
Bioconductor Workshop

Using R for Genome-Wide Analyses

Ken Rice

UW Biostatistics

Seattle, July 2009

Introduction

• Assistant Prof, UW Biostat

• Currently veRy busy with

Genome-Wide Studies

• Chair, Analyis Committee, for

the CHARGE Consortium

My experience with R is as a (frequent) user – much of today’s

material is from a short course I teach with Thomas Lumley.

http://faculty.washington.edu/kenrice/sisg

Motivation

• Learning about diseases via genomics – the ‘first pass’ is to

do millions of e.g. case-control tests

• How to do this quickly? accurately? for free?

Examples

A competitive field! ‘Findings’ are high impact...

Examples

A competitive field! ‘Findings’ are high impact...

Examples

A competitive field! ‘Findings’ are high impact...

Examples

A competitive field! ‘Findings’ are high impact...

Examples

Still a competitive area...

Examples

Still a competitive area...

Examples

Still a competitive area...

Data Cleaning

Before analysis gets started, the gigabytes of data we have must

be ‘cleaned’

• Mismatches discovered (Sex, Ancestry)

• Family structure discovered (e.g. Sibs, ’Kinship Coefficient’)

• Dumping SNPs with ‘high’ missing rates (e.g. ≤ 99%

complete)

As we require p < 10exciting in tests, even minor flaws cause

headaches, by the 1000. (But we have e.g. 2.5 million tests to

do)

Most of the cleaning is straightforward; compute, say the MLE

for kinship. But, done carelessly, it can be slow.

Data Cleaning: HWE test

Does your SNP data look like this?

Genotype AA Aa aa

Proportion (1− p)2 2p(1− p) p2

Yes! Not so much

• We don’t believe Hardy-Weinberg holds exactly

• But it’s v v unlikely we are miles from HWE. The HWE test

is good at spotting mis-calls, in ancestry-specific groups

• The approximate test is okay. The exact test is preferred...

Data Cleaning: HWE test

The hwde package has the hwexact() function. This is okay (and

we use it, basically) but will be slow with large datasets. It uses

(smart) ennumeration of all the possible datasets for n subjects.

It can be improved by

• Stopping calculating when you’re sure that e.g. p > 0.1. As

we’re doing something like 106 tests, p ≥ 10−4 (or so) are

not worth getting out of bed for – although you’ll have to

truncate plots, etc.

• If you’re sure of n, construct a lookup table, and use that.

• Doing the (quick) approximate test, and only looking at p̃ ≤
0.1 for the full works.

• Coding the hard stuff in C, not R

Data Cleaning: r2 for all SNPs

A brief reminder/introduction:

Genotype 1

G
en

ot
yp

e
2

AA Aa aa

B
B

B
b

bb

Data from 2 SNPs (box size indicates count)

Data Cleaning: r2 for all SNPs

A brief reminder/introduction:

Genotype 1

G
en

ot
yp

e
2

AA Aa aa

B
B

B
b

bb

ββ̂ == 0.642,, ρρ̂ == 0.647,, ρρ̂
2

== 0.419

Data Cleaning: r2 for all SNPs

A brief reminder/introduction:

Genotype 1

G
en

ot
yp

e
2

aa Aa AA

B
B

B
b

bb

ββ̂ == −− 0.642,, ρρ̂ == −− 0.647,, ρρ̂
2

== 0.419

Data Cleaning: r2 for all SNPs

A brief reminder/introduction:

Genotype 2

G
en

ot
yp

e
1

aa
A

a
A

A

BB Bb bb

ββ̂ == −− 0.653,, ρρ̂ == −− 0.647,, ρρ̂
2

== 0.419

Data Cleaning: r2 for all SNPs

We see that;

• β̂ = Cov(G1,G2)
Var(G1)

but ρ = Cov(G1,G2)√
Var(G1)Var(G2)

(ρ̂, formally)

• r2 = ρ2 doesn’t care about a/A or b/B designation – but

you probably do

• ρ (and ρ2) doesn’t care about 0/1/2 vs 1/2/3 – but often

‘0’≡missing, so be careful

• ρ2 doesn’t care if you switch the G1, G2 labels

We’d like to check our r2 match the HapMap (roughly)

Given documentation, computing r2 for 2 SNPs’ data should

not be hard. Computing it for many SNPs probably doesn’t look

hard, if you have R experience.

Data Cleaning: r2 for all SNPs

For some example data, consider LD of 9000 Chr 1 SNPs in the

AMD dataset (see the site).
(
9202

2

)
= 42.3 million pairs (eek!).

There are numerous very bad ways to do this job!

The challenges are;

1. To do calculations quickly (hard)

2. Not to bother with unnecessary ones (easier) – we’ll drop

all SNPs with minor allele frequency ≤ 0.05

Data Cleaning: r2 for all SNPs

AMD Chr 1, all SNPs

minor allele frequency

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5

0
20

0
60

0
10

00

This filters out 2048 SNPs, leaving 7154.
(
7154

2

)
=25.6M

Data Cleaning: r2 for all SNPs

We’ll go through some ‘traditional’ improvements to code; here’s

a first attempt;

r2.out <- matrix(NA, 7154, 7154)

for(i in 1:7154){

for(j in 1:7154){

r2.out[i,j] <- cor(amd[i,], amd[j,])^2

}}

... clearly we can be smarter than this.

Data Cleaning: r2 for all SNPs

Recall that r2 didn’t care if we ‘switched the axes’ ⇒ only

compute r2ij if i > j

for(i in 1:7154){

for(j in i:7154){

r2.out[i,j] <- cor(amd[i,], amd[j,])^2

}}

This saves a factor of two

Data Cleaning: r2 for all SNPs

‘Note’ that every SNP has r2 = 1 with itself

⇒ don’t compute r2ij if i = j

for(i in 1:(7154-1)){

for(j in (i+1):7154){

r2.out[i,j] <- cor(amd[i,], amd[j,])^2

}}

This is a very minor saving

Data Cleaning: r2 for all SNPs

At the moment, our code doesn’t do anything special with NAs;

> cor(c(1,3,5,NA), c(-2,5,0,6))

[1] NA

‘Default’ use of cor() would be a bit wasteful. There are only

6432 AMD SNPs with complete data, and the rest typically have

only a few NAs

• ⇒ we can get some useful estimate of r2 from the subjects

with data from SNP i and j

• ... afterwards, need to watch out for ‘weirdness’ due to this

decision

Data Cleaning: r2 for all SNPs

cor() can do the complete-cases analysis, if we supply option

use="complete.obs". (See the help file for details; if all missing

this gives an error)

for(i in 1:(7154-1)){

for(j in (i+1):7154){

r2.out[i,j] <- cor(amd[i,], amd[j,], use="complete.obs")^2

}}

For more general GWAS work, learn how to use tryCatch() –

Murphy’s Law applies. Also e.g. system.time()

Data Cleaning: r2 for all SNPs

Let’s try the code. For an estimate of runtime;

system.time({

for(i in 1:(1000-1)){

for(j in (i+1):1000){

r2.out[i,j] <- cor(amd[i,], amd[j,], use="complete.obs")

}}

})

This does
(
1000

2

)
=0.5M pairs, and takes ∼ 3 minutes.

Data Cleaning: r2 for all SNPs

The full works; (took 2.5 hours on my desktop)

for(i in 1:(7154-1)){

for(j in (i+1):7154){

r2.out[i,j] <- cor(amd[i,], amd[j,], use="complete.obs")

}}

Warning messages:

1: In cor(amd[i,], amd[j,], use = "complete.obs") :

the standard deviation is zero

Ooops. This is worrying; is it fatal?

Data Cleaning: r2 for all SNPs

... is it fatal?

No – it’s only a warning. Supplying cor() with data where e.g.

G1 = aa for everyone leads to this warning, and NA as the output

(see the documentation)

• NA as output does make sense here

• Defaults options are sensible, so don’t panic too soon

• Recall we filtered MAF<0.05. The weirdness could happen

when the missingness in G2 leads to effective MAF=0 for

G1.

• Perhaps all genotypes=Aa (HWE filters would catch this)

• Catching all potential errors is really hard – really robust

code is required

Data Cleaning: r2 for all SNPs

2.5 hours (optimized!) is pretty rubbish. How to do massively

better?

• The cor() function calls C. If you feed it a matrix, it calls

C to give you the correlations of all pairs of columns

• This gets all the data (and for() ‘administration’) into C, not

R (and is therefore faster)

• Doing this in 10−5 seconds not 10−3 is beneficial – multiply

by 106 to see this!

Data Cleaning: r2 for all SNPs

r2.matrix.quick <- cor(t(amd), use="pairwise.complete.obs")^2

• 2 minutes on my desktop (!)

• The admin/data reading was the bottleneck – and we

optimized it

• This holds much more generally in GWAS (where ‘vectorized’

C code is not available for every job)

• Caveats about NAs and ‘weirdness’ still apply

• With more SNPs/people, may need to split Chromosomes

into chunks, to get everything in memory

(In a class of genetics-oriented students, none of them spotted

this trick. It is in the help files, but isn’t obvious. In non-GWAS

work I’d never mention it to them)

Data Cleaning: r2 for all SNPs

To finish off, it would be nice to have a plot of r2 versus inter-

SNP distance (pos[j]-pos[i] in AMD)

A couple of ideas to help this along;

• Produce the plot in PNG format – with the png() command.

A PDF would be nice, but would have to keep track of 25.6M

points, making it a massive file.

• Add points to the plot in groups. Making a new vector of

25.6M inter-SNP distances needlessly uses up a huge amount

of memory in your R session

Data Cleaning: r2 for all SNPs

png("r2plot.png", w=6*600, h=4*600, pointsize=12*600/72)

#set up the plot, with fancy axis labels;

plot(0, type="n", xlim=c(0,2.5E8), ylim=c(0,1),

xlab=expression(Delta(plain(position))), ylab=expression(r^2))

#add the points, one SNP at a time;

for(i in 1:(7154-1)){

points(amd$pos[(i+1):7154]-amd$pos[i], r2.out[i,(i+1):7154])

}

dev.off()

The output is clunky-but-okay;

Data Cleaning: r2 for all SNPs

Plotting r2 against inter-SNP distance;

Data Cleaning: r2 for all SNPs

Plotting r2 against inter-SNP distance; (zoom)

Large data

“R is well known to be unable to handle large data sets.”

Solutions:

• Get a bigger computer: Linux computer with 16Gb memory

for < $2500

• Don’t load all the data at once (methods from the mainframe

days).

Large data: storage formats

R has two convenient data formats for large data sets

• For ordinary large data sets, the RSQLite package provides

storage using the SQLite relational database.

• For very large ‘array-structured’ data sets such as whole-

genome SNP chips, the ncdf package provides storage using

the netCDF data format.

Large data: netCDF

netCDF was designed by the NSF-funded UCAR

consortium, who also manage the National

Center for Atmospheric Research.

Atmospheric data are often array-oriented: eg temperature,

humidity, wind speed on a regular grid of (x, y, z, t).

Need to be able to select ‘rectangles’ of data – eg range of

(x, y, z) on a particular day t.

Because the data are on a regular grid, the software can work out

where to look on disk without reading the whole file: efficient

data access.

Large data: how big are GWAS?

Array oriented data (position on genome, sample number) for

genotypes, probe intensities.

Potentially very large data sets:

2,000 people × 300,000 = tens of Gb

16,000 people × 1,000,000 SNPs = hundreds of Gb.

Even worse after imputation to 2,500,000 SNPs.

R can’t handle a matrix with more than 231−1 ≈ 2 billion entries

even if your computer has memory for it. Even data for one

chromosome may be too big.

Large data: using netCDF

With the ncdf package:

open.ncdf() opens a netCDF file and returns a connection to the

file (rather than loading the data)

get.var.ncdf() retrieves all or part of a variable.

close.ncdf() closes the connection to the file.

Large data: using netCDF

Variables can use one or more array dimensions of a file

!"#$

!%&'()$

*)+,-.')/$

012,&,/,&)$

Large data: example

Finding long homozygous runs (possible deletions)

library("ncdf")

nc <- open.ncdf("hapmap.nc")

read all of chromosome variable

chromosome <- get.var.ncdf(nc, "chr", start=1, count=-1)

set up list for results

runs<-vector("list", nsamples)

for(i in 1:nsamples}{

read all genotypes for one person

genotypes <- get.var.ncdf(nc, "geno", start=c(1,i),count=c(-1,1))

zero for htzygous, chrm number for hmzygous

hmzygous <- genotypes != 1

hmzygous <- as.vector(hmzygous*chromosome)

Large data: example

consecutive runs of same value

r <- rle(hmzygous)

begin <- cumsum(r$lengths)

end <- cumsum(c(1, r$lengths))

long <- which (r$lengths > 250 & r$values !=0)

runs[[i]] <- cbind(begin[long], end[long], r$lengths[long])

}

close.ncdf(nc)

Notes

• chr uses only the ’SNP’ dimension, so start and count are
single numbers

• geno uses both SNP and sample dimensions, so start and
count have two entries.

• rle compresses runs of the same value to a single entry.

Large data: making netCDF files

Creating files is more complicated

• Define dimensions

• Define variables and specify which dimensions they use

• Create an empty file

• Write data to the file.

Large data: netCDF ‘dimensions’

Specify the name of the dimension, the units, and the allowed

values in the dim.def.ncdf function.

One dimension can be ’unlimited’, allowing expansion of the file

in the future. An unlimited dimension is important, otherwise

the maximum variable size is 2Gb.

snpdim<-dim.def.ncdf("position","bases", positions)

sampledim<-dim.def.ncdf("seqnum","count",1:10, unlim=TRUE)

Large data: netCDF ‘variables’

Variables are defined by name, units, and dimensions

varChrm <- var.def.ncdf("chr","count",dim=snpdim,

missval=-1, prec="byte")

varSNP <- var.def.ncdf("SNP","rs",dim=snpdim,

missval=-1, prec="integer")

vargeno <- var.def.ncdf("geno","base",dim=list(snpdim, sampledim),

missval=-1, prec="byte")

vartheta <- var.def.ncdf("theta","deg",dim=list(snpdim, sampledim),

missval=-1, prec="double")

varr <- var.def.ncdf("r","copies",dim=list(snpdim, sampledim),

missval=-1, prec="double")

Large data: creating files

The file is created by specifying the file name ad a list of

variables.

genofile<-create.ncdf("hapmap.nc", list(varChrm, varSNP, vargeno,

vartheta, varr))

The file is empty when it is created. Data can be written using

put.var.ncdf(). Because the whole data set is too large to read,

we might read raw data and save to netCDF for one person at

a time.

for(i in 1:4000){

geno<-readRawData(i) ## somehow

put.var.ncdf(genofile, "geno", genc,

start=c(1,i), count=c(-1,1))

}

Large data: using netCDF efficiently

Read all SNPs, one sample

SNP 

Sample 

Genotypes 

Chromosome 

Large data: using netCDF efficiently

Read all samples, one SNP

SNP 

Sample 

Genotypes 

Chromosome 

Large data: using netCDF efficiently

Read some samples, some SNPs.

SNP 

Sample 

Genotypes 

Chromosome 

Large data: using netCDF efficiently

Random access is not efficient: eg read probe intensities for all

missing genotype calls.

SNP 

Sample 

Genotypes 

Chromosome 

Large data: using netCDF efficiently

• Association testing: read all data for one SNP at a time

• Computing linkage disequilibrium near a SNP: read all data

for a contiguous range of SNPs

• QC for aneuploidy: read all data for one individual at a time

(and parents or offspring if relevant)

• Population structure and relatedness: read all SNPs for two

individuals at a time.

Large data: using netCDF efficiently

Another example; computing IBS for pairs of a hapmap dataset

(some setup skipped)

p<-proc.time()
for(i in 2:nsamples){

genoi<-get.var.ncdf(hapmap,"genotype",
start=c(1,i),count=c(nsnps,1))[autosomes]

goodi<-genoi>=0
xymat[i,i]<-sum(genoi[goodi]^2)
counts[i]<-sum(genoi[goodi])
ibs[i,i]<-2
missed[i]<-nauto-sum(goodi)
for(j in 1:i){

genoj<-get.var.ncdf(hapmap,"genotype",start=c(1,j),count=c(nsnps,1))[autosomes]
goodj<-genoj>=0
good<-goodi & goodj
xymat[i,j]<-sum(genoi[good]*genoj[good])
ibs[i,j]<-sum((genoi[good]==genoj[good])*2+(genoi[good]==1))/sum(good)
xymat[j,i]<-xymat[i,j]
ibs[j,i]<-ibs[i,j]

}
if(!(i%%10)) print(c(i,proc.time()-p))
p<-proc.time()}

Large data: using netCDF efficiently

Plotting the results; (for HapMap – use C for huge studies)

Bioconductor favorites: hexbin

GWAS (and genetics/genomics in general) tends to produce

massive datasets. On any (standard) plot of e.g. 10,000 points,

many will overlap

A simple example is the California Academic Performance Index

reported from 6194 schools (in the survey package)

> install.packages("survey")

> library(survey)

> data(api)

> plot(api00~api99,data=apipop) # plain plot

Bioconductor favorites: hexbin

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●
●●

●
●●

●●

●

●●
●●
● ●●

●

●●
●●●

●

●● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●● ●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
● ●
●

●
●

●

●

●

●

●

●

●

●●
● ●●

●
●

●

●
●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●● ●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
● ●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●●

●
● ●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ● ●

●

●

●

●

●
●

● ●●

●

●

● ● ●

● ●

●●

●

●
●●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●
●

●●
●

●

●
●

● ●

●
●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

● ●

● ●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●
●●

●

●●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●
●

● ●
●

●●●

●

●

●

●●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

● ●
●●
●

●

●●
●

●●

●●●

●

●

●

●

●

●

● ●
●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●
●●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●● ●●
●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●
●

●

●●
●
●
●

●
●

●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●
●

●● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●

●
●●●

●

●
●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●●
●

●
●

●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

● ●

●

●

● ●

●

●

● ●

●

●
●

●

●

● ●

● ●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●●

●

●
●

● ●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●● ●

●

●

●●

● ●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●
●

●
●
●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●●

●
●

●●

● ●
●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●●●

●
●

● ●

●

●

●

●

●

●
●
●
●●

●
●●
●●

●

●●●

●

●

●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●
●

●

●●

●

●
●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●●

●

●●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●
●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●
●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●
●

●
●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●●

●
●●

●

●
●

●●

●
●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●●
●

●●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
● ●● ●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●
●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

● ●

●

●

●●●

●

●

●

●●●

●

●
●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●
●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●●

●

●

●●●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

300 400 500 600 700 800 900

40
0

50
0

60
0

70
0

80
0

90
0

api99

ap
i0

0

Bioconductor favorites: hexbin

We don’t really care about the exact location of every single

point.

• How many points in one ‘vicinity’ compared to others?

• Any ‘outliers’ far from all other data points?

In one dimension, histograms answer these questions by binning

the data

Bioconductor favorites: hexbin

Binning in two dimensions;

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●
● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

Bioconductor favorites: hexbin

Binning in two dimensions;

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●
● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

Bioconductor favorites: hexbin

Binning in two dimensions;

● ●

●

●

● ●

●

Bioconductor favorites: hexbin

Binning in two dimensions;

● ●

●

●

● ●

●

Bioconductor favorites: hexbin

Now with hexbin; recall we download from Bioconductor, not

CRAN

> biocLite("hexbin")

> library(hexbin)

> with(apipop, plot(hexbin(api99,api00), style="centroids"))

Bioconductor favorites: hexbin

1
7

12
18
23
29
34
40
46
51
57
62
68
73
79
84
90

Counts

300 400 500 600 700 800 900

40
0

50
0

60
0

70
0

80
0

90
0

Bioconductor favorites: snpMatrix

snpMatrix is a Bioconductor package for GWAS analysis –

maintained by David Clayton (analysis lead on Wellcome Trust)

biocLite("snpMatrix")

library(snpMatrix)

data(for.exercise)

A ‘little’ case-control dataset (Chr 10) based on HapMap – three

objects; snp.support, subject.support and snps.10

Bioconductor favorites: snpMatrix

> summary(snp.support)
chromosome position A1 A2

Min. :10 Min. : 101955 A:14019 C: 2349
1st Qu.:10 1st Qu.: 28981867 C:12166 G:12254
Median :10 Median : 67409719 G: 2316 T:13898
Mean :10 Mean : 66874497
3rd Qu.:10 3rd Qu.:101966491
Max. :10 Max. :135323432

> summary(subject.support)
cc stratum

Min. :0.0 CEU :494
1st Qu.:0.0 JPT+CHB:506
Median :0.5
Mean :0.5
3rd Qu.:1.0
Max. :1.0

Bioconductor favorites: snpMatrix

> show(snps.10) # show() is generic
A snp.matrix with 1000 rows and 28501 columns
Row names: jpt.869 ... ceu.464
Col names: rs7909677 ... rs12218790
> summary(snps.10)
$rows

Call.rate Heterozygosity
Min. :0.9879 Min. :0.0000
Median :0.9900 Median :0.3078
Mean :0.9900 Mean :0.3074
Max. :0.9919 Max. :0.3386

$cols
Calls Call.rate MAF P.AA

Min. : 975 Min. :0.975 Min. :0.0000 Min. :0.00000
Median : 990 Median :0.990 Median :0.2315 Median :0.26876
Mean : 990 Mean :0.990 Mean :0.2424 Mean :0.34617
Max. :1000 Max. :1.000 Max. :0.5000 Max. :1.00000

P.AB P.BB z.HWE
Min. :0.0000 Min. :0.00000 Min. :-21.9725
Median :0.3198 Median :0.27492 Median : -1.1910
Mean :0.3074 Mean :0.34647 Mean : -1.8610
Max. :0.5504 Max. :1.00000 Max. : 3.7085

NA’s : 4.0000

Bioconductor favorites: snpMatrix

• 28501 SNPs, all with Allele 1, Allele 2

• 1000 subjects, 500 controls (cc=0) and 500 cases (cc=1)

• Far too much data for a regular summary() of snps.10 – even

in this small example

Bioconductor favorites: snpMatrix

We’ll use just the column summaries, and a (mildly) ‘clean’

subset;

> snpsum <- col.summary(snps.10)
> use <- with(snpsum, MAF > 0.01 & z.HWE^2 < 200)

> table(use)
use
FALSE TRUE

317 28184

Bioconductor favorites: snpMatrix

Now do single-SNP tests for each SNP, and extract the p-value

for each SNP, along with its location;

tests <- single.snp.tests(cc, data = subject.support,

+ snp.data = snps.10)

pos.use <- snp.support$position[use]

p.use <- p.value(tests, df=1)[use]

We’d usually give a table of ‘top hits,’ but...

Bioconductor favorites: snpMatrix

plot(hexbin(pos.use, -log10(p.use), xbin = 50))

0 2e+07 6e+07 1e+08

0

2

4

6

8

pos.use

−
lo

g1
0(

p.
us

e)

1
12
23
34
44
55
66
77
88
99

110
121
132
142
153
164
175

Counts

Bioconductor favorites: snpMatrix

qq.chisq(chi.squared(tests, df=1)[use], df=1)

0 5 10 15

0

5

10

15

20

25

30

35

QQ plot

Expected distribution: chi−squared (1 df)
Expected

O
bs

er
ve

d

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●
●●●

●●●
●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●

●●●●●●●
● ● ● ●

●

Bioconductor favorites: snpMatrix

tests2 <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = snps.10)

qq.chisq(chi.squared(tests2, 1)[use], 1)

0 5 10 15

0

5

10

15

20

25

30

QQ plot

Expected distribution: chi−squared (1 df)
Expected

O
bs

er
ve

d

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●

●●
●●

●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●

●●
● ●

●

●

Bioconductor favorites: snpMatrix

snpMatrix makes use of clever storage of 0/1/2 data, as well as

quick implementation of the limited analysis jobs we often want

to do in GWAS

• Recently updated to permit ‘imputed dosages’, which are

∈ [0,2]

• Doesn’t do the full range of regressions we may want – lm(),

glm(), coxph().

• Even with clever data storage, we’ll run out of memory

eventually – hence, in the GWAS I work on, we use netCDF

and write our own code

Other packages – GenABEL

Yurii Aulchenko (one of my CHARGE co-authors) wrote the

GenABEL package, which is on CRAN and here;

http://mga.bionet.nsc.ru/∼yurii/ABEL/

It’s very similar to snpMatrix – several CHARGE groups like it.

• Greater regression flexibility

• Comes with meta-analysis functions – which are part of life,

in GWAS

• Also code for IBS, and computing principal components of

SNP data (we use C to do this – and grad students)

• Lots of documentation/examples

Other packages – GenABEL

Some things I am not so keen on;

• Still not as much regression flexibility as I’d like! (Yurii isn’t

an adopter of ‘robust’ standard errors...)

• I don’t know how it treats e.g. non-convergence of coxph().

In practice, I want to know this

• ... it seems curmudgeonly, but I’m not a huge fan of

‘packaging’ basic commands stuck inside bigs loops. The

learning-curve induced by all the weird things regression can

do is very valuable – I want someone on each GWAS project

to know that stuff

Other R-centric software

Expect to run into this;

http://pngu.mgh.harvard.edu/∼purcell/plink/

Other R-centric software

• PLINK (one syllable) handles the methods we’ve been talking

about

• Latest version accepts R code! So you can e.g. persuade it

to use coxph()

• gPLINK (two?) is a GUI interface to the command-line

version

• Also does other jobs, including imputation (though concen-

sus is that other methods are better, e.g. MACH, BIMBAM,

IMPUTE, Beagle)

Dangerously pointy-clicky for my taste! I want people to think

about e.g. patterns of missingess. No-one’s intuition is great at

p < 10−exciting; are you sure of what you’re getting?

Also, for some innocuous jobs, it’ll do quirky things, e.g. for

kinship coefficients there’s a hidden (!) Hidden Markov Model

Other R-centric software

This is a ‘regional association plot’

http://www.broadinstitute.org/mpg/snap/

Other R-centric software

No GWAS paper is complete without one!

• Original R code is (was?) available on Paul deBakker’s

website (Harvard)

• You could hack together your own quickly – it’s p-value versus

SNP location, with some funky colors/symbols (Getting the

recombination rate data would be a hassle)

• These days, we use the SNAP site – for identifying nearby

genes, this is fine. (For genome-wide inference you want a

QQ plot – Manhattan plots are for ‘sales pitches’)

	Introduction
	Motivation
	Examples
	Data Cleaning
	Data Cleaning: HWE test
	Data Cleaning: r2 for all SNPs
	Large data
	Large data: storage formats
	Large data: netCDF
	Large data: how big are GWAS?
	Large data: using netCDF
	Large data: example
	Large data: making netCDF files
	Large data: netCDF `dimensions'
	Large data: netCDF `variables'
	Large data: creating files
	Large data: using netCDF efficiently
	Bioconductor favorites: hexbin
	Bioconductor favorites: snpMatrix
	Other packages -- GenABEL
	Other R-centric software

