
Pre-processing

Martin Morgan (mtmorgan@fhcrc.org)
Fred Hutchinson Cancer Research Center

28 January 2010

mailto:mtmorgan@fhcrc.org

Questions & platforms

I Expression
I Single channel (e.g., Affymetrix) – affy ; xps, aroma.affymetrix
I Two channel (e.g., Agilent / Genepix) – limma
I Bead array (e.g., Illumina) – lumi , beadarray
I Long oligo (Nimblegen) – oligo

I Array CGH

I Exon

I Methylation

I Genotyping, e.g., SNP

Full analysis possibilities: http:
//bioconductor.org/packages/release/Software.html

http://bioconductor.org/packages/release/Software.html
http://bioconductor.org/packages/release/Software.html

Work flow – expression arrays

Prior to analysis

I Biological experimental design

I Expression experimental design – especially two-channel

Analysis

1. Pre-processing (normalization); quality assessment;
exploratory analysis

2. Differential expression; machine learning (clustering and
classification)

3. Annotation

4. Gene set enrichment analysis

5. . . .

Pre-processing

Background correction

I One-channel: PM / MM probes

I Two-channel: background vs. foreground intentisities

Normalization

I Key assumption: most probes not differentially expressed;
distribution of intensities approxiamtely equal across arrays

Summarization

I One-channel: from probes to probesets (approxiamtely, genes)

One channel Affymetrix 3’ expression arrays

I In practice:

> ## assume phenoData is an AnnotatedDataFrame

> ## "/celfile/directory" contains CEL files

> setwd("/celfile/directory")

> library(affy)

> eset <- just.rma(phenoData=phenoData)

I Also: just.gcrma

I expresso for more flexible control; affyPLM for detailed
probe models; oligo for recent arrays.

I http://bioconductor.org/workflows for common
analyses.

http://bioconductor.org/workflows

Two channel expression arrays

I In practice, e.g., Genepix gpr files:

> ## create 'targets' from file names, phenotype data

> gpr <- list.files("/gpr/directory", "\\.gpr$",

+ full=TRUE)

> targets <- data.frame(FileName=gprFiles)

> library(limma)

> rg <- read.maimages(targets, source="genepix")

> ma <- normalizeWithinArrays(rg)

I Considerable flexiblity in data input, background correction,
within-array normalization.

I Default: ‘subtract’ background, ‘printtiploess’ normalization.

I Result: an MAList

Example: RMA (robust multi-chip average)

Background correction

I Observation: using MM probes is problematic when MM>PM.

I Model PM probes as expoentially distributed signal, plus
normal noise, exp(α) + N(µ, σ2).

Normalization

I Quantile normalization – force the distribution of
background-corrected expression values of each array to have
exactly the same distribution.

Summarization

I Estimate probeset effect by fitting a linear model to all probes
in each probe set, across array.

Quality assessment

I In practice:

> library(arrayQualityMetrics)

> rpt <- arrayQualityMetrics(abatch)

> ## or, as appropriate,

> ## rpt <- arrayQualityMetrics(eset)

> ## rpt <- arrayQualityMetrics(rg)

> browseURL(rpt)

I QC summary statistics: acceptable ranges for ‘control’ probes

I Between-array distances: no unintended association with
experimental conditions, e.g., run date.

I NUSE (normalized unscaled standard error) and RLE (relative
log expression) plots: consistent expression and variablity
across arrays.

Lab activity

I Chapter 3, sections 3.1 – 3.3.

I Goals: manipulating AffyBatch and ExpressionSet objects;
become familiar with R packages, including obtaining help;
understanding essentials of pre-processing and quality
assessment.

