EMBL Short Reads Course June 2009: Managing sequence and annotation data using the Biostrings and BSgenome packages

Patrick Aboyoun Fred Hutchinson Cancer Research Center Seattle, WA 98008

6 June 2009

Contents

1	Preliminaries	1
2	Setup	2
3	Basic containers 3.1 DNAString objects 3.2 DNAStringSet objects 3.3 XStringViews objects	2 2 3 7
4	BSgenome data packages	8
5	String matching5.1The matchPattern function5.2The vmatchPattern function5.3Ambiguities5.4Masking5.5Finding the hits of a large set of short motifs	13
6	More on the provenance of the topReads object	19
7	Session Information	20

1 Preliminaries

This lab is designed to teach the basics of Biostrings and BSgenome data packages. For this lab you need:

- R version 2.9,
- the Biostrings, BSgenome and BSgenome.Mmusculus.UCSC.mm9 packages,
- topReads.rda: an example data file containing the top 1000 reads for all 8 Solexa lanes of two ChIPseq experiments. This will be provided to you by the course instructors. Store it on your local file system.

2 Setup

Exercise 1

Start an R session and use the library function to load the BSgenome.Mmusculus.UCSC.mm9 genome package.

```
> library("BSgenome.Mmusculus.UCSC.mm9")
```

Exercise 2

Use the load function to load the example dataset into your R session. (You will need to adapt the directory path to where the file is on your system.)

```
> load(file.path("..", "data", "topReads.rda"))
> ls()
 [1] "af"
                      "chr1"
                                      "dss"
                                                      "m"
                      "m2"
 [5] "m1"
                                      "minus_strand" "pattern"
                                      "pdss"
 [9] "pdict1"
                      "pdict2"
                                                      "plus_strand"
                                                      "v.3"
[13] "r1"
                      "reg"
                                      "topReads"
```

topReads is a list of length 2, corresponding to the two experiments. Each element is again a list of length 8, corresponding to the lanes of the Solexa instrument. Each of the elements of that is an *XDataFrame* object with 1000 rows and 2 columns. More on the provenance of the topReads object is described in Section 6.

```
> topReads[[1]][[1]]
```

XDataFrame object with 1000 rows and 2 columns.

```
> colnames(topReads[[1]][[1]])
```

[1] "read" "count"

```
> topReads[[1]][[1]][1,"read"]
```

```
A DNAStringSet instance of length 1 width seq
```

```
> topReads[[1]][[1]][1,"count"]
```

[1] 81237

3 Basic containers

3.1 DNAString objects

The *DNAString* class is the basic container for storing a long nucleotide sequence. Unlike a standard character vector in R that can store multiple strings, a *DNAString* object can only contain one.

Exercise 3

- 1. Create a DNAString object r1 by using the [[operator to extract the first read from experiment 2, lane 1.
- 2. Use the nchar and alphabetFrequency functions to obtain the number of characters and the frequencies of the different letters in r1.

- 3. Get its reverse complement.
- 4. Extract substrings with the function subseq.

```
> r1 <- topReads[["experiment2"]][["lane1"]][,"read"][[1]]
> nchar(r1)
```

[1] 36

```
> alphabetFrequency(r1)
```

CGTMRW S Y Κ V Η Α D В Ν + 8 8 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0

Note that the *DNAString* class can contain characters from the complete set of IUAPC nucleic acid codes (for example, R stands for purine, i.e., A or G).

> reverseComplement(r1)

36-letter "DNAString" instance seq: TTTCAAGCAGAAGACGGCATACGAGCTCTTCCGATC

```
> subseq(r1, start=5, end=15)
```

11-letter "DNAString" instance seq: GGAAGAGCTCG

```
> subseq(r1, end=15)
```

15-letter "DNAString" instance seq: GATCGGAAGAGCTCG

```
> subseq(r1, start=-5)
```

5-letter "DNAString" instance seq: TGAAA

3.2 DNAStringSet objects

The DNAStringSet class is the basic container for storing multiple nucleotide sequences. As with R vectors, the length function returns the number of elements (sequences) in a DNAStringSet object and the [operator can be used to subset it. In addition, the element access operator [[can be used to extract a single element and return it as a DNAString object.

Exercise 4

- 1. Use the DNAStringSet constructor to store the 1000 reads from experiment 2, lane 1 into a DNAStringSet object. Let us call this instance dss.
- 2. Use length and width on dss.
- 3. Use subsetting operator [to remove its second element.
- 4. Use the **rev** to invert the order of its elements.
- 5. Use subsetting operator [[to extract its first element as a DNAString object.

- 6. Use the DNAStringSet constructor (i) to remove the last 2 nucleotides of each element, then (ii) to keep only the last 10 nucleotides.
- 7. Call alphabetFrequency on dss and on its reverse complement. Try again with setting its argument collapse=TRUE.
- 8. Remove reads with Ns, and put the "cleaned up" set of sequences back into dss.

> dss <- topReads[["experiment2"]][["lane1"]][,"read"]
> length(dss)

```
[1] 1000
```

> table(width(dss))

36

1000

```
> dss[-2]
```

A DNAStringSet instance of length 999

widt	h seq

Г и П		
[1]	36	GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA
[2]	36	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
[3]	36	ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
[4]	36	GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT
[5]	36	GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGAT
[6]	36	GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATAT
[7]	36	GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
[8]	36	CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
[9]	36	TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
[991]	36	TGTCCACTGTAGGACGTGGAATATGGCAAGAAAACT
F -		
[992]	36	ATTCCTCCCGACACATAATAATCAGAACAACAAATG
[992] [993]	36 36	ATTCCTCCCGACACATAATAATCAGAACAACAAATG ATTGATATACACTGTTCTACAAATCCCGTTTCCAAC
[993]	36	ATTGATATACACTGTTCTACAAATCCCGTTTCCAAC
[993] [994]	36 36	ATTGATATACACTGTTCTACAAATCCCGTTTCCAAC ANNNNNNNAAAAAANNNANNAAAAAAAAAAA
[993] [994] [995]	36 36 36	ATTGATATACACTGTTCTACAAATCCCGTTTCCAAC ANNNNNNNAAAAAANNNANNAAAAAAAAAAA
[993] [994] [995] [996]	36 36 36 36	ATTGATATACACTGTTCTACAAATCCCGTTTCCAAC ANNNNNNNAAAAAANNNNANNAAAAAAAAAA
[993] [994] [995] [996] [997]	36 36 36 36 36	ATTGATATACACTGTTCTACAAATCCCGTTTCCAAC ANNNNNNNAAAAAANNNNANNAAAAAAAAAA

```
> rev(dss)
```

A DNAStringSet instance of length 1000 width seq

[8] [9]		ATTCCTCCCGACACATAATAATCAGAACAACAAATG TGTCCACTGTAGGACGTGGAATATGGCAAGAAAACT
• • •	• • •	
[992]	36	CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
[993]	36	GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
[994]	36	GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATAT
[995]	36	GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGAT
[996]	36	GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT
[997]	36	ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
[998]	36	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ
[999]	36	GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT
[1000]	36	GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA

34 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGA

34 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAG

34 ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

34 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGG

34 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTG

34 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAT

34 GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 34 CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

34 TGTCCACTGTAGGACGTGGAATATGGCAAGAAAA

34 ATTCCTCCCGACACATAATAATCAGAACAACAAA

34 ATTGATATACACTGTTCTACAAATCCCGTTTCCA

34 ANNNNNNNAAAAAANNNNANNAAAAAAAAAAAA

34 ANNNNNNNNNNNNNNNNNNNAANNNA 34 CATATTCCAGGTCCTACAGTGTGCATTTCTCATT

34 CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

34 GATCGGAAGAGCTCGTATGCCGCCTTCTGCTTGG

34 GATCGGAAGAGCTCGTATGCCGGTCTTCTGTTTA

> dss[[1]]

[1] [2]

[3]

[4]

[5]

[6]

[7]

[8]

[9] . . .

[992]

[993]

[994]

[995]

[996]

[997] [998]

[999]

[1000]

36-letter "DNAString" instance

seq: GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA

> DNAStringSet(dss, end=-3)

A DNAStringSet instance of length 1000

width seq

.

A DNAStringSet instance of length 1000

width seq

> DNAStringSet(dss, start=-10)

- [1] 10 CTGCTTGAAA
- [2] 10 CTGCTTAGAT
- [3] 10 ΑΑΑΑΑΑΑΑΑΑ
- [4] 10 NNNNNNNNN
- [5] 10 CTGCTTGGAT
- [6] 10 CTGCTTTGAT

[7] [8]	10 10	CTGCTTATAT NNNNNNNNN
[9]	10	NNNNNNNNN
	• • •	
[992]	10	CAAGAAAACT
[993]	10	ACAACAAATG
[994]	10	CGTTTCCAAC
[995]	10	AAAAAAAAA
[996]	10	NNNANNNNNN
[997]	10	TTCTCATTTT
[998]	10	NNNNNNNTN
[999]	10	CTGCTTGGAT
[1000]	10	TCTGTTTAGA

> head(alphabetFrequency(dss))

> reverseComplement(dss)

A DNAS	String	gSet inst	ance	of le	ength	1000						
1	width	seq										
[1]	36	TTTCAAGC	CAGAAG	ACGGC	CATACG	AGCTO	TTCCG	ATC				
[2]	36	ATCTAAGO	CAGAAG	ACGGC	CATACG	AGCTO	TTCCG	ATC				
[3]	36	TTTTTTTT	TTTTT	TTTTI	TTTTT	TTTTT	TTTTT	TTT				
[4]	36	NNNNNNN	INNNNN	NNNNN	INNNNN	NNNNN	INNNNN	NNT				
[5]	36	ATCCAAGO	CAGAAG	ACGGC	CATACG	AGCTO	TTCCG	ATC				
[6]	36	ATCAAAGC	CAGAAG	ACGGC	CATACG	AGCTO	TTCCG	ATC				
[7]	36	ATATAAGC	CAGAAG	ACGGC	CATACG	AGCTO	TTCCG	ATC				
[8]	36	NNNNNNN	INNNNN	NNNNN	INNNNN	NNNNN	INNNNN	NNC				
[9]	36	NNNNNNN	INNNNN	NNNNN	INNNNN	NNNNN	INNNNN	NNG				
[992]	36	AGTTTTCT	TGCCA	TATTC	CACGT	CCTAC	CAGTGG	ACA				
[993]	36	CATTTGTT	GTTCT	GATTA	TTATG	TGTCC	GGAGG	AAT				
[994]	36	GTTGGAAA	CGGGA	TTTGI	AGAAC	AGTGT	TATATC	AAT				
[995]	36	TTTTTTTT	TTTTT	TNNTN	INNNTT	TTTNN	INNNNN	NNT				
[996]	36	NNNNNTN	INNTTN	NNNNN	INNNNN	NNNNN	INNNNN	NNT				
[997]	36	AAAATGAG	AAATG	CACAC	CTGTAG	GACCI	GGAAT	ATG				
[998]	36	NANNNNN	INNNNN	NNNNN	INNNNN	NNNNN	INNNNN	NNG				
[999]	36	ATCCAAGO	CAGAAG	GCGGC	CATACG	AGCTO	TTCCG	ATC				
[1000]	36	TCTAAACA	GAAGA	CCGGC	CATACG	AGCTO	TTCCG	ATC				
> # Use	'col	lapse=TRL	JE' to	coll	lapse	all t	the ro	WS				
> alpha	betFr	equency(c	lss, c	ollap	ose=TR	UE)						
	a	а т	м	P		a	37	77			P	P
A	C	G T	M	R	W	S	Y	K	V	H	D	B
9713 59	70 61	97 8955	0	0	0	0	0	0	0	0	0	0

N - + 5165 0 0

> alphabetFrequency(reverseComplement(dss), collapse=TRUE)

А С G Т М R W S Y Κ V Η D В 8955 6197 5970 9713 0 0 0 0 0 0 0 0 0 0 Ν + 5165 0 0 > # Use [,] to subset the matrix returned by alphabetFrequency() > dss <- dss[alphabetFrequency(dss)[,"N"] == 0]</pre>

3.3 XStringViews objects

An XStringViews object contains a set of views on the same sequence, which is called the *subject*; for example, this can be a DNAString object. Each view is defined by its start and end locations: both are integers such that start \leq end. The Views function can be used to create an XStringViews object, given a subject and a set of start and end locations. Like for DNAStringSet objects, length, width, [and [[are supported for XStringViews objects. Additional methods subject, start, end and gaps are also provided.

A typical use case for views is for the subject to be the sequence of a molecule (e.g. a chromosome) and the different views to be certain features of the sequence, such as protein-binding regions, transcribed regions, etc.

Exercise 5

- 1. Use the Views function to create an XStringViews object with a DNAString subject. Make it such that some views are overlapping but also that the set of views do not cover the subject entirely.
- 2. Try subject, start, end and gaps on this XStringViews object.
- 3. Try alphabetFrequency on it.
- 4. Turn it into a DNAStringSet object with the DNAStringSet constructor.

```
> v3 <- Views(dss[[1]], start=c(2, 12, 20), end=c(5, 26, 27))
```

```
> subject(v3)
```

36-letter "DNAString" instance seq: GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA

> start(v3)

[1] 2 12 20

> end(v3)

[1] 5 26 27

```
> gaps(v3)
```

Views on a 36-letter DNAString subject subject: GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA views: start end width

Start	ena	width	
1	1	1	[G]
6	11	6	[GAAGAG]
28	36	9	[TGCTTGAAA]
	1 6	1 1 6 11 28 36	6 11 6

```
> alphabetFrequency(v3)
```

A C G T M R W S Y K V H D B N - + [1,] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [2,] 1 5 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [3,] 0 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 > DNAStringSet(v3) A DNAStringSet instance of length 3 width seq [1] 4 ATCG [2] 15 CTCGTATGCCGTCTT

[3] 8 CCGTCTTC

4 BSgenome data packages

The name of a BSgenome data package is made of 4 parts separated by a dot, for example BSgenome.Celegans.UCSC.ce2.

- 1. The 1st part is always the prefix BSgenome.
- 2. The 2nd part is the (abbreviated) name of the organism.
- 3. The 3rd part is the name of the organisation who assembled the genome.
- 4. The 4th part is the release string or number used by this organisation for this assembly of the genome.

All BS genome data packages contain a single top level object whose name matches the second part of the package name.

Exercise 6

- 1. Load BSgenome.Mmusculus.UCSC.mm9 and display its top level object. Note that this does not load any sequence into memory yet.
- 2. Use seqlengths on it to get the lengths of the single sequences (this does not load any sequence either).
- > Mmusculus

```
Mouse genome
| organism: Mus musculus (Mouse)
| provider: UCSC
| provider version: mm9
| release date: Jul. 2007
| release name: NCBI Build 37
| single sequences (see '?seqnames'):
    chr1
                  chr2
                                 chr3
                                               chr4
                                                              chr5
    chr6
                  chr7
                                 chr8
                                               chr9
                                                              chr10
    chr11
                  chr12
                                               chr14
                                                              chr15
                                chr13
T
    chr16
                  chr17
chr18
                                               chr19
                                                              chrX
    chrY
                  chrM
                                chr1_random
                                               chr3_random
                                                              chr4_random
chr7_random
T
    chr5_random
                                chr8_random
                                               chr9_random
                                                              chr13_random
```

```
chr16_random chr17_random chrX_random
                                              chrY_random
chrUn_random
| multiple sequences (see '?mseqnames'):
   upstream1000 upstream2000 upstream5000
T
| (use the '$' or '[[' operator to access a given sequence)
> seqlengths(Mmusculus)
        chr1
                     chr2
                                  chr3
                                                chr4
                                                             chr5
                             159599783
  197195432
                181748087
                                                        152537259
                                          155630120
        chr6
                     chr7
                                  chr8
                                                chr9
                                                            chr10
                152524553
  149517037
                             131738871
                                          124076172
                                                        129993255
       chr11
                    chr12
                                 chr13
                                              chr14
                                                            chr15
   121843856
                121257530
                             120284312
                                          125194864
                                                        103494974
       chr16
                    chr17
                                 chr18
                                               chr19
                                                             chrX
                 95272651
                              90772031
                                           61342430
   98319150
                                                        166650296
        chrY
                     chrM chr1_random chr3_random
                                                      chr4_random
    15902555
                    16299
                               1231697
                                               41899
                                                           160594
chr5\_random
             chr7_random
                          chr8_random chr9_random chr13_random
      357350
                   362490
                                849593
                                              449403
                                                           400311
```

Display information about the mitochondrial chromosome.

628739

chr16_random chr17_random chrX_random chrY_random chrUn_random

1785075

58682461

5900358

> Mmusculus\$chrM

3994

```
16299-letter "MaskedDNAString" instance (# for masking)
seq: GTTAATGTAGCTTAATAACAAAGCAAAGCACT...ATCATACTCTATTACGCAATAAACATTAACAA
masks:
 maskedwidth maskedratio active names
1
            0 0.0000000
                            TRUE AGAPS
2
            0 0.0000000
                            TRUE
                                   AMB
3
          414 0.02540033
                           FALSE
                                    RM
4
            0 0.0000000 FALSE
                                   TRF
                                        desc
1
                       assembly gaps (empty)
2
            intra-contig ambiguities (empty)
3
                                RepeatMasker
4 Tandem Repeats Finder [period<=12] (empty)
all masks together:
  maskedwidth maskedratio
```

414 0.02540033 all active masks together: maskedwidth maskedratio

Some information about the built-in masks is displayed. Let us drop the masks for now by accessing the sequence with

> unmasked(Mmusculus\$chrM)

Figure 1: Nucleotide frequencies.

16299-letter "DNAString" instance seq: GTTAATGTAGCTTAATAACAAAGCAAAGCACT...ATCATACTCTATTACGCAATAAACATTAACAA

Exercise 7

- 1. Do the chromosomes contain IUPAC extended letters?
- 2. Treatment of DNA with bisulfite converts cytosine residues to uracil, but leaves 5-methylcytosine residues unaffected. The first reported method [1] of methylation analysis using bisulfite-treated DNA used PCR and standard dideoxynucleotide DNA sequencing to directly determine the nucleotides resistant to bisulfite conversion. All sites of unmethylated cytosines were displayed as thymines in the resulting amplified sequence of the sense strand, and as adenines in the amplified antisense strand. Assuming that no part of it is methylated, use the chartr function to simulate a bisulfite transformation of a 5 kb segment of chromosome 1.

Apply alphabetFrequency to each unmasked chromosome:

```
> af <- sapply(seqnames(Mmusculus),
+ function(name)
+ alphabetFrequency(unmasked(Mmusculus[[name]]), baseOnly=TRUE))
```

and plot the result as a barplot (see Fig. 1).

> barplot(t(af), beside=TRUE, col=rainbow(ncol(af)))

Bisulfite transformation of the plus strand:

... and the minus strand:

```
A C G T other
2556 930 0 1514 0
```

5 String matching

5.1 The matchPattern function

This function finds all the occurences (a.k.a. *matches* or *hits*) of a given pattern in a reference sequence called *the subject*.

Exercise 8

- 1. Find all the matches of a short pattern (invent one) in mouse chromosome 1. Do not choose the pattern too short or too long.
- 2. In fact, without further attention, we only get the hits in the plus strand of the chromosome. Find the matches in the minus strand too. (Note: the cost of taking the reverse complement of an entire chromosome sequence can be high in terms of memory usage. Try to do something better.)
- 3. matchPattern supports insertions and deletions ("indels") via the with.indels argument. Use the same pattern to find all the matches in chromosome 1 that are at an edit distance ≤ 2 from it.

```
> pattern <- DNAString("ACCGGTTATC")</pre>
```

> matchPattern(pattern, Mmusculus\$chr1)

```
end width
       start
[1]
     8156832
                8156841
                           10 [ACCGGTTATC]
   12001296 12001305
                           10 [ACCGGTTATC]
[2]
[3]
    75279793 75279802
                           10 [ACCGGTTATC]
[4]
   82285523 82285532
                           10 [ACCGGTTATC]
[5] 88424005 88424014
                           10 [ACCGGTTATC]
[6] 126585955 126585964
                           10 [ACCGGTTATC]
[7] 138355255 138355264
                           10 [ACCGGTTATC]
[8] 161627898 161627907
                           10 [ACCGGTTATC]
[9] 193744211 193744220
                           10 [ACCGGTTATC]
```

Reverse complement pattern instead of Mmusculus\$chr1: it is more memory efficient and it keeps coordinates relative to the plus strand, which is what everybody seems to do (NCBI, UCSC, etc...)

```
> matchPattern(reverseComplement(pattern), Mmusculus$chr1)
```

Allow for indels.

```
> matchPattern(pattern, Mmusculus$chr1, max.mismatch=2, with.indels=TRUE)
```

5.2 The vmatchPattern function

This function finds all the matches of a given pattern in a set of reference sequences (the "v" stands for *vectorized*).

Exercise 9

- 1. Load the upstream5000 object from Mmusculus and find all the matches of a short pattern in it.
- 2. The value returned by vmatchPattern is an MIndex object containing the match coordinates for each reference sequence. You can use the startIndex and endIndex accessors on it to extract the match starting and ending positions as lists (one list element per reference sequence). [[extracts the matches of a given reference sequence as an MIndex object. countIndex extracts the match counts as an integer vector (one element per reference sequence).

> Mmusculus\$upstream5000

A DNAS	tring	Set instance of length 18429	
1	width	seq	names
[1]	5000	AGGAAGAACATATTCTCGAACGCGGGGCTTTCTA	NM_028778_up_5000
[2]	5000	ATCCCAAAAGTCCCCCATCTTCAGCTGGAGCTGG	NM_027671_up_5000
[3]	5000	TTCTTTACTTAGAAAGTACTTGGATAAGGCGCAA	NM_175642_up_5000
[4]	5000	TGGGTCAAGCATACAAACTCCCGCCACTGGGAGA	NM_008922_up_5000
[5]	5000	GTAGCCCAAGTGCTCAGCCATCCTGGGGCACAAG	NM_175370_up_5000
[6]	5000	ATGAAACCACTATGATACGCGAGCCTGACGTTGC	NM_178884_up_5000
[7]	5000	TTGTGTGCATCATTTCACTGCTAACTTCTGCCTT	NM_009126_up_5000
[8]	5000	ATTAACCTGATCCTGATGCCACACACAGGCTTCT	NM_198680_up_5000
[9]	5000	AGCAGAGAGACTCTTTCGCTTTTCTCTTCCGCCA	NM_199021_up_5000
[18421]	5000	TTAAGAACTTTCACGCTTTTTTTTTTTTTCCCATT	NM_001037748_up_5
[18422]	5000	GCCATTCCAAAAAGTTGGACTTGAAGGTGGAGG	NM_011667_up_5000
[18423]	5000	TGCATTAGGCACACATATTCAAGGTGAGTTCACT	NM_001017393_up_5
[18424]	5000	AAGAGAAATAATTGATCTTTTTTTTTTTTGCCATT	NM_001037748_up_5
[18425]	5000	GTGGGTGTTAGAAATTGGCGCATCTATTCCACTT	NM_001025241_up_5
[18426]	5000	ACTATTGATCCTTAGGCACTTAGAGACACTAGAA	NM_009220_up_5000
[18427]	5000	TTGATCCTCACTAAAATTTTTTTTTTTTTGCCATT	NM_001037748_up_5
[18428]	5000	TGATCCTCACTAAAATTTTTTTTTTTTTTGCCATT	NM_001037748_up_5
[18429]	5000	CCATGTGGGTGTTAGAAGCGCATCTATTCCACTT	NM_001025241_up_5

> m <- vmatchPattern(pattern, Mmusculus\$upstream5000)</pre>

To get the indices of the references sequences with hits:

> which(countIndex(m) != 0)

[1] 2956 7540 10701 11387

To get the hits in reference sequence 2956:

> m[[2956]]

IRanges object: start end width [1] 3682 3691 10

5.3 Ambiguities

IUPAC extended letters can be used to express ambiguities in the pattern or in the subject of a search with matchPattern. This is controlled via the fixed argument of the function. If fixed is TRUE (the default), all letters in the pattern and the subject are interpreted litterally. If fixed is FALSE, IUPAC extended letters in the pattern and in the subject are interpreted as ambiguities e.g. M will match A or C and N will match any letter (the IUPAC_CODE_MAP named character vector gives the mapping between IUPAC letters and the set of nucleotides that they stand for). The most common use of this feature is to introduce wildcards in the pattern by replacing some of its letters with Ns.

Exercise 10

- 1. Search for the pattern GAACTTTGCCACTC in Mouse chromosome 1.
- 2. Repeat but this time allow the 2nd T in the pattern (6th letter) to match anything. Anything wrong?
- 3. Call matchPattern with fixed="subject" to work around this problem.

```
> matchPattern("GAACTTTGCCACTC", Mmusculus$chr1)
```

By default, fixed is TRUE, so the N in the pattern can only match an N in the subject:

```
> matchPattern("GAACTNTGCCACTC", Mmusculus$chr1)
```

```
Views on a 197195432-letter DNAString subject
subject: NNNNNNNNNNNNNNNNNNNNNNNNNNNN...AATTTGGTATTAAACTTAAAACTGGAATTC
views: NONE
```

```
> matchPattern("GAACTNTGCCACTC", Mmusculus$chr1, fixed=FALSE)
```

start end width
[1] 180842072 180842085 14 [GAACTGTGCCACTC]

5.4 Masking

The *MaskedDNAString* container is dedicated to the storage of masked DNA sequences. As mentioned above, you can use the unmasked function to turn a *MaskedDNAString* object into a *DNAString* object (the masks will be lost), or use the masks accessor to extract the masks.

Each mask on a sequence can be active or not. Masks can be activated individually with:

```
> chr1 <- Mmusculus$chr1
> active(masks(chr1))["TRF"] <- TRUE</pre>
```

This will activate the Tandem Repeats Finder (TRF) mask. All masks together can activated with:

```
> active(masks(chr1)) <- TRUE</pre>
```

Some functions in Biostrings like alphabetFrequency or the string matching functions will skip masked regions when walking along a sequence with active masks.

Exercise 11 What percentage of Mouse chromosome 1 is made of assembly gaps?

```
> maskedratio(masks(Mmusculus$chr1)["AGAPS"])
```

[1] 0.02899639

Exercise 12

Check the alphabet frequency of Mouse chromosome 1 when only the AGAPS mask is active, when only the AGAPS and AMB masks are active. Compare with unmasked chromosome 1.

Mmusculus\$chr1 is an immutable object, so before we can turn its masks on or off, we need to copy it to another variable (note that the chromosome sequence itself is not copied during this operation, so it does not result in the use of a substantial amount of additional memory):

```
> chr1 <- Mmusculus$chr1</pre>
> active(masks(chr1)) <- FALSE</pre>
> active(masks(chr1))["AGAPS"] <- TRUE</pre>
> chr1
  197195432-letter "MaskedDNAString" instance (# for masking)
masks:
 maskedwidth maskedratio active names
1
     5717956 2.899639e-02
                            TRUE AGAPS
2
          47 2.383422e-07 FALSE
                                   AMB
3
    84650265 4.292709e-01
                           FALSE
                                    RM
4
     4014755 2.035927e-02 FALSE
                                   TRF
                               desc
1
                      assembly gaps
2
           intra-contig ambiguities
3
                       RepeatMasker
4 Tandem Repeats Finder [period<=12]
all masks together:
 maskedwidth maskedratio
    90481616
               0.4588424
all active masks together:
 maskedwidth maskedratio
      5717956 0.02899639
> alphabetFrequency(chr1, baseOnly=TRUE)
      А
               С
                        G
                                 Т
                                      other
56406566 39397656 39371416 56301791
                                         47
> active(masks(chr1))["AMB"] <- TRUE</pre>
> alphabetFrequency(chr1, baseOnly=TRUE)
      А
               С
                        G
                                 Т
                                      other
56406566 39397656 39371416 56301791
                                          0
> alphabetFrequency(unmasked(chr1), baseOnly=TRUE)
      Α
               С
                        G
                                 Т
                                      other
56406566 39397656 39371416 56301791 5718003
```

Exercise 13

- 1. Try as(chr1, "XStringViews") and gaps(as(chr1, "XStringViews")) with different sets of active masks. How do you use this to display the contigs as views?
- 2. Activate all masks and find the occurences of an arbitrary DNA pattern in it. Compare to what you get with unmasked chromosome 1.

To display the contig as views:

```
> chr1 <- Mmusculus$chr1
```

```
> active(masks(chr1)) <- FALSE</pre>
```

- > active(masks(chr1))["AGAPS"] <- TRUE</pre>
- > as(chr1 , "XStringViews")

ATCM!				
	start	end	width	
[1]	3000001	22414948	19414948	[GAATTCTTTTCTATGATATTTCCTTGTTATTTT]
[2]	22415049	22423349	8301	[GGAAGCAGCAAATTCTGAATATTAATTGTGGGGG]
[3]	22473350	24686638	2213289	[AGAGTGCTGTATCTGAATACTAGGAGAGAATTC]
[4]	24736639	75102130	50365492	[GAATTCACTGGCTTTCCACCAGTGAAGAACTAG]
[5]	75118131	78603540	3485410	[AGGCAGGACATTCAAATCTCTAGAAATCAAAGG]
[6]	78603641	78604724	1084	[GTCTCTATGTGTGCGTGGCTGGGATTAAAGGTG]
[7]	78605670	78606725	1056	[AGGGTAAGGCACCCCCCTAAATACTGAATTTTG]
[8]	78607361	78610454	3094	[AGTTGAGTTGGGGGAGGGATTCTCCTCTTGGGAC]
[9]	78610738	85343678	6732941	[TCGTTCTCAGCTCTTCCGGCAACAGTAGAATTC]
[16]	185327811	193781121	8453311	[GTGTGTGTGTGTGTATGTCATGTGTGTGTGTAGTATG]
[17]	193781222	193785973	4752	[TTTTTTTTTTTTTTTTTACACACCACACACACC]
[18]	193786082	193825657	39576	[CACACACACACACACACCATTTAGAGGAAAGTC]
[19]	193875658	193877920	2263	[GGGCTCTACATGATCTGAGTGCAATGCTCTGAC]
[20]				
	193878021	193883483	5463	[TGCAGGGGGGAGGGAATGGGAGGGAGGGAGGGAG]
[21]	193878021 193883584	193883483 193976498	5463 92915	[TGCAGGGGGGGGGGGATGGGAGGGAGGGAGGGAG] [AGGGAGGGAGGGAGGGAGGGAGGGTGTCGCTTCCTGG]
[21] [22]		100000100		
	193883584	193976498	92915	[AGGGAGGGAGGGAGGGAGGGTGTCGCTTCCTGG]
[22]	193883584 193976831	193976498 193980538	92915 3708	[AGGGAGGGAGGGAGGGAGGGTGTCGCTTCCTGG] [AAAAAATCTACAACCCAGCAGTGCGCGAGAAGA]

Activate all masks

```
> active(masks(chr1)) <- TRUE
> chr1
```

197195432-letter "MaskedDNAString" instance (# for masking) masks: maskedwidth maskedratio active names 5717956 2.899639e-02 TRUE AGAPS 1 2 47 2.383422e-07 TRUE AMB 3 84650265 4.292709e-01 TRUE RM 4 TRF 4014755 2.035927e-02 TRUE desc 1 assembly gaps

2 intra-contig ambiguities
3 RepeatMasker
4 Tandem Repeats Finder [period<=12]</pre>

all masks together: maskedwidth maskedratio

90481616 0.4588424

> matchPattern("ACACACACACACACACACAC", chr1)

> matchPattern("ACACACACACACACACACAC", unmasked(chr1))

	start	end	width	
[1]	3035551	3035570	20	[ACACACACACACACACAC]
[2]	3035553	3035572	20	[ACACACACACACACACAC]
[3]	3035555	3035574	20	[ACACACACACACACACAC]
[4]	3035557	3035576	20	[ACACACACACACACACAC]
[5]	3035559	3035578	20	[ACACACACACACACACAC]
[6]	3041036	3041055	20	[ACACACACACACACACAC]
[7]	3041038	3041057	20	[ACACACACACACACACAC]
[8]	3041040	3041059	20	[ACACACACACACACACAC]
[9]	3041042	3041061	20	[ACACACACACACACACAC]
[91680]	197189111	197189130	20	[ACACACACACACACACAC]
[91681]	197189113	197189132	20	[ACACACACACACACACAC]
[91682]	197189115	197189134	20	[ACACACACACACACACAC]
[91683]	197189117	197189136	20	[ACACACACACACACACAC]
[91684]	197189119	197189138	20	[ACACACACACACACACAC]
[91685]	197189121	197189140	20	[ACACACACACACACACAC]
[91686]	197189123	197189142	20	[ACACACACACACACACAC]
[91687]	197189125	197189144	20	[ACACACACACACACACAC]
[91688]	197189127	197189146	20	[ACACACACACACACACAC]

In addition to the built-in masks, the user can put its own mask on a sequence. Two types of usercontrolled masking are supported: *by content* or *by position*. The maskMotif function will mask the regions of a sequence that contain a motif specified by the user. The Mask constructor will return the mask made of the regions defined by the start and end locations specified by the user (like with the Views function).

5.5 Finding the hits of a large set of short motifs

Our own competitor to other fast alignment tools like MAQ or bowtie is the matchPDict function. Its speed is comparable to the speed of MAQ but it uses more memory than MAQ to align the same set of reads against the same genome. Here are some important differences between matchPDict and MAQ (or bowtie):

- matchPDict ignores the quality scores,
- it finds all the matches,
- it fully supports 2 or 3 (or more) mismatching nucleotides anywhere in the reads (performance will decrease significantly though if the reads are not long enough),
- it supports masking (masked regions are skipped),
- it supports IUPAC ambiguities in the subject (useful for SNP detection).

The workflow with matchPDict is the following:

- 1. Preprocess the set of short reads with the PDict constructor.
- 2. Call matchPDict on it.
- 3. Query the *MIndex* object returned by matchPDict.

Exercise 14

- 1. Preprocess dss (obtained earlier from topReads.rda) with the PDict constructor.
- 2. Use this PDict object to find the (exact) hits of dss in Mouse chromosome 1.
- 3. Use countIndex on the MIndex object returned by matchPDict to extract the number of hits per read.
- 4. Which read has the highest number of hits? Display those hits as an XStringViews object. Check this result with a call to matchPattern.
- 5. You only got the hits that belong to the + strand. How would you get the hits that belong to the strand?
- 6. Redo this analysis for inexact matches with at most 2 mismatches per read in the last 20 nucleotides.

```
> pdss <- PDict(dss)
> m <- matchPDict(pdss, Mmusculus$chr1)
> Rle(countIndex(m))
    'integer' Rle instance of length 824 with 147 runs
    Lengths: 2 1 20 1 1 1 3 1 1 1 ...
    Values : 0 1523 0 52 0 54 0 50 0 51 ...
> which(countIndex(m) == max(countIndex(m)))
[1] 46
> pdss[[46]]
```

```
> Views(unmasked(Mmusculus$chr1), start=start(m[[46]]), end=end(m[[46]]))
```

Views on a 197195432-letter DNAString subject subject: NNNNNNNNNNNNNNNNNNNNNNNNN...AATTTGGTATTAAACTTAAAACTGGAATTC views:

start	end	width	
3041036	3041071	36	[ACACACACACACACACACACACACACACACACACACAC
3041038	3041073	36	[ACACACACACACACACACACACACACACACACACACAC
3041040	3041075	36	[ACACACACACACACACACACACACACACACACACACAC
3041042	3041077	36	[ACACACACACACACACACACACACACACACACACACAC
3041044	3041079	36	[ACACACACACACACACACACACACACACACACACACAC
3041046	3041081	36	[ACACACACACACACACACACACACACACACACACACAC
3041048	3041083	36	[ACACACACACACACACACACACACACACACACACACAC
3220742	3220777	36	[ACACACACACACACACACACACACACACACACACACAC
3220744	3220779	36	[ACACACACACACACACACACACACACACACACACACAC
197055223	197055258	36	[ACACACACACACACACACACACACACACACACACACAC
197059731	197059766	36	[ACACACACACACACACACACACACACACACACACACAC
197059733	197059768	36	[ACACACACACACACACACACACACACACACACACACAC
197059735	197059770	36	[ACACACACACACACACACACACACACACACACACACAC
197059737	197059772	36	[ACACACACACACACACACACACACACACACACACACAC
197059739	197059774	36	[ACACACACACACACACACACACACACACACACACACAC
197059741	197059776	36	[ACACACACACACACACACACACACACACACACACACAC
197189109	197189144	36	[ACACACACACACACACACACACACACACACACACACAC
197189111	197189146	36	[ACACACACACACACACACACACACACACACACACACAC
	3041036 3041038 3041040 3041042 3041044 3041046 3041048 3220742 3220744 197055223 197059731 197059733 197059735 197059737 197059739 197059741 197189109	3041036 3041071 3041038 3041073 3041040 3041075 3041042 3041077 3041044 3041077 3041044 3041077 3041044 3041079 3041046 3041081 3041048 3041083 3220742 3220777 3220743 3220779 197055223 197055258 197059731 197059766 197059735 197059770 197059737 197059771 197059739 197059774 197059739 197059774 197059741 197059776 197189109 197189144	3041036 3041071 36 3041038 3041073 36 3041040 3041075 36 3041042 3041077 36 3041042 3041077 36 3041044 3041079 36 3041046 3041081 36 3041048 3041083 36 3220742 3220777 36 3220744 3220779 36 3220743 197055258 36 197055223 197055258 36 197059731 197059766 36 197059735 197059770 36 197059737 197059772 36 197059739 197059774 36 197059739 197059774 36 197059739 197059774 36 197059739 197059774 36 197059739 197059774 36 197059741 197059776 36 197189109 197189144 36

> matchPattern(pdss[[46]], Mmusculus\$chr1)

	start	end	width	
[1]	3041036	3041071	36	[ACACACACACACACACACACACACACACACACACACAC
[2]	3041038	3041073	36	[ACACACACACACACACACACACACACACACACACACAC
[3]	3041040	3041075	36	[ACACACACACACACACACACACACACACACACACACAC
[4]	3041042	3041077	36	[ACACACACACACACACACACACACACACACACACACAC
[5]	3041044	3041079	36	[ACACACACACACACACACACACACACACACACACACAC
[6]	3041046	3041081	36	[ACACACACACACACACACACACACACACACACACACAC
[7]	3041048	3041083	36	[ACACACACACACACACACACACACACACACACACACAC
[8]	3220742	3220777	36	[ACACACACACACACACACACACACACACACACACACAC
[9]	3220744	3220779	36	[ACACACACACACACACACACACACACACACACACACAC
			• • •	
 [25729]	 197055223	 197055258	 36	 [ACACACACACACACACACACACACACACACACACAC]
	 197055223 197059731	 197055258 197059766	 36 36	 [ACACACACACACACACACACACACACACACACACAC] [ACACACACACACACACACACACACACACACACACACAC
[25729]				
[25729] [25730]	197059731	197059766	36	[ACACACACACACACACACACACACACACACACACACAC
[25729] [25730] [25731]	197059731 197059733	197059766 197059768 197059770	36 36	[ACACACACACACACACACACACACACACACACACAC] [ACACACACACACACACACACACACACACACACACAC]
[25729] [25730] [25731] [25732]	197059731 197059733 197059735	197059766 197059768 197059770	36 36 36	[ACACACACACACACACACACACACACACACACACACAC
[25729] [25730] [25731] [25732] [25733]	197059731 197059733 197059735 197059737	197059766 197059768 197059770 197059772	36 36 36 36	[ACACACACACACACACACACACACACACACACACAC] [ACACACACACACACACACACACACACACACACACACAC
[25729] [25730] [25731] [25732] [25733] [25733]	197059731 197059733 197059735 197059737 197059739	197059766 197059768 197059770 197059772 197059774	36 36 36 36 36	[ACACACACACACACACACACACACACACACACACACAC
[25729] [25730] [25731] [25732] [25733] [25734] [25735]	197059731 197059733 197059735 197059737 197059739 197059741 197189109	197059766 197059768 197059770 197059772 197059774 197059776	36 36 36 36 36 36	[ACACACACACACACACACACACACACACACACACACAC

> ### Hits in the minus strand:

> pdict1 <- PDict(reverseComplement(dss))</pre>

```
> m1 <- matchPDict(pdict1, Mmusculus$chr1)</pre>
> Rle(countIndex(m1))
  'integer' Rle instance of length 824 with 152 runs
  Lengths: 2 1 20 1 1 1 3 1 1 1 ...
  Values : 0 1429 0 34 0 35 0 33 0 35 ...
> which(countIndex(m1) == max(countIndex(m1)))
[1] 433
> reverseComplement(pdict1[[433]])
  36-letter "DNAString" instance
> # The previous analysis was for exact hits. To find inexact hits
> # with at most 2 mismatches per read in the last 20 nucleotides, we
> # need to specify a Trusted Band during preprocessing:
> pdict2 <- PDict(dss, tb.end=16)</pre>
> # and to call matchPDict() with 'max.mismatch=2':
> m2 <- matchPDict(pdict2, Mmusculus$chr1, max.mismatch=2)</pre>
> # Of course we find the same hits or more for each read:
> all(countIndex(m2) >= countIndex(m))
[1] TRUE
> which(countIndex(m2) == max(countIndex(m2)))
[1] 90
```

```
> pdss[[90]]
```

6 More on the provenance of the topReads object

The code that was used to produce the topReads object looks something like:

```
> sp <-
   list("experiment1" = SolexaPath(file.path("path", "to", "experiment1")),
         "experiment2" = SolexaPath(file.path("path", "to", "experiment2")))
> patSeq <- paste("s_", 1:8, "_.*_seq.txt", sep = "")
> names(patSeq) <- paste("lane", 1:8, sep = "")</pre>
> topReads <-
+
    lapply(seq_len(length(sp)),
+
           function(i) {
+
             print(experimentPath(sp[[i]]))
             lapply(seq_len(length(patSeq)),
+
+
                    function(j, n = 1000) \{
                         cat("Reading", patSeq[[j]], "...")
+
                         x <-
```

```
tables(readXStringColumns(baseCallPath(sp[[i]]),
+
+
                                                         pattern = patSeq[[j]],
+
                                                         colClasses =
+
                                                         c(rep(list(NULL), 4),
+
                                                         list("DNAString")))[[1]],
                                    n = n)[["top"]]
+
                          names(x) <- chartr("-", "N", names(x))</pre>
+
                          cat("done. n")
+
+
                          XDataFrame(read = DNAStringSet(names(x)),
+
                                      count = unname(x))
+
                      })
            })
+
> names(topReads) <- names(sp)</pre>
> for (i in seq_len(length(sp))) {
      names(topReads[[i]]) <- names(patSeq)</pre>
+
+ }
```

You could adapt this for use with your own data.

7 Session Information

> toLatex(sessionInfo())

- R version 2.9.0 (2009-04-17), x86_64-unknown-linux-gnu
- Locale: LC_CTYPE=C;LC_NUMERIC=C;LC_TIME=C;LC_COLLATE=C;LC_MONETARY=C;LC_MESSAGES=it_IT.UTF-8;LC_PAPER=it_IT.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=it_IT.UTF-8;LC_IDENTIFICATION=C
- Base packages: base, datasets, grDevices, graphics, methods, stats, utils
- Other packages: BSgenome 1.12.2, BSgenome.Mmusculus.UCSC.mm9 1.3.13, Biostrings 2.12.5, IRanges 1.2.2, fortunes 1.3-6
- Loaded via a namespace (and not attached): Biobase 2.4.1

References

 Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. *Proc Natl Acad Sci U S A* 89:1827–1831 (1992)