { NEWS } \end{aligned}$	
News Front Page	Last Updated: Monday, 28 May 2007, 05:57 GMT 06:57 UK
	囫-mail this to a friend Printable version
	New breast cancer genes discovery
Africa Americas	Scientists have developed a new technique to identify
sia-Pacific	genes that increase the
Europe	breast cancer.
South Asia UK	They hope it will lead to a single blood test which would
Business	reveal a woman's risk of getting
Health	the disease.
Medical notes	
Science/Nature Technology Entertainment	Rechnique speeds up gene identification and could mean finding all the genes associated with breast cancer.
Also in the news	Cancer Research UK described the development as "hugely significant".

Examples

Still a competitive area...

News Front Page
Africa
Americas
Asia-Pacific
Europe
Middle East
South Asia
UK
Business
Health
Medical notes
Science \& Environment
Technology
Entertainment
Also in the news

Watch ONE-MINUTE WORLD NEWS

Page last updated at 23:02 GMT, Sunday, 17 May 2009 00:02 UK
E-mail this to a friend Printable version

Women's menstruation genes found

Scientists say they have begun to crack the genetic code that helps determine when a girl becomes a woman.

A UK-led team located two genes on chromosomes six and nine that appear to strongly influence the age at which menstruation starts.
The Nature Genetics study also provides a clue for why girls who

The genes were found on chromosomes six and nine are shorter and fatter tend to get their periods months earlier than classmates.

The genes sit right next to DNA controlling height and weight.

Examples

Still a competitive area...

```
Mindustan Times
Zany Science
HEWS | ELECTIONS nem! views | busmess | CRICKET | CImema | LIFESTYLE | TABLOID | Photos | video | E
Smart Zone|Kids Zone|Window Seat|Education|Teens|Zany Science
=ll Home }->\mathrm{ HTNext }\hookrightarrow\mathrm{ Zany Science }\leftrightarrows\mathrm{ Story
```


BP treatments to get better

Ads by Google
AlII
London, May 11, 2009
Bad Breath Problems?
Our natural remedy gives
fast,dependable and lasting relief.

Hindu Vedic Astrology Reveal your Stars for 2009 nowIn this Astrologer's Free Horoscope

Call India Cheap $1.34 / \mathrm{min}$
\#SHARE % % %

```
```

```
#mimur REPRINTS O Discuss 昌Print
```

```
```

\#mimur REPRINTS O Discuss 昌Print

```
```

Scientists from Massachusetts General Hospital claim that they have identified eight genetic variants associated with hypertension.
The research team, as a part of Global Blood Pressure Genetics (Global BPgen) study group, analysed the genome of 130,000 individuals from around the world.

```

\section*{Examples}

\section*{Still a competitive area...}
NEWS
News Front Page


\section*{Africa}

\section*{Americas}

Asia-Pacific

\section*{Europe}

Middle East
South Asia
UK
Business

\section*{Health}

Medical notes
Science \& Environment Technology

Entertainment
Watch ONE-MINUTE WORLD NEWS

Page last updated at 09:07 GMT, Monday, 15 September 2008 10:07 UK
E-mail this to a friend Printable version

\section*{Gene tests 'create undue stress'}

Gene tests to predict a person's future risk of life-threatening disease may be damaging to health by causing unnecessary stress, an expert claims.

Professor Nilesh Samani, British
Heart Foundation chair of cardiology, says the tests are too inaccurate to help the individual.


Chromosomes house our DNA
Someone deemed high risk for a disease based on their gene test may never go on to develop the condition.

\section*{Data Cleaning}

Before analysis gets started, the gigabytes of data we have must be 'cleaned'
- Mismatches discovered (Sex, Ancestry)
- Family structure discovered (e.g. Sibs, 'Kinship Coefficient')
- Dumping SNPs with 'high' missing rates (e.g. \(\leq 99 \%\) complete)

As we require \(p<10^{\text {exciting }}\) in tests, even minor flaws cause headaches, by the 1000. (But we have e.g. 2.5 million tests to do)

Most of the cleaning is straightforward; compute, say the MLE for kinship. But, done carelessly, it can be slow.

\section*{Data Cleaning: HWE test}

Does your SNP data look like this?
\[
\begin{array}{c|ccc}
\text { Genotype } & A A & A a & a a \\
\text { Proportion } & (1-p)^{2} & 2 p(1-p) & p^{2}
\end{array}
\]


Yes!


Not so much
- We don't believe Hardy-Weinberg holds exactly
- But it's v v unlikely we are miles from HWE. The HWE test is good at spotting mis-calls, in ancestry-specific groups
- The approximate test is okay. The exact test is preferred...

\section*{Data Cleaning: HWE test}

The hwde package has the hwexact() function. This is okay (and we use it, basically) but will be slow with large datasets. It uses (smart) ennumeration of all the possible datasets for \(n\) subjects. It can be improved by
- Stopping calculating when you're sure that e.g. \(p>0.1\). As we're doing something like \(10^{6}\) tests, \(p \geq 10^{-4}\) (or so) are not worth getting out of bed for - although you'll have to truncate plots, etc.
- If you're sure of \(n\), construct a lookup table, and use that.
- Doing the (quick) approximate test, and only looking at \(\tilde{p} \leq\) 0.1 for the full works.
- Coding the hard stuff in C, not R

\section*{Data Cleaning: \(r^{2}\) for all SNPs}

A brief reminder/introduction:

Data from 2 SNPs (box size indicates count)


\section*{Data Cleaning: \(r^{2}\) for all SNPs}

A brief reminder/introduction:
\[
\hat{\beta}=0.642, \hat{\rho}=0.647, \hat{\rho}^{2}=0.419
\]


\section*{Data Cleaning: \(r^{2}\) for all SNPs}

A brief reminder/introduction:
\[
\hat{\beta}=-0.642, \hat{\rho}=-0.647, \hat{\rho}^{2}=0.419
\]


\section*{Data Cleaning: \(r^{2}\) for all SNPs}

A brief reminder/introduction:
\[
\hat{\beta}=-0.653, \hat{\rho}=-0.647, \hat{\rho}^{2}=0.419
\]


\section*{Data Cleaning: \(r^{2}\) for all SNPs}

We see that;
- \(\widehat{\beta}=\frac{\operatorname{Cov}\left(G_{1}, G_{2}\right)}{\operatorname{Var}\left(G_{1}\right)}\) but \(\rho=\frac{\operatorname{Cov}\left(G_{1}, G_{2}\right)}{\sqrt{\operatorname{Var}\left(G_{1}\right) \operatorname{Var}\left(G_{2}\right)}}(\hat{\rho}\), formally)
- \(r^{2}=\rho^{2}\) doesn't care about \(\mathrm{a} / \mathrm{A}\) or \(\mathrm{b} / \mathrm{B}\) designation - but you probably do
- \(\rho\left(\right.\) and \(\left.\rho^{2}\right)\) doesn't care about \(0 / 1 / 2\) vs \(1 / 2 / 3\) - but often ' 0 ' \(\equiv\) missing, so be careful
- \(\rho^{2}\) doesn't care if you switch the \(G_{1}, G_{2}\) labels

We'd like to check our \(r^{2}\) match the HapMap (roughly)

Given documentation, computing \(r^{2}\) for 2 SNPs' data should not be hard. Computing it for many SNPs probably doesn't look hard, if you have \(R\) experience.

\section*{Data Cleaning: \(r^{2}\) for all SNPs}

For some example data, consider LD of 9000 Chr 1 SNPs in the AMD dataset (see the site). \(\binom{9202}{2}=42.3\) million pairs (eek!). There are numerous very bad ways to do this job!

The challenges are;
1. To do calculations quickly (hard)
2. Not to bother with unnecessary ones (easier) - we'll drop all SNPs with minor allele frequency \(\leq 0.05\)

\section*{Data Cleaning: \(r^{2}\) for all SNPs}

\section*{AMD Chr 1, all SNPs}


This filters out 2048 SNPs, leaving 7154. \(\binom{7154}{2}=25.6 \mathrm{M}\)

\section*{Data Cleaning: \(r^{2}\) for all SNPs}

We'll go through some 'traditional' improvements to code; here's a first attempt;
r2.out <- matrix(NA, 7154, 7154)
```

for(i in 1:7154){

```
    for ( j in 1:7154) \{
        r2.out[i,j] <- \(\operatorname{cor}(\operatorname{amd}[i],, \operatorname{amd}[j],) \wedge 2\)
\}\}
... clearly we can be smarter than this.

\section*{Data Cleaning: \(r^{2}\) for all SNPs}

Recall that \(r^{2}\) didn't care if we 'switched the axes' \(\Rightarrow\) only compute \(r_{i j}^{2}\) if \(i>j\)
```

for(i in 1:7154){
for(j in i:7154){
r2.out[i,j] <- cor(amd[i,], amd[j,])^2

```
\}\}

This saves a factor of two

\section*{Data Cleaning: \(r^{2}\) for all SNPs}
'Note' that every SNP has \(r^{2}=1\) with itself
\(\Rightarrow\) don't compute \(r_{i j}^{2}\) if \(i=j\)
```

for(i in 1:(7154-1)){
for(j in (i+1):7154){
r2.out[i,j] <- cor(amd[i,], amd[j,])^2
}}

```

This is a very minor saving

\section*{Data Cleaning: \(r^{2}\) for all SNPs}

At the moment, our code doesn't do anything special with NAs;
\(>\operatorname{cor}(\mathrm{c}(1,3,5, \mathrm{NA}), c(-2,5,0,6))\)
[1] NA
'Default' use of cor() would be a bit wasteful. There are only 6432 AMD SNPs with complete data, and the rest typically have only a few NAs
- \(\Rightarrow\) we can get some useful estimate of \(r^{2}\) from the subjects with data from SNP i and \(j\)
- ... afterwards, need to watch out for 'weirdness' due to this decision

\section*{Data Cleaning: \(r^{2}\) for all SNPs}
cor() can do the complete-cases analysis, if we supply option use="complete.obs". (See the help file for details; if all missing this gives an error)
```

for(i in 1:(7154-1)){
for(j in (i+1):7154){
r2.out[i,j] <- cor(amd[i,], amd[j,], use="complete.obs")^2
}}

```

For more general GWAS work, learn how to use tryCatch() Murphy's Law applies. Also e.g. system.time()

\section*{Data Cleaning: \(r^{2}\) for all SNPs}

Let's try the code. For an estimate of runtime;
```

system.time({
for(i in 1:(1000-1)){
for(j in (i+1):1000){
r2.out[i,j] <- cor(amd[i,], amd[j,], use="complete.obs")
}}
})

```

This does \(\binom{1000}{2}=0.5 \mathrm{M}\) pairs, and takes \(\sim 3\) minutes.

\section*{Data Cleaning: \(r^{2}\) for all SNPs}

The full works; (took 2.5 hours on my desktop)
```

for(i in 1:(7154-1)){
for(j in (i+1):7154){
r2.out[i,j] <- cor(amd[i,], amd[j,], use="complete.obs")
}}
Warning messages:
1: In cor(amd[i,], amd[j,], use = "complete.obs") :
the standard deviation is zero

```

Ooops. This is worrying; is it fatal?

\section*{Data Cleaning: \(r^{2}\) for all SNPs}
... is it fatal?

No - it's only a warning. Supplying cor() with data where e.g. \(G_{1}=a a\) for everyone leads to this warning, and NA as the output (see the documentation)
- NA as output does make sense here
- Defaults options are sensible, so don't panic too soon
- Recall we filtered MAF<0.05. The weirdness could happen when the missingness in \(G_{2}\) leads to effective \(M A F=0\) for \(G_{1}\).
- Perhaps all genotypes \(=A a\) (HWE filters would catch this)
- Catching all potential errors is really hard - really robust code is required

\section*{Data Cleaning: \(r^{2}\) for all SNPs}
2.5 hours (optimized!) is pretty rubbish. How to do massively better?
- The cor() function calls C. If you feed it a matrix, it calls C to give you the correlations of all pairs of columns
- This gets all the data (and for() 'administration') into C, not \(R\) (and is therefore faster)
- Doing this in \(10^{-5}\) seconds not \(10^{-3}\) is beneficial - multiply by \(10^{6}\) to see this!

\section*{Data Cleaning: \(r^{2}\) for all SNPs}
r2.matrix.quick <- cor( t(amd), use="pairwise.complete.obs" )^2
- 2 minutes on my desktop (!)
- The admin/data reading was the bottleneck - and we optimized it
- This holds much more generally in GWAS (where 'vectorized' C code is not available for every job)
- Caveats about NAs and 'weirdness' still apply
- With more SNPs/people, may need to split Chromosomes into chunks, to get everything in memory
(In a class of genetics-oriented students, none of them spotted this trick. It is in the help files, but isn't obvious. In non-GWAS work I'd never mention it to them)

\section*{Data Cleaning: \(r^{2}\) for all SNPs}

To finish off, it would be nice to have a plot of \(r^{2}\) versus interSNP distance (pos[j]-pos[i] in AMD)

A couple of ideas to help this along;
- Produce the plot in PNG format - with the png() command. A PDF would be nice, but would have to keep track of 25.6 M points, making it a massive file.
- Add points to the plot in groups. Making a new vector of 25.6M inter-SNP distances needlessly uses up a huge amount of memory in your \(R\) session

\section*{Data Cleaning: \(r^{2}\) for all SNPs}
```

png("r2plot.png", w=6*600, h=4*600, pointsize=12*600/72)
\#set up the plot, with fancy axis labels;
plot(0, type="n", xlim=c(0,2.5E8), ylim=c(0,1),
xlab=expression(Delta(plain(position))), ylab=expression(r^2))
\#add the points, one SNP at a time;
for(i in 1:(7154-1)){
points(amd$pos[(i+1):7154]-amd$pos[i], r2.out[i,(i+1):7154])
}
dev.off()

```

The output is clunky-but-okay;

\section*{Data Cleaning: \(r^{2}\) for all SNPs}

Plotting \(r^{2}\) against inter-SNP distance;


\section*{Data Cleaning: \(r^{2}\) for all SNPs}

Plotting \(r^{2}\) against inter-SNP distance; (zoom)


\section*{Large data}
" \(R\) is well known to be unable to handle large data sets."

Solutions:
- Get a bigger computer: Linux computer with 16 Gb memory for \(<\$ 2500\)
- Don't load all the data at once (methods from the mainframe days).

\section*{Large data: storage formats}
\(R\) has two convenient data formats for large data sets
- For ordinary large data sets, the RSQLite package provides storage using the SQLite relational database.
- For very large 'array-structured’ data sets such as wholegenome SNP chips, the ncdf package provides storage using the netCDF data format.

\section*{Large data: netCDF}

\section*{netCDF was designed by the NSF-funded UCAR consortium, who also manage the National Center for Atmospheric Research.}

Atmospheric data are often array-oriented: eg temperature, humidity, wind speed on a regular grid of \((x, y, z, t)\).

Need to be able to select 'rectangles' of data - eg range of \((x, y, z)\) on a particular day \(t\).

Because the data are on a regular grid, the software can work out where to look on disk without reading the whole file: efficient data access.

\section*{Large data: how big are GWAS?}

Array oriented data (position on genome, sample number) for genotypes, probe intensities.

Potentially very large data sets:

2,000 people \(\times 300,000=\) tens of \(G b\)

16,000 people \(\times 1,000,000\) SNPs \(=\) hundreds of Gb .

Even worse after imputation to 2,500,000 SNPs.
\(R\) can't handle a matrix with more than \(2^{31}-1 \approx 2\) billion entries even if your computer has memory for it. Even data for one chromosome may be too big.

\section*{Large data: using netCDF}

With the ncdf package:
open.ncdf() opens a netCDF file and returns a connection to the file (rather than loading the data)
get.var.ncdf() retrieves all or part of a variable.
close.ncdf() closes the connection to the file.

\section*{Large data: using netCDF}

Variables can use one or more array dimensions of a file

SNP


\section*{Large data: example}

Finding long homozygous runs (possible deletions)
```

library("ncdf")
nc <- open.ncdf("hapmap.nc")

read all of chromosome variable

chromosome <- get.var.ncdf(nc, "chr", start=1, count=-1)

set up list for results

runs<-vector("list", nsamples)
for(i in 1:nsamples}{
\#\# read all genotypes for one person
genotypes <- get.var.ncdf(nc, "geno", start=c(1,i), count=c(-1,1))
\#\# zero for htzygous, chrm number for hmzygous
hmzygous <- genotypes != 1
hmzygous <- as.vector(hmzygous*chromosome)

```

\section*{Large data: example}
```

 ## consecutive runs of same value
 r <- rle(hmzygous)
 begin <- cumsum(r$lengths)
 end <- cumsum(c(1, r$lengths))
 long <- which (r$lengths > 250 & r$values !=0)
 runs[[i]] <- cbind(begin[long], end[long], r$lengths[long])
 }
close.ncdf(nc)
Notes

```
- chr uses only the 'SNP' dimension, so start and count are single numbers
- geno uses both SNP and sample dimensions, so start and count have two entries.
- rle compresses runs of the same value to a single entry.

\section*{Large data: making netCDF files}

\section*{Creating files is more complicated}
- Define dimensions
- Define variables and specify which dimensions they use
- Create an empty file
- Write data to the file.

\section*{Large data: netCDF ‘dimensions’}

Specify the name of the dimension, the units, and the allowed values in the dim.def.ncdf function.

One dimension can be 'unlimited', allowing expansion of the file in the future. An unlimited dimension is important, otherwise the maximum variable size is 2 Gb .
snpdim<-dim.def.ncdf("position","bases", positions)
sampledim<-dim.def.ncdf("seqnum","count",1:10, unlim=TRUE)

\section*{Large data: netCDF ‘variables’}

Variables are defined by name, units, and dimensions
```

varChrm <- var.def.ncdf("chr","count",dim=snpdim,
missval=-1, prec="byte")
varSNP <- var.def.ncdf("SNP","rs",dim=snpdim,
missval=-1, prec="integer")
vargeno <- var.def.ncdf("geno","base",dim=list(snpdim, sampledim),
missval=-1, prec="byte")
vartheta <- var.def.ncdf("theta","deg",dim=list(snpdim, sampledim),
missval=-1, prec="double")
varr <- var.def.ncdf("r","copies",dim=list(snpdim, sampledim),
missval=-1, prec="double")

```

\section*{Large data: creating files}

The file is created by specifying the file name ad a list of variables.
```

genofile<-create.ncdf("hapmap.nc", list(varChrm, varSNP, vargeno,
vartheta, varr))

```

The file is empty when it is created. Data can be written using put.var.ncdf(). Because the whole data set is too large to read, we might read raw data and save to netCDF for one person at a time.
```

for(i in 1:4000){
geno<-readRawData(i) \#\# somehow
put.var.ncdf(genofile, "geno", genc,
start=c(1,i), count=c(-1,1))

```
\}

\section*{Large data: using netCDF efficiently}

Read all SNPs, one sample


\section*{Large data: using netCDF efficiently}

Read all samples, one SNP


\section*{Large data: using netCDF efficiently}

Read some samples, some SNPs.


\section*{Large data: using netCDF efficiently}

Random access is not efficient: eg read probe intensities for all missing genotype calls.


\section*{Large data: using netCDF efficiently}
- Association testing: read all data for one SNP at a time
- Computing linkage disequilibrium near a SNP: read all data for a contiguous range of SNPs
- QC for aneuploidy: read all data for one individual at a time (and parents or offspring if relevant)
- Population structure and relatedness: read all SNPs for two individuals at a time.

\section*{Large data: using netCDF efficiently}

Another example; computing IBS for pairs of a hapmap dataset (some setup skipped)
```

p<-proc.time()
for(i in 2:nsamples){
genoi<-get.var.ncdf (hapmap,"genotype",
start=c(1,i),count=c(nsnps,1))[autosomes]
goodi<-genoi>=0
xymat[i,i]<-sum(genoi[goodi]^2)
counts[i]<-sum(genoi[goodi])
ibs[i,i]<-2
missed[i]<-nauto-sum(goodi)
for(j in 1:i){
genoj<-get.var.ncdf(hapmap, "genotype", start=c(1,j), count=c(nsnps,1)) [autosom
goodj<-genoj>=0
good<-goodi \& goodj
xymat[i,j]<-sum(genoi[good]*genoj[good])
ibs[i,j]<-sum((genoi[good]==genoj[good])*2+(genoi [good]==1))/sum(good)
xymat[j,i]<-xymat[i,j]
ibs[j,i]<-ibs[i,j]
}
if(!(i%%10)) print(c(i,proc.time()-p))
p<-proc.time()}

```

\section*{Large data: using netCDF efficiently}

Plotting the results; (for HapMap - use C for huge studies)


\section*{Bioconductor favorites: hexbin}

GWAS (and genetics/genomics in general) tends to produce massive datasets. On any (standard) plot of e.g. 10,000 points, many will overlap

A simple example is the California Academic Performance Index reported from 6194 schools (in the survey package)
> install.packages("survey")
> library (survey)
> data(api)
> plot(api00~api99,data=apipop) \# plain plot

\section*{Bioconductor favorites: hexbin}


\section*{Bioconductor favorites: hexbin}

We don't really care about the exact location of every single point.
- How many points in one 'vicinity' compared to others?
- Any ‘outliers' far from all other data points?

In one dimension, histograms answer these questions by binning the data

\section*{Bioconductor favorites: hexbin}

Binning in two dimensions;


\section*{Bioconductor favorites: hexbin}

Now with hexbin; recall we download from Bioconductor, not CRAN
> biocLite("hexbin")
> library(hexbin)
> with(apipop, plot(hexbin(api99,api00), style="centroids"))

\section*{Bioconductor favorites: hexbin}


\section*{Bioconductor favorites: snpMatrix}
snpMatrix is a Bioconductor package for GWAS analysis maintained by David Clayton (analysis lead on Wellcome Trust)
biocLite("snpMatrix")
library(snpMatrix)
data(for.exercise)

A 'little’ case-control dataset (Chr 10) based on HapMap - three objects; snp.support, subject.support and snps. 10

\section*{Bioconductor favorites: snpMatrix}
```

> summary(snp.support)
chromosome position A
Min. :10 Min. : }10195
1st Qu.:10 1st Qu.: 28981867 C:12166 G:12254
A:14019
C: }234
Median :10 Median : 67409719 G: 2316 T:13898
Mean :10 Mean : 66874497
3rd Qu.:10 3rd Qu.:101966491
Max. :10 Max. :135323432
> summary(subject.support)
cc stratum
Min. :0.0 CEU :494
1st Qu.:0.0 JPT+CHB:506
Median :0.5
Mean :0.5
3rd Qu.:1.0
Max. :1.0

```

\section*{Bioconductor favorites: snpMatrix}
```

> show(snps.10) \# show() is generic
A snp.matrix with }1000\mathrm{ rows and }28501\mathrm{ columns
Row names: jpt.869 ... ceu.464
Col names: rs7909677 ... rs12218790
> summary(snps.10)
\$rows
Call.rate Heterozygosity
Min. :0.9879 Min. :0.0000
Median :0.9900 Median :0.3078
Mean :0.9900 Mean :0.3074
Max. :0.9919 Max. :0.3386
\$cols

```


\section*{Bioconductor favorites: snpMatrix}
- 28501 SNPs, all with Allele 1, Allele 2
- 1000 subjects, 500 controls (cc=0) and 500 cases (cc=1)
- Far too much data for a regular summary() of snps. 10 - even in this small example

\section*{Bioconductor favorites: snpMatrix}

We'll use just the column summaries, and a (mildly) 'clean' subset;
```

> snpsum <- col.summary(snps.10)
> use <- with(snpsum, MAF > 0.01 \& z.HWE^2 < 200)
> table(use)
use
FALSE TRUE
31728184

```

\section*{Bioconductor favorites: snpMatrix}

Now do single-SNP tests for each SNP, and extract the \(p\)-value for each SNP, along with its location;
tests <- single.snp.tests(cc, data = subject.support, + snp.data \(=\) snps.10)
pos.use <- snp.support\$position[use]
p.use <- p.value(tests, df=1)[use]

We'd usually give a table of 'top hits,' but...

\section*{Bioconductor favorites: snpMatrix}
```

plot(hexbin(pos.use, -log10(p.use), xbin = 50))

```


\title{
Counts
}


\section*{Bioconductor favorites: snpMatrix}
qq.chisq(chi.squared(tests, \(d f=1\) ) [use], \(d f=1\) )

QQ plot


\section*{Bioconductor favorites: snpMatrix}
tests2 <- single.snp.tests(cc, stratum, data = subject.support, + snp.data \(=\) snps.10)
qq.chisq(chi.squared(tests2, 1)[use], 1)

QQ plot


\section*{Bioconductor favorites: snpMatrix}
snpMatrix makes use of clever storage of \(0 / 1 / 2\) data, as well as quick implementation of the limited analysis jobs we often want to do in GWAS
- Recently updated to permit 'imputed dosages', which are \(\in[0,2]\)
- Doesn't do the full range of regressions we may want - lm(), glm(), coxph().
- Even with clever data storage, we'll run out of memory eventually - hence, in the GWAS I work on, we use netCDF and write our own code

\section*{Other packages - GenABEL}

Yurii Aulchenko (one of my CHARGE co-authors) wrote the GenABEL package, which is on CRAN and here;
http://mga.bionet.nsc.ru/~yurii/ABEL/

It's very similar to snpMatrix - several CHARGE groups like it.
- Greater regression flexibility
- Comes with meta-analysis functions - which are part of life, in GWAS
- Also code for IBS, and computing principal components of SNP data (we use \(C\) to do this - and grad students)
- Lots of documentation/examples

\section*{Other packages - GenABEL}

Some things I am not so keen on;
- Still not as much regression flexibility as I'd like! (Yurii isn't an adopter of 'robust' standard errors...)
- I don't know how it treats e.g. non-convergence of coxph(). In practice, I want to know this
- ... it seems curmudgeonly, but I'm not a huge fan of 'packaging' basic commands stuck inside bigs loops. The learning-curve induced by all the weird things regression can do is very valuable - I want someone on each GWAS project to know that stuff

\section*{Other R-centric software}

Expect to run into this;

http://pngu.mgh.harvard.edu/~purcell/plink/

\section*{Other R-centric software}
- PLINK (one syllable) handles the methods we've been talking about
- Latest version accepts R code! So you can e.g. persuade it to use coxph()
- gPLINK (two?) is a GUI interface to the command-line version
- Also does other jobs, including imputation (though concensus is that other methods are better, e.g. MACH, BIMBAM, IMPUTE, Beagle)

Dangerously pointy-clicky for my taste! I want people to think about e.g. patterns of missingess. No-one's intuition is great at \(p<10^{- \text {exciting }}\); are you sure of what you're getting?

Also, for some innocuous jobs, it'll do quirky things, e.g. for kinship coefficients there's a hidden (!) Hidden Markov Model

\section*{Other R-centric software}

This is a 'regional association plot'

http://www.broadinstitute.org/mpg/snap/

\section*{Other R-centric software}

No GWAS paper is complete without one!
- Original \(R\) code is (was?) available on Paul deBakker's website (Harvard)
- You could hack together your own quickly - it's p-value versus SNP location, with some funky colors/symbols (Getting the recombination rate data would be a hassle)
- These days, we use the SNAP site - for identifying nearby genes, this is fine. (For genome-wide inference you want a QQ plot - Manhattan plots are for 'sales pitches')```

