

Modeling and Inference of Transcriptional Regulatory Networks

ilya shmulevich

organisms are complex dynamical systems of interacting cells

how can we understand the emergent macroscopic properties of the system from its parts and their interactions?

genetic networks

Complex dynamical regulatory networks among genes and their products control cell behaviors such as:

- cell cycle
- apoptosis
- cell differentiation
- communication between cells in tissues

Navigator 555A Schematic Diagram

Analogy: circuit diagram

Map of the TLR signaling pathway in the macrophage

Mol Syst Biol. 2:2006.0015

Macrophages are key immune cells

bacterium being engulfed

Phagocytosis

- Antigen presentation
- Secretion of proinflammatory cytokines
- Wound healing

A few perspectives on

CELL MOTILITY

Division of Experimental Medicine Brigham & Women's Hospital

(thanks to Alan Aderem)

TLRs and their associated PAMPs

TLR signaling pathway

Transcriptional Networks: Strategy

The ingredients

130 microarray experiments (253 arrays)

Time courses out to 8 hours (24 for LPS)

WT, Ahr^(-/-), Atf3^(-/-), Crem^(-/-), Cebpd^(-/-), Myd88^(-/-), Ticam1^(Lps2/Lps2)

Combinations of six stimuli

LPS, Pam₃CSK₄, Pam₂CSK₄, poly I:C, CpG, R848, T091317

Mouse genome promoters (UCSC)

Curated list of

~1800 human TFs

TRANSFAC Professional 10.3

36 A	rrays						
	_		. .		-		
ł	->	MyD88 -/-	≥	LPS	⊳	10 Timepoints	▶ 1.3 Replicates
			\geq	PolyIC	⊳	3 Timepoints	2 Replicates
			⋗	PAM3	⊳	3 Timepoints	≫ 1 Replicate
				D4 +/- PAMPS	⊳	4 Timepoints	≫ 1 Replicate
+	>	ATF3 /-		LPS	⊳	7 Timepoints	▶ 1-2 Replicates
				PolyIC	⊳	3 Timepoints	≫ 1 Replicate
				PAM2	⊳	3 Timepoints	➢ 1 Replicate
				CPG	⊳	3 Timepoints	➢ 1 Replcate
				D4 +/- PAMPS	→	2 Timepoints	> 1-2 Replicates
		JINX	Þ	MCMV	⊨⊳	5 Timepoints	→ 3 Replicates
		DS2 (Telf ()		1.05		2 Timonointo	12 Deplicator
Ī		LP 52 (111		LPS			
			2	PAMJ	1 22	3 Timepoints	T Replicate
		ų		D4 +/- PAMPS	₽≥	1 limepoints	➢ 1 Replicate
ł	CREBIoxP			LPS		3 Timepoints	≫ 3 Replicates
ł			≥	LPS	≥	4 Timepoints	1 Replicate
ł	->	AHR -/-	≥	LPS	≥	4 Timepoints	▶ 1.3 Replicates
				PAM2	⊳	3 Timepoints	▶ 1.3 Replicates
ł	>	CREM -/-		LPS	⊳	7 Timepoints	≥ 2-3 Replicates
	_			PolyIC	⊳	4 Timepoints	≥ 2 Replicates
ł	->	lpaf √-	≥	S. typh. wt	≥	2 Timepoints	➢ 1 Replicate
			\geq	S. typh. prgH	⊳	2 Timepoints	≫ 1 Replicate
		-	\geq	S. typh. flgB	⊳	2 Timepoints	≫ 1 Replicate
			\geq	S. typh. flgB+pFliC	⊳	2 Timepoints	▶ 1-2 Replicates
+	>	Cebpd -/-	≥	LPS	⊳	4 Timepoints	1 Replicate
			⋗	PAM2	⊳	2 Timepoints	2 Replicates
				PAM3	⊳	3 Timepoints	2 Replicates
+	→ CHOP √-		⊳	LPS	⊳	2 Timepoints	➢ 1 Replicates
				PolyIC	⊳	2 Timepoints	➢ 1 Replicates
	~>	Creb1 -/-	⊳	LPS	⊳	3 Timepoints	≫ 3 Replicates
Į		Trif √-	Ъ	LPS	⊳	6 Timepoints	≫ 3 Replicates
	-		>	PAM3	⊳	1 Timepoints	2 Replicates
			>	PAM3 + PolyIC	⊳	1 Timepoints	> 2 Replicates
				PolylC		1 Timenoints	2 Renlicates

Bone Marrow

Macronhage

WT C57BL/6	≫	LPS	≽	13 Timepoints	⋗	14 Replicates
	\rightarrow	PAM2	Þ	6 Timepoints	Þ	3 Replicates
-		PolyIC	Þ	6 Timepoints	Þ	3-4 Replicates
		R848	≻	6 Timepoints	Þ	2 Replicates
		CPG	≻	6 Timepoints	Þ	2 Replicates
		PAM3	≻	10 Timepoints	Þ	2-3 Replicates
	≫	РМА	⋗	3 Timepoints	≥	1 Replicate
		Zymosan	⋗	3 Timepoints	≻	1 Replicate
	->	PAM3 + PolyIC	≽	6 Timepoints	⊳	2 Replicates
	->	PAM3 + Ifn beta	≽	6 Timepoints	≥	2 Replicates
	->	LPS + PMA	≽	3 Timepoints	≥	1 Replicates
	≫	LPS + Zym	≯	3 Timepoints	≥	1 Replicates
		R848 + PolyIC	≽	2 Timepoints	≥	2 Replicates
	\rightarrow	S. typh. wt	≽	2 Timepoints	≥	1 Replicate
	->	S. typh. prgH	≽	2 Timepoints	≥	1 Replicate
	->	S. typh. flgB	≽	2 Timepoints	≥	1 Replicate
	\rightarrow	S. typh. flgB+pFliC	≽	2 Timepoints	≽	1 Replicate
		IFN gamma	≫	6 Timepoints	≥	1-2 Replicates
	~	IFN beta	≥	6 Timepoints	≥	1-2 Replicates
	\rightarrow	D4+/-PAMPS	≽	7 Timepoints	≥	1-2 Replicates
	\rightarrow	LPS/Lipoxin	≽	1 Timepoint	≽	4 Replicate
	\rightarrow	TriDAP	≽	1 Timepoint	⋗	1 Replicate
	\rightarrow	MDP	⋗	1 Timepoint	⋗	1 Replicate
	≫	LPS + TriDAP	≻	1 Timepoint	⋗	1 Replicate
	\rightarrow	LPS + MDP	≽	1 Timepoint	≥	1 Replicate
	≫	PIC + TriDAP	≽	1 Timepoint	⋗	1 Replicate
	\rightarrow	PIC + MDP	≻	1 Timepoint	≥	1 Replicate
		QS	≫	9 Timepoints	≽	1 Replicate
	⇒	D4	≥	6 Timepoint	≥	2 Replicate
	⇒	D4+LPS	≻	6 Timepoint	≥	2 Replicate
	⇒	D4+PAM3	Þ	1 Timepoint	≽	2 Replicate
	⇒	D4+PolyIC	≫	1 Timepoints	≽	2 Replicate
	⇒	Troglitazone	≽	6 Timepoints	≻	2 Replicate
		DS does reenance				1.2 Replicate

Number of differentially expressed genes vs. elapsed time (by stimulus)

Total number: 2,562

clustering of gene expression profiles

Stimulusspecific cluster responses

In conjunction with transcription factor binding site prediction, we can use the *timing* of expression to identify induced transcription factors that are associated with downstream groups of genes that they regulate.

Components of the gene-gene transcriptional time delay

Scanning for TF binding motif matches

Scanning:

TF recognition site motif:

Motif enrichment matrix:

Probabilistic Framework for Transcription Factor Binding Site Prediction

ChIP-seq binding event correlated with sequencebased and epigenetic evidence for cis-regulatory function

ac-H4 peaks are associated with transcription start sites

Temporal representation of the TFcluster association network

ChIP-on-chip validation

Table 2. Validation of transcription factor-to-cluster associations using ChIP-on-chip

TF	Matrix	Stim.	Clust	Time Points	In Clust	On Chip	Bound	<i>P</i> -Value
NFκB/p50	NFKB_Q6	LPS	C13	1 h, 2 h	64	23	18	1.1×10 ⁻³
NF _k B/p50	NFKB_Q6	LPS	C17	1 h, 2 h	58	20	11	2.5×10 ⁻¹
NFĸB/p50	NFKAPPAB_01	LPS	C28	1 h, 2 h	28	21	20	1.1×10 ⁻⁶
IRF1	IRF_Q6_01	LPS	C13	1 h, 2 h, 4 h	64	23	18	2.3×10 ⁻³
IRF1	IRF_Q6_01	LPS	C25	1 h, 2 h, 4 h	37	22	18	8.8×10 ⁻⁴

Predicted Regulation of Cytokines and Transcription Factors

V. Thorsson

Characterization of an NFκB, CEBPδ, and ATF3 transcriptional sub-network

NFκB initiated ATF3 attenuated NFκB initiated CEBPδ amplified ATF3 attenuated

NFκB initiated CEBPδ amplified

Nat Immun 10:437, 2009

V. Litvak, S. Ramsey, M. Nykter

A model of the regulation of IL6 transcription by NFkB, ATF3 and CEBPδ

 $\tau \frac{d[Il6]}{dt} = -[Il6] + \frac{k_1 [NFkB]^{t_1} + k_2 [NFkB]CEBP]}{1 + k_1 [NFkB]^{t_1} + k_2 [NFkB]CEBP] + k_3 [ATF3]}$

Nat Immun 10:437, 2009

V. Litvak, S. Ramsey, M. Nykter

NFκB and CEBPδ represent a Feed Forward Loop for the regulation of IL6 transcription

Computational simulation of NFkB pulses

Nat Immun 10:437, 2009

V. Litvak, S. Ramsey, M. Nykter

Innate Immune Database (IIDB)

•Genomic annotations and *cis*regulatory element predictions for immune-related genes.

•Web-based software tool for querying and visualization.

•Display expression timecourse data (and clusters)

 Graphical visualization of genomic annotations combining many different data types

viels leeb sector with the letter

Ex gene name (II.12b), refreq (NM.00332),entre geneID (16160),EndExon,NacleotideN Search by Chromosome location: AR, c-Ets-1(p54), E1k-1, PEA3

TYPE

Korb et al. BMC Immunology, 9:7, 2008.

Cytoscape

(networks, attributes, network metadata, etc.)

Visually Integrate

gene expression, protein state, protein interactions, and protein class (ontology)

Analysis plug-in modules

Implemented in Java

http://www.cytoscape.org/

Graphical application for building & visualising gene regulatory networks

Hierarchical network model for spatially and temporally complex network activation programs

View network activity over time, based on time-course expression

• Build networks from highthroughput data using worksheet feature (under development)

thank you

1a[°]1b p1/Kro

Stephen Ramsey | Matti Nykter | John Boyle | Christopher Cavnor | Sarah Killcoyne | Jake Lin | Vesteinn Thorsson | David Burdick | Hector Rovira | Madhumati Gundapuneni | Roger Kramer | Bill (William) Longabaugh | Harri Lähdesmäki | Alistair Rust | Martin Korb

Aderem group Vladimir Litvak

NIH/NIAID U54 AI54253 & HHSN272200700038C NIH/NIGMS P50 MO-76547 NIH/NIGMS GM072855

