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1 Introduction

This file describes an RNA-seq analysis use-case. RNA-seq[8] was introduced
as a new method to perform Gene Expression Analysis, using the advantages of
the high throughput of Next-Generation Sequencing machines.

The goal of this use-case is to generate a count table for the selected genetic
features of interest, i.e. exons, transcripts, gene models, etc. In the first part, we
will use Bioconductor packages ShortRead[7] and GenomicFeatures to define the
counts for genetic features. This information will then be exported into a wig
formatted file for visualization in the UCSC genome browser or a stand-alone
genome browser like IGB.

1

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html


2 Single sample use case

In this section, we will demonstrate how to generate a count table containing
the number of sequencing reads that can be assigned to given genetic features.
An expressed genetic feature can be anything from an exon to a gene-model
and, as recently published, enhancers[4]. In this section, we will generate such
a count table for a single sample.

2.1 Reading the data

We read the export file, using the ShortRead package and have a look at its
contents.

> library(ShortRead)

> aln <-

+ readAligned(system.file("extdata", "subset_export.txt.gz",

+ package = "CSAMA10"),

+ type = "SolexaExport")

> aln

class: AlignedRead
length: 100000 reads; width: 36 cycles
chromosome: NM 1:0:0 ... chr2R chr2L
position: NA NA ... 20555556 13903608
strand: NA NA ... + -
alignQuality: NumericQuality
alignData varLabels: run lane ... filtering contig

2.2 Filtering the data

Illumina uses a built-in chastity filter that describes whether a read cluster could
be successfully sequenced, with Y representing yes and N representing no.

> table(chastity = alignData(aln)[["filtering"]],

+ aligned = is.na(position(aln)),

+ useNA = "ifany")

aligned
chastity FALSE TRUE

Y 56883 7323
N 12065 23729

In this sample, roughly 36% of the reads do not pass the chastity filter and
an additional 7.3% do not align to the genome. Also, some of these reads contain
many “N”s, which occurs whenever Bustard, the Illumina base caller, could not
produce a valid base call. All these reads are questionable and can be filtered
out. Filtering for failed chastity calls is not implemented in the ShortRead
package, so we will load the CSAMA10 package.

We will use three types of filters on our data:

1. Keep reads with at most 2 Ns.
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2. Keep only the alignments to chromosomes chr2L, chr2R, chr3L, chr3R,
and chr4.

3. Use Illumina’s chastity filter.

> nFilt <- nFilter(2)

> chrFilt <- chromosomeFilter(regex = "chr[0-9]")

> library(CSAMA10)

> cFilt <- CSAMA10::chastityFilter()

> filt <- compose(nFilt, chrFilt, cFilt)

> aln <- aln[filt(aln)]

> aln

class: AlignedRead
length: 46070 reads; width: 36 cycles
chromosome: chr3L chr3L ... chr2R chr2L
position: 9861757 21533621 ... 20555556 13903608
strand: + + ... + -
alignQuality: NumericQuality
alignData varLabels: run lane ... filtering contig

We are now left with 46,070 “valid” alignments, which we want to assign to
their respective exon. For this we need to get the proper genomic and genetic
information.

The AlignedRead contain is not idea for performing interval overlap cal-
culations, so we will create a GRanges instance that contains the alignment
locations. Since this RNA-seq protocol could not discern strand information,
we will set all strand locations to the wildcard *.

> alnRanges <- as(aln, "GRanges")

> strand(alnRanges) <- "*"

2.3 Obtaining the transcript annotation

To assign the alignments to their respective exons, we need to know the genome
composition of the model organism “Drosophila melanogaster”. We can ob-
tain this information using the GenomicFeatures, which can create annotation
databases using either Biomart or UCSC as a resource. For the purposes of our
analysis, we will use Biomart.

> library(GenomicFeatures)

The code to make this from Biomart is

> dmTxDb <-

+ makeTranscriptDbFromBiomart(biomart = "ensembl",

+ dataset =

+ "dmelanogaster_gene_ensembl")

but we will load a local copy for expediency.
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> dmTxDb <-

+ loadFeatures(system.file("extdata", "dmTxDb.sqlite",

+ package = "CSAMA10"))

> dmTxDb

TranscriptDb object:
| Db type: TranscriptDb
| Data source: BioMart
| BioMart database: ensembl
| BioMart dataset: dmelanogaster_gene_ensembl
| BioMart dataset description: Drosophila melanogaster genes (BDGP5.13)
| BioMart dataset version: BDGP5.13
| Full dataset: yes
| transcript_nrow: 22423
| exon_nrow: 70767
| cds_nrow: 61189
| Db created by: GenomicFeatures package from Bioconductor
| Creation time: 2010-06-09 21:43:51 -0700 (Wed, 09 Jun 2010)
| GenomicFeatures version at creation time: 1.0.0
| RSQLite version at creation time: 0.9-1

As is typical, the coding for the sequence names differ between the experi-
ment data and the annotation metadata, so we will recode the seqnames in the
alignments to coincide with those in the transcript database.

> levels(seqnames(alnRanges))

[1] "chr2L" "chr2R" "chr3L" "chr3R" "chr4"

> seqnames(dmTxDb)

[1] "dmel_mitochondrion_genome" "2RHet"
[3] "2L" "3L"
[5] "X" "XHet"
[7] "Uextra" "4"
[9] "YHet" "U"
[11] "2LHet" "3R"
[13] "3RHet" "3LHet"
[15] "2R"

> seqnames(alnRanges) <- sub("^chr", "", seqnames(alnRanges))

> seqlengths(alnRanges) <-

+ seqlengths(dmTxDb)[names(seqlengths(alnRanges))]

> head(alnRanges, 3)

GRanges with 3 ranges and 7 elementMetadata values
seqnames ranges strand | run

<Rle> <IRanges> <Rle> | <factor>
[1] 3L [ 9861757, 9861792] * | 90320
[2] 3L [21533621, 21533656] * | 90320
[3] 3R [25871248, 25871283] * | 90320
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lane tile x y filtering
<integer> <integer> <integer> <integer> <factor>

[1] 3 1 0 990 Y
[2] 3 1 0 452 Y
[3] 3 1 0 965 Y

contig
<factor>

[1]
[2]
[3]

seqlengths
2L 2R 3L 3R 4

23011544 21146708 24543557 27905053 1351857

2.4 Analysis of gene models

Now that we have the alignment locations and the transcript annotations, we
can begin with a coarse model of a gene. For simplicity we will start with the
boundaries for each gene based upon the transcripts in the dmTxDb object. The
CSAMA10 package contains the function geneBounds for this purpose. Since we
have limited our examination to chromosomes 2L, 2R, 3L, 3R, and 4 in fly.

> dmGeneBounds <- CSAMA10::geneBounds(dmTxDb)

> dmGeneBounds <-

+ dmGeneBounds[seqnames(dmGeneBounds) %in%

+ levels(seqnames(alnRanges))]

> head(dmGeneBounds, 3)

GRanges with 3 ranges and 0 elementMetadata values
seqnames ranges strand |

<Rle> <IRanges> <Rle> |
FBgn0000003 3R [ 2648220, 2648518] + |
FBgn0000008 2R [18024494, 18060346] + |
FBgn0000014 3R [12633349, 12655769] - |

seqlengths
dmel_mitochondrion_genome ... 2R

19517 ... 21146708

In order to determine expression levels for each of these genes we will count
the number of interval overlaps that occur with the aligned ranges. This can be
achieved using the countOverlaps method from the GenomicRanges package.

> dmGeneCounts <- countOverlaps(dmGeneBounds, alnRanges)

> names(dmGeneCounts) <- names(dmGeneBounds)

> hist(log10(dmGeneCounts+1))
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Figure 1: Distribution of gene model interval overlaps count on the log scale.
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Histogram of log10(dmRPKM + 1)
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Figure 2: Distribution of RPKM on the log scale.

2.5 Normalizing counts

A common way to normalize reads is to convert them to RPKM: reads per
million reads in the library per kb of transcripts. This implies normalizing
the read counts depending on the genic feature size (exon, transcript, gene
model,...) and depending on the total number of reads sequenced for that library.
CSAMA10 count tables can be easily transformed into RPKM, by using the rpkm

method:

> dmRPKM <- CSAMA10::rpkm(dmGeneCounts, dmGeneBounds)

> hist(log10(dmRPKM+1))

But such a count normalization is sub-optimal, as you would “limit” your dy-
namic range to the one of the library having the lowest number of reads. A
better way of normalizing the data is to use either the edgeR[10] or DESeq[2]
packages. The approaches taken by this packages are explained in their respec-
tive vignettes.

2.6 Differentiating amongst isoforms

Once we have used other packages such as edgeR and DESeq, we can use basic
Bioconductor tools to find the interval overlap counts for each of the exons
within the known isoforms of the annotated genes. This counting activity can
be achieved using the countExonIdsByTxOverlaps function within the CSAMA10
package.
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> dmExonIdsByTxCounts <-

+ CSAMA10::countExonIdsByTxOverlaps(dmTxDb, alnRanges)

> dmExonIdsByTxCounts

CompressedSplitDataFrameList of length 15160
$FBgn0000556
DataFrame with 2 rows and 3 columns

tx_id exon_counts total_count
<integer> <CompressedIntegerList> <integer>

1 5375 33,1099 1132
2 5374 0,1099 1099

$FBgn0000559
DataFrame with 3 rows and 3 columns

tx_id exon_counts total_count
<integer> <CompressedIntegerList> <integer>

1 3681 10,52,92,... 541
2 3679 0,52,92,... 531
3 3680 0,52,92,... 531

$FBgn0001219
DataFrame with 6 rows and 3 columns

tx_id exon_counts total_count
<integer> <CompressedIntegerList> <integer>

1 15032 18,405 423
2 15029 0,405 405
3 15030 0,405 405
4 15031 0,405 405
5 15033 0,405 405
6 15034 405 405

...
<15157 more elements>

The output of countExonIdsByTxOverlaps is more complex than the typical
R object. It returns a CompressedSplitDataFrameList that is split by gene ID,
where each row in the split represent a transcript. These data rows are comprised
of three columns: the transcipt id, the number of interval overlaps for each exon
within the spliced transcript, and the total number of interval overlaps across the
entire spliced transcript. The elements in this CompressedSplitDataFrameList
object are sorted in descending order by the transcript with the largest total
interval overlaps.

2.7 De novo transcript identification

In theory, RNA-seq experiments can be used to identify any transcribed molecule,
since the technique is not dependent on a predefined sets of probes like micro-
arrays are. Therefore, RNA-seq is a potential useful tool in finding unknown
transcripts and isoforms, as well as regulatory transcribed elements. To that
end, several methods are available to recreate and annotate transcripts, e.g.
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Oases, Velvet[13, 14], TopHat[12], to cite some of them (see [1] as well), but few
have been done for other regulatory transcribed elements such as eRNAs [4].
We can use Bioconductor tools to identify locus and quantify counts without
prior annotation knowledge.

The process begins with calculating the coverage, using the method from the
GenomicRanges package.

> cover <- coverage(alnRanges)

> head(cover, 2)

SimpleRleList of length 2
$`2L`
'integer' Rle of length 23011544 with 17850 runs
Lengths: 6777 36 2316 36 ... 499 36 50474
Values : 0 1 0 1 ... 0 1 0

$`2R`
'integer' Rle of length 21146708 with 21751 runs
Lengths: 19042 36 36 36 ... 2574 36 2520
Values : 0 1 0 1 ... 0 1 0

Next the islands can be formed using the slice function. The peak height
for the islands can be found using the viewMaxs function and the island widths
can be found using the width function.

> islands <- slice(cover, 1)

> islandPeakHeight <- viewMaxs(islands)

> islandWidth <- width(islands)

> median(islandPeakHeight)

2L 2R 3L 3R 4
1 1 1 1 1

> median(islandWidth)

2L 2R 3L 3R 4
36 36 36 36 36

While some sophisticated bioinformatic approaches can be taken to find ex-
ons de novo from the RNA-seq sample, we can use a simple approach whereby
we select islands whose maximum peak height is 2 or more and whose width
is 54 bp or more. The elementLengths function calls shows how many of these
candidate exons appear on each chromosome.

> candidateExons <-

+ islands[islandPeakHeight >= 1L & islandWidth >= 54L]

> elementLengths(candidateExons)

2L 2R 3L 3R 4
740 872 732 1095 38
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2.8 Exporting the coverage

If we wish to visualize the coverage of the reads on the genome in a genome
browser, we can use the rtracklayer package to export the coverage to a wig file.

> library(rtracklayer)

> names(cover) <- paste("chr", names(cover), sep="")

> export(cover["chr4"], con = "chr4.wig")

You can now visualize it in a genome browser of your choice. This is a
common way to assess if the raw data you are looking at agrees with the exper-
imental design that was performed. However, this is still far from being able to
normalize and call differential expression between different conditions, which is
usually the goal of RNA-seq experiments. For more information on the analysis
issues, see the DESeq[2] Bioconductor package.

3 De-multiplexing sample use case

Nowadays, NGS machines produces so many “raw” reads (40M for Illumina,
100M for SOLiD), that the coverage obtained per lane for the transcriptome of
“small” genome-sized organisms, is way too big. Therefore, techniques to have
several samples running as part of the same library have been created[5, 11],
using 6bp barcodes to uniquely identify the sample. This is called multiplexing
and one can today with an average Illumina GenomeAnalyzer GAIIx average
run, multiplex 12 yeast samples and even 2 drosophila samples in a single lane.
Actually, if the lane is very good (30M aligning reads), one can multiplex 4 of
them. This approach is very advantageous for researchers, especially in term of
costs, but it adds an additional layer of pre-processing that is not as trivial to
process as one would have thought. Extracting the barcodes is fairly straight-
forward, however the average 1 percent sequencing error rate introduces a lot
of multiplicity in the actual barcodes present in the samples and this needs
to be sorted out accordingly. A proper design of the barcodes, maximizing
the Hamming distance (http://en.wikipedia.org/wiki/Hamming_distance)
is an essential step for a proper de-multiplexing.

There are two kinds of barcoding, the one described in Lefrancois et al.
[5] where the barcode is part of the read sequence and the one developed by
Illumina, where the barcode is read in a separate sequencing reaction after the
first mate sequencing.

> alns <-

+ readAligned(system.file("extdata", "multiplex_export.txt.gz",

+ package = "CSAMA10"),

+ filter =

+ compose(chastityFilter(),

+ nFilter(2),

+ chromosomeFilter(regex = "chr[0-9]")),

+ type = "SolexaExport",

+ withAll = TRUE)

> indexes <- c("ACACTG", "ACTAGC", "ATGGCT", "TTGCGA")

> demultAlns <-

10

http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://en.wikipedia.org/wiki/Hamming_distance


+ demultiplex(alns, indexes=indexes, edit.dist=2, indexes.qty=4,

+ type="within")

4 You are done, but still there is more to come...

It is known that the standard Illumina RNA-seq protocol shows a bias in the
first 12 nucleotides of every read. It is still unclear where this bias comes from
(fragmentation, random hexamer priming, RNase H sequence specificity), but
there has been a couple of publication recently that proposes corrections for that
bias [6, 3]. We anticipate creating some Bioconductor functionality to correct
this bias in the near future.

5 Session Information

The version number of R[9] and packages loaded for generating the vignette
were:

> toLatex(sessionInfo())

• R version 2.11.1 Patched (2010-05-31 r52167), i386-apple-darwin9.8.0

• Locale: C/C/C/C/C/en_US.UTF-8

• Base packages: base, datasets, grDevices, graphics, methods, stats, tools,
utils

• Other packages: AnnotationDbi 1.10.1, BSgenome 1.16.5,
BSgenome.Hsapiens.UCSC.hg19 1.3.16,
BSgenome.Scerevisiae.UCSC.sacCer2 1.3.16, Biobase 2.8.0,
Biostrings 2.16.6, CSAMA10 0.0.3, DBI 0.2-5, EatonEtAlChIPseq 0.0.1,
GenomicFeatures 1.0.3, GenomicRanges 1.0.5, IRanges 1.6.8,
KEGG.db 2.4.1, RCurl 1.4-2, RSQLite 0.9-1, Rsamtools 1.0.5,
SNPlocs.Hsapiens.dbSNP.20090506 0.99.1, ShortRead 1.6.2,
biomaRt 2.4.0, bitops 1.0-4.1, chipseq 0.4.0, hgu95av2probe 2.6.0,
lattice 0.18-8, rtracklayer 1.8.1

• Loaded via a namespace (and not attached): XML 3.1-0, grid 2.11.1,
hwriter 1.2
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