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ESSAY

be able to learn the grammar of the genome. Each person’s genome tells 
slightly different stories, and fascination comes with the discovery of the 
differences in those stories. To cite from the original papers: “The sequence 
is only the fi rst level of understanding of the genome” and “Finally, it 
is has not escaped our notice that the more we learn about the human 
genome, the more there is to explore.”

Personal Genomes: For One and for All
Jun Wang
Executive Director, Beijing Genome Institute

Thanks to immense technological improvements in the 10 years since 
the draft of the fi rst human reference genome was published, we are 
now seeing the dawning of the personal genomics era. Breakthroughs 

in medical genomics and genomics-guided medicine allow 
ever deeper interpretation and application of 

the information contained in a personal 
genome. The accumulation of individ-

ual genomes with clearly documented 
phenotypes that are available for 
research signifi cantly facilitates such 
breakthroughs and discoveries. This 
virtuous circle is likely to spin faster 
in the coming years.

Although the benefits of a per-
sonal genome for the owner are clear, 

profi ling everyone’s DNA is mutually ben-
efi cial, acting with a strong network effect. 

Human populations are largely phylogeneti-
cally related as a result of recent population explosion. 

Considering that any two of us have common ancestry back to a certain 
point, people nearly always share a signifi cant fraction of genetic variation 
sites and allele types. Therefore, the health profi le and personal genetic 
information of one individual will, to a certain extent, provide clues to bet-
ter understand other’s genomes and their medical implications. In this 
sense, a personal genome is not only for one, but also for all humanity.

The Landscape of Human Evolution
Pardis Sabeti
Organismic and Evolutionary Biology, Harvard University, 

Cambridge, MA, USA 

In the pregenomic era, evolutionary genetics was a painstaking process. 
From observations of the natural world, scientists hypothesized instances 
of selection and sought confi rmation on a case-by-case basis. As of 2000, 

only a handful of such cases had been identifi ed. Technological and ana-
lytical advances in the past decade, however, have enabled us to prog-
ress from hypothesis-testing to hypothesis-generating science. Rather 
than examining single-candidate genes, we can scan the entire genome 
to identify variants under natural selection. In the initial phase of the 
postgenomic era, we have confi rmed earlier hypotheses of evolution for 
malaria resistance, skin pigmentation, and lactose tolerance, and we 
have identifi ed new adaptations for the formation of hair, resistance to 
trypanasomes, and response to high altitude. The challenge now is to 
uncover how hundreds of newly discovered candidate loci have shaped 
our evolution. In my laboratory’s own recent scans, we identifi ed more 
than 200 loci with strong evidence of selection. Of these, roughly half 
point to genes, and the other half point to large, intervening, noncod-
ing RNAs (lincRNAs), other regulatory elements, and many yet-unknown 
regions. It is intriguing that whole new adaptive pathways are coming into 
view, such as those regulating sensory perception and thermoregulation 
in Asia, and metabolism and infectious disease in all populations. In the 
next decade, scientists can look forward to investigating these pathways 
and many other new hypotheses being generated through genome scans 
to uncover the vast landscape of human evolution. 

My Genome, My Identity, My Health
Charmaine D. M. Royal
Associate Research Professor, Institute for Genome Sciences & Policy and 

Department of African and African American Studies, Duke University, 

Durham, NC, USA. 
As a genetic counselor and human geneticist, I am in awe of the human 
genome—the nucleus of our fi eld. Its potential to enlighten us about 
ourselves, our relationship to one another, and our place in the scheme 
of life makes it a distinctive reservoir for ground-breaking science and 
personal refl ection. 

Advances in genomics have taught us much about the biological 
underpinnings of disease. Nevertheless, the research itself is confi rming 
that genome sequence does not tell the full story about human health and 
illness. Indeed, individual and group differences are the result of many 
variables. What is my socioeconomic status? Where do I live? Do I have 
supportive social networks? Access to health care? How do others perceive 
and treat me? Humans are so much more than a genome! If we truly want 
to decipher disease mechanisms and practice personalized medicine to 
achieve optimal health, we must adopt a more holistic approach. 

Genomic research has also prompted new, and resurrected old, con-
versations about “race,” ancestry, ethnicity, and identity. The fi ndings 
that human genetic variation is primarily continuous and that living 
humans have not subdivided into biological races (subspecies) mean that C
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Differential expression for RNA-Seq

Wolfgang Huber 

Genome Biology Unit, EMBL Heidelberg 
and 

European Bioinformatics Institute Cambridge, UK



RNA-Seq



Two applications of  RNA-Seq

• Discovery
• find new transcripts
• find transcript boundaries
• find splice junctions

• Comparison
Given samples from different experimental conditions, 
find effects of the treatment on
• gene expression strengths
• isoform abundance ratios, splice patterns, transcript 

boundaries



Alignment

Should one align against the genome or the transcriptome?

against transcriptome

• easier, because no gapped alignment necesssary

but:

• risk to miss possible alignments!



Count data in HTS

• RNA-Seq

• Tag-Seq

Gene       GliNS1  G144    G166    G179    CB541   CB660
13CDNA73   4       0       6       1       0       5
A2BP1      19      18      20      7       1       8
A2M        2724    2209    13      49      193     548
A4GALT     0       0       48      0       0       0
AAAS       57      29      224     49      202     92
AACS       1904    1294    5073    5365    3737    3511
AADACL1    3       13      239     683     158     40
[...]

• ChIP-Seq

• Bar-Seq
• ...



Counting rules

• Count reads, not nucleotides

• Count each read at most once.

• Discard a read if

• it cannot be uniquely mapped

• its alignment overlaps with several genes

• the alignment quality score is bad

• (for paired-end reads) the mates do not map to 

the same gene
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• Discard a read if
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Challenges with count data from high-throughput 
sequencing

discrete, positive, skewed 

➡ no (log-)normal model

small numbers of replicates 

➡ no rank based or permutation methods

large dynamic range (0 ... 105)

➡ heteroskedasticity matters

sequencing depth (coverage) varies 
               between samples 

➡ ”normalisation”
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sequencing depth (library size) effect



Normalisation for library size

• If  sample A has been sampled deeper than sample B, we 

expect counts to be higher.

• Simply using the total number of  reads per sample is not a 

good idea; genes that are strongly and differentially 

expressed may distort the ratio of  total reads.

• By dividing, for each gene, the count from sample A by the 

count for sample B, we get one estimate per gene for the 

size ratio or sample A to sample B.

• We use the median of  all these ratios.

Anders & Huber, Genome Biology 2010 (DESeq package)



Sample-to-sample variation

comparison of  
two replicates

comparison of  
treatment vs control



The Poisson distribution

This bag contains many small balls, 10% 

of  which are red.

Several experimenters are tasked with 

determining the percentage of  red balls.

Each of  them is permitted to draw 50 

balls out of  the bag, without looking.



5 / 50  = 10%

4 / 50  =   8%

6 / 50  = 12%

11 / 50  =  22%



99/1000  = 9.9%

108/1000  = 
10.8%

100/1000  =   
10.0%

107 / 1000 = 
10.7%



Poisson distribution:
the uncertainty of  random sampling

expected number      standard deviation        relative error in estimate

     of  red balls        of  number of  red balls       for fraction of  red balls

              10                        √10 =     3.2                            1/√10 = 31.6%

            100                     √100 =   10.0                          1/√100 = 10.0%

         1,000                 √1,000 =   31.6                       1/√1,000 =   3.2%

       10,000              √10,000 = 100.0                     1/√10,000 =   1.0%

 



The Poisson distribution is used for 
counting processes
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Genetic Interactions
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(m̂, m̂�, ŵ) = argmin
�

ijk

|log ddijk − w −mi −mj|11

log dijk with ŵ + m̂i +
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Analysis method: ANOVA

Noise part

Systematic part

µij     expected count of region i in sample j
sj       library size effect
xkj     design matrix
βik    (differential) effect for region i
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� m̂�

j

DESeq

Nij ∼ Pois(µij)

Nij ∼ NB(µij,α(µij))

log µij = sj +
�

k

βikxkj

1

Analysis method: ANOVA

Noise part

Systematic part

µij     expected count of region i in sample j
sj       library size effect
xkj     design matrix
βik    (differential) effect for region i

Genetic Interactions

dij = ω µi µj

(m̂, m̂�, ŵ) = argmin
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For Poisson-distributed data, the variance is equal to the mean. 

No need to estimate the variance. This is convenient.

E.g. Marioni et al. (2008), Wang et al. (2010), Bloom et al. 
(2009), Kasowski et al. (2010), Bullard et al. (2010), ...



For Poisson-distributed data, the variance is equal to the mean. 

No need to estimate the variance. This is convenient.

E.g. Marioni et al. (2008), Wang et al. (2010), Bloom et al. 
(2009), Kasowski et al. (2010), Bullard et al. (2010), ...

Really?
Are HTS count data Poisson
distributed?

To figure this out, we have to 
take a closer look at 
replicates and the nature of 
the noise in the data.
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Consistent 
with Poisson

Much larger 
than Poisson
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So we need a better model

data are discrete, positive, skewed 
➡ no (log-)normal model

small numbers of replicates 
➡ no rank based or permutation methods
➡ want to use parametric stochastic model to infer tail 
behaviour (approximately) from low-order moments (mean, 
variance)

large dynamic range (0 ... 105)
➡ heteroskedasticity matters



Model building block I: the negative-binomial distribution

overdispersion
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The NB distribution is used when the rate of 
a Poisson process is itself randomly varying

Biological sample to sample 
variability Γ

Poisson counting statistics Λ

Overall distribution NB

NB(µ, σ2 + µ)  =  Λ(Γ( µ, σ2)) 

⇓
⇓
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Model building block II: variance regularisation and local 
regression on the mean

O

O
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Modelling Variance

To assess the variability in the data from one gene, we have
•the observed standard deviation for that gene

•that of all the other genes
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βik    (differential) expression effects for gene i
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Generalised linear model of the 
negative binomial family with 
smooth dispersion-mean relation α



The DESeq package

average per-gene count

Anders and Huber, Genome Biol. 2010

Negative binomial error modeling with intensity dependent 
dispersion 



Type-I error control

comparison of  
two replicates

comparison of  
treatment vs control



Two component noise model aids 
experimental design

Large counts

Biological noise 
dominant

Improve power:
more biol. 
replicates

var   =    μ   +   c μ2

 

shot noise (Poisson)       biological noise 

Small counts

Sampling noise 
dominant

Improve power:
deeper coverage

average per-gene count



Conclusions I

• Proper estimation of variance between biological 
replicates is vital. Using Poisson variance is incorrect.
• Estimating variance-mean dependence with local 

regression works well for this purpose.
• The negative-binomial model allows for a powerful test 

for differential expression.

• S. Anders, W. Huber: “Differential expression analysis for 
sequence count data”, Genome Biol 11 (2010) R106
• Software (DESeq) in Bioconductor.



Alternative splicing

So far, we counted reads in genes.

To study alternative splicing, reads have to be assigned to 
transcripts.

This introduces ambiguity, which adds uncertainty.

Current tools (e.g., cufflinks) allow to quantify this uncertainty.

However: To assess the significance of differences to isoform 
ratios between conditions, the assignment uncertainty has to 
be combined with the noise estimates.

This is not yet possible with existing tools.



Regulation of  isoform abundance

• In higher eukaryotes, most genes have several isoforms.
• RNA-Seq is better suited than microarrays to see which 

isoforms are present in a sample.
• This opens the possibility to study regulation of isoform 

abundance ratios, e.g.: Is a given exon spliced out more 
often in one tissue type than in another one? 

•DEXSeq, a tool to test for differential exon usage in RNA-
Seq data - see labs.



Data set used to demonstrate DEXSeq

Drosophila melanogaster S2 cell cultures:

• control (no treatment):
4 biological replicates (2x single end, 2x paired end)

• treatment: knock-down of  pasilla (a splicing factor)
3 biological replicates (1x single end, 2x paired end)



Alternative isoform regulation

Data: Brooks et al., Genome Res., 2010



Exon counting bins



Exon counting bins



Count table for a gene
number of reads mapped to each exon (or part of exon) in gene msn:

    treated_1 treated_2  control_1  control_2
E01       398       556        561        456
E02       112       180        153        137
E03       238       306        298        226
E04       162       171        183        146
E05       192       272        234        199
E06       314       464        419        331
E07       373       525        481        404
E08       323       427        475        373
E09       194       213        273        176
E10        90        90        530        398    <--- !
E11       172       207        283        227
E12       290       397        606        368    <--- ?
E13        33        48         33         33
E14         0        33          2         37
E15       248       314        468        287
E16       554       841       1024        680
[...]





Model

counts in gene i, 
sample j, exon l

dispersionsize 
factor

expression 
strength in 
control

fraction of  
reads falling 
onto exon l in 
control

change to 
fraction of  reads 
for exon l due to 
treatment

change in 
expression due to 
treatment



Model, refined

expression 
strength in 
sample j

fraction of  
reads falling 
onto exon l in 
control

change to 
fraction of  reads 
for exon l due to 
treatment



Model, refined

expression 
strength in 
sample j

fraction of  
reads falling 
onto exon l in 
control

change to 
fraction of  reads 
for exon l due to 
treatment

further refinement: 
fit an extra factor for 
library type (paired-
end vs single)



Dispersion estimation

• Standard maximum-likelihood estimate for dispersion parameter has 

(unacceptably) strong bias in the case of  small sample size.

• A method-of-moments estimator (as used in DESeq) cannot be used 

due to crossed factors.

• We adapt the solution from the recent edgeR: Cox-Reid conditional-

maximum-likelihood estimation (edgeR: Robinson, McCarthy, Smyth 

(2010))



Dispersion estimation

Small sample size, so some data sharing is necessary to get power.

• one value fits all?

• one value for each gene?
• one value for each exon?



Dispersion vs mean



RpS14a (FBgn0004403)



Conclusion II

• Counting within exons and NB-GLMs allows studying isoform 

regulation.

• Proper statistical testing allows to see whether changes in 

isoform abundances are just random variation or may be 

attributed to changes in tissue type or experimental condition.

• Testing on the level of  individual exons gives power and might be 

a helpful component for the study of  alternative isoform 

regulation.



Alternative exon expression detected by ANOVA - GLM 

CG16973 (misshappen)
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