EMBL Advanced Course RNA-Seq and ChiP-Seq Data

Nicolas Delhomme, June 20th-22nd 2011, Heidelberg

Outline

- Sequence alignment
- Aligners
- Recent development
- Aligners' usage
- Alignment pitfall
- Bioconductor

Who are we?

- Me:
 - Staff member of the Functional Genomic Center
 - Genome Biology Unit, EMBL, Heidelberg
 - co-directed by Eileen Furlong and Lars Steinmetz
 - Position 50% service, 50% research
 - service: establishment of a LIMS and pre-processing system for NGS data
 - research: analyses of NGS data of various kinds: RNAseq, TagSeq, ChIPseq (TF and Histones) and *de-novo* assembly, mainly using R
- You:
 - your aligner's knowledge?

Sequence alignment

- Two main approaches:
 - based on hash table
 - spaced seeds
 - based on suffix/prefix tries
 - Burrows-Wheeler transform (BWT)
- Reviewed in Li and Homer: A survey of sequence alignment algorithms for next-generation sequencing.
 Briefings in Bioinformatics (2010)

Suffix/Prefix Tries

Aligners

Program	Algorithm	SOLiD	Long ^a	Gapped	PE ^b	Q°
Bfast	hashing ref.	Yes	No	Yes	Yes	No
Bowtie	FM-index	Yes	No	No	Yes	Yes
BWA	FM-index	Yes ^d	Yes ^e	Yes	Yes	No
MAQ	hashing reads	Yes	No	Yesf	Yes	Yes
Mosaik	hashing ref.	Yes	Yes	Yes	Yes	No
Novoalign ^g	hashing ref.	No	No	Yes	Yes	Yes

Table I: Popular short-read alignment software

^aWork well for Sanger and 454 reads, allowing gaps and clipping. ^bPaired end mapping. ^cMake use of base quality in alignment. ^dBWA trims the primer base and the first color for a color read. ^eLong-read alignment implemented in the BWA-SW module. ^fMAQ only does gapped alignment for Illumina paired-end reads. ^gFree executable for non-profit projects only.

Aligners c'ed

- 20 aligners published in the last 2 years
- Most deal with short reads
- some of those with ABI specific "color-space"
- A large scale study comparing them is underway:
 - GSNAP: <u>http://research-pub.gene.com/gmap/</u> is the most efficient so far (personal communication, Paul Bertone, EBI)

Recent developments

- gapped alignment
 - Recent aligners are able to perform gapped alignments
 - small indels
 - no splicing events with large introns
 - BWA, Novoalign
- bisulfite sequencing
 - unmethylated C are converted to T (G complement converted to A)
 - 2 references
 - one with all C converted to T
 - one with all G converted to A
 - C-T mismatch or G-A mismatch are ignored
 - results from both alignments are combined

What aligner for my data?

- The choice of aligner depends on the data at hands (too late!)
- "Early": it should be decided when planning the experiment
- What criteria?
 - do you always need paired end reads?
 - do you need gap alignments?

Using read quality

- lower penalty for base with lower qualities
- quality recalibration helps

Alignment usage summary

- gapped alignment for very short reads (25-36bp) is computationally challenging
 - gapped align. have a better sensitivity, same error rate
 - important for indels and SNPs
 - impact not analyzed for ChIP-Seq or RNA-Seq
- paired end alignment always outperform single end alignment
- Next tools to come:
 - multi-genome alignment (1000 genomes project, Drosophila population genomics project, 1001 genomes project...)

Aligner's usage, an example

- What is the impact of unique alignments?
- Approach:
 - MAQ policy: keep one alignment per read
 - strict policy: keep only reads with a single alignment
- How to assess the differences?
 - comparing MAQ, strict and (MAQ strict)
- Data
 - ChIP-Seq of an histone mark: K27Ac

12,831,967 : 12,9	913,606							
⊖ Ř Track	R Track (0, 68.979)	ومنع بروم والافترام والروم والروم والمعارض والم	A	on the wet with the second second file was			and the second	مر میں
R Track	R Track (-6.506, 68.979)							
R Track	R Track (0, 68.979)							
refseq (+)				Channa an Chaigh Shah an Mhair gu na muna agu na an Mhainnean Mhainn an Shahan an Sh				
Coordinates	30,000 12,840,000	12,850,000	12,860,000	12,870,000	12,880,000	12,890,000	12,900,000	12,910,0
refseq (-)						12.891.118		

Most are harmless: repetitive region small

or wide

Few result in loss of information

Most of these are very repeated elements: Histone cluster

Protein kinase involved in spermatogenesis

21,451,489 : 21,51	5,196		0			
R Track	R Track (0, 68.979)					
R Track	R Track (-6.506, 68.979)			_h		
R Track	R Track (0, 68.979)					
refseq (+)						
Coordinates	50,000 21,460,000	21,470,000	21,480,000	21,490,000	21,500,000	21,510,000
refseq (-)	21.467.	CG14476	CG32829 CG32829 CG32829 CG32829 CG32829 CG32829	CG33502 CG32820 CG33502 CG32500 CG17450 CG32500 CG32857 CG32819 CG32857 CG32820 CG32820 CG32500	DIP1 DIP1 DIP1 DIP1 DIP1	

or unknowm...

Extremely few are not clusters.

Unique alignment summary

- Always important to assess the aligner's effect as every aligner introduces technical biases!
- In that example, using the strict policy should
 - simplify the peak calling
 - reduces the false positives in downstream analyses
 - has only a few side-effects (redo with a gene mark?)
- Additional information to be extracted and used downstream
 - For visualization, use a mappability track
 - Filter the annotation not to introduce false negatives in the analyzes

Another caveat: what reference?

- How close is your sample's genome to the published available reference one?
- Specific kind of data, such as RNA-Seq:
 - genome or transcriptome?
 - what about novel exon-exon junctions?

Reference modification

Unmapped reads (170M, 15% of total)

Personalized reference

0.20 Identify SNPs and indels Human.GRC37.2 Homo SNP & Indels.injected Human.orphan.contigs All.bacteria All.viruses Inject them into the 0.15 "reference" genome Density 0.10 • A "personalized" genome that rescues "only" ~4% Re-unmapped reads Re-mapped reads of unmapped reads 0.05 but significantly reduces 0.00 false positive SNPs 50 100 150 200

Alignment quality

Xing Xiaobin EMBL

Technical artifact or amazing new biology?

- A recent paper that spills a lot of taint:
 - Li et al. Widespread RNA and DNA Sequence Differences in the Human Transcriptome. Science (2011)
 - Major critics (Joe Pickrell):
 - <u>http://www.genomesunzipped.org/2011/05/notes-on-the-evidence-for-extensive-rna-editing-in-humans.php</u>

What they did

- Compare RNA and DNA from matched samples
 - observe numerous events where RNA != DNA
 - process known as RNA editing
 - known in human:
 - an enzyme convert A into I (Inosine) recognized as a G during translation
 - another less frequently observed event frmo another enzyme:

• C -> U

• BUT they observe all possible conversions!

What might be

- They use reads aligning uniquely to the genome.
- The main point can be summarized like this: RNA editing involves the production of two different RNA and/or protein sequences from a single DNA sequence. To infer RNA editing from the presence of two different RNA and/or protein sequences, then, one must be very sure that they derive from the same DNA sequence, rather than from two different copies of the DNA (due to, for example, <u>paralogs</u> or <u>copy number variants</u>).

Gene	Chr	Position (bp)*	Туре	No. of informative individuals ^{†*}	No. of individuals with RDD	Average level ^{‡*} [range]	EST
HSP90AD1	0	44,320,823	A-to-C	11	0	0.39 [0.15, 0.79]	BQ355193 (head neck), BX413896 (B cell)
AZIN1	8	103,910,812	A-to-G	17	10	0.22 [0.12, 0.37]	CD359333 (testis), BF475970 (prostate)
CNBP	3	130,372,912	A to T	18	16	0.13 [0.10, 0.21]	EL055100 (eye), BJ005106 (hepateblastema)
MYLE	12	54,841,626	C to A	16	16	0.35 [0.12, 0.60]	EC406428 (prestate), BG030232 (breast adenocarcinema)
RBM23	14	22,440,217	C-to-G	11	5	0.18 [0.11, 0.35]	BO232763 (testis, embryonic)
RPI 23	17	34,263,515	C-to-T	12	8	0 16 [0 10, 0 22]	BP206252 (smooth muscle), CK128791 (embryonic stem
							cell)
BLNK	10	97,957,645	G-to-A	14	7	0.14 [0.11, 0.17]	BF972904 (leiomyosarcoma), BE881159 (lung carcinoma)
O17orf70	17	77,117,583	C to C	2	2	0.26 [0.24, 0.28]	AA625546 (melanocyte), AA564870 (prestate)
HMGN2	1	26,674,340	C to T	7	4	0.22 [0.14, 0.43]	BX388386 (neuroblastema), BE001308 (breast)
CANX	5	179,090,533	T to A	0	8	0.20 [0.13, 0,30]	EL050052, DB558106
EIFOK	19	43,819,430	T-to-C	10	14	0.16 [0.10, 0.27]	AI250201 (ovarian careinema), AI345303 (lung careinema)
RPL37	5	40,871,072	T-to-G	0	0	0.27 [0.10, 0.45]	CF124792 (T cell), DW459229 (liver)

Table 1. Selected examples of sites that show RNA-DNA Differences in B-cells and EST clones.

* hg18 build of the human genome

^ B-cells

 \dagger RNA-Seq \ge 10 reads, DNA-Seq \ge 4 reads

‡ Calculated by tallying RNA-Seq reads that contain RDD and those that do not.

More pleasant news

- Bioconductor offers many new possibilities including:
 - pattern matching,
 - pairwise alignment,
 - SNPs injection

. . .

The Biostrings package

 All the classes in that package derives from the XString class

```
> library(Biostrings)
> getClass("XString")
Virtual Class "XString" [package "Biostrings"]
Slots:
Name:
                shared
                                 offset
                                                 length elementMetadata
                                                                             elementType
                                                                                                metadata
             SharedRaw
Class:
                                                                               character
                                                                                                    list
                                integer
                                                integer
                                                                     ANY
Extends:
Class "XRaw", directly
Class "XVector", by class "XRaw", distance 2
Class "Sequence", by class "XRaw", distance 3
Class "Annotated", by class "XRaw", distance 4
Known Subclasses: "BString", "DNAString", "RNAString", "AAString"
>
```

- There are 4 subclasses:
 - BString: store strings without alphabet
 - *DNAString*: store strings with an DNA alphabet
 - RNAString: store strings with an RNA alphabet
 - AAString: store strings with an Amino Acid alphabet

XString Methods

- Basic utilities
 - subsequence selection
 - subseq, Views, narrow (XStringSet, IRanges package)
 - letter frequencies
 - alphabetFrequency, *di*nucleotideFrequency (*tri..., oligo...*), uniqueLetters
 - letter consensus
 - consensusMatrix, consensusString
 - letter transformation
 - reverse, complement, reverseComplement, translate, chartr
 - Input / Output
 - read.DNAStringSet (...B..., ...RNA..., ...AA...)
 - write.XStringSet, save.XStringSet

XString Methods (c'ed)

- Advanced:
 - alignment utilities
 - pairwiseAlignment, stringDist
 - string matching
 - matchPDict (on a reference or a reference set (v))
 - (v)matchPDict, (v)countPDict, (v)whichPDict
 - matchPattern
 - (v)matchPattern, (v)countPattern, neditStartingAt, neditEndingAt, (which.)isMatchingStartingAt, (which.)isMatchingEndingAt
 - matchPWM
 - matchPWM, countPWM
 - others
 - matchLRPatterns, trimLRPatterns, matchProbePair, findPalindromes, findComplementedPalindromes

Example 4: String Matching

Match counting

```
> data(phiX174Phage)
> phiX174Phage
  A DNAStringSet instance of length 6
    width sea
                                                                                                           names
[1] 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGA.
                                                                                      TTGGCGTATCCAACCTGCA Genbank
[2] 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGA.
                                                                                      TTGGCGTATCCAACCTGCA RF70s
[3] 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGA.
                                                                                      TTGGCGTATCCAACCTGCA SS78
[4] 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGA.
                                                                                      TTGGCGTATCCAACCTGCA Bull
[5] 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGA.
                                                                                      TTGGCGTATCCAACCTGCA G97
F67 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGA. TTGGCGTATCCAACCTGCA NEB03
> genome <- phiX174Phage[["NEB03"]]</pre>
> negPhiX174 <- reverseComplement(srPhiX174)</pre>
> posCounts <- countPDict(PDict(srPhiX174), genome)</pre>
> negCounts <- countPDict(PDict(negPhiX174), genome)</p>
> table(posCounts, negCounts)
         negCounts
posCounts
             0
        0 1030
        1
           83
```

```
>
```

- So we have 1030 reads that do not align either way to the genome and only 83 aligning (and don't ask me why...).
- The match locations can be found using:

> matchPDict(PDict(srPhiX174[posCounts > 0]), genome)
MIndex object of length 83

Example 5: Pairwise alignment

alignment scores

```
> posScore <- pairwiseAlignment(srPhiX174, genome,
+ type = "global-local", scoreOnly = TRUE)
> negScore <- pairwiseAlignment(negPhiX174, genome,
+ type = "global-local", scoreOnly = TRUE)
which(pmin(posScore) < pmin(negScore))
> which(pmin(posScore) < pmin(negScore))
[1] 932
>
```

alignment

```
> pairwiseAlignment(srPhiX174[932], genome,type = "global-local")
Global-Local PairwiseAlignedFixedSubject (1 of 1)
pattern: [1] GCAATAACCTTGCGAGTCATTTCTTTGATTTGGTC
subject: [2804] GCAATAATGTTTATGTTGGTTTCATGG-TTTGGTC
score: -33.31176
> pairwiseAlignment(negPhiX174[932], genome,type = "global-local")
Global-Local PairwiseAlignedFixedSubject (1 of 1)
pattern: [1] GACCAAATCAAAGAAATGACTCGCAAGGTTATTGC
subject: [3666] GACCAAATCAAAGAAATGACTCGCAAGGTTAGTGC
score: 61.4804
>
```


The next level

- Biostrings offers tools to deal with biologically meaningful intervals and objects.
- Many organism have been sequenced and their genome is known.
- An interface in R to easily access and manipulate such information: the **BSgenome** package.

BSgenome

 It is not just a data package; it leverages the functionalities introduced in **Biostrings**.

BSgenome methods

- Sequence selection
 - [[, \$
- Subsequence selection
 - getSeq
- Accessors
 - length,names/seqnames, mseqnames, seqlengths, masknames, sourceUrl
- Matching
 - all Biostrings methods
- SNPs
 - injectSNPs, SNPlocs_pkgname, SNPcount, SNPlocs

Extending Biostrings: example 1

Applying the Biostrings matching functions:

```
> exclude <- setdiff(seqnames(Hsapiens), c("chr1", "chr2"))</pre>
> vcountPattern("ACYTANCAGT", Hsapiens,
+ fixed = c(pattern = FALSE, subject = TRUE),
+ exclude = exclude)
  segname strand count
     chr1
               + 1546
1
2
     chr1
               - 1545
3
     chr2
             + 1722
4
     chr2
            - 1684
> vmatchPattern("ACYTANCAGT", Hsapiens,
+ fixed = c(pattern = FALSE, subject = TRUE),
+ exclude = exclude, asRangedData = FALSE)
GRanges with 6497 ranges and 0 elementMetadata values
                                ranges strand
       segnames
          <Rle>
                             <IRanges> <Rle>
                                                1
           chr1
                    [ 361581, 361590]
                                                1
   [1]
                                            ÷
   [2]
           chr1
                    [1738000, 1738009]
                                                1
                    [1814381, 1814390]
   [3]
           chr1
                                                1
                                            +
   [4]
           chr1
                    [1876408, 1876417]
                                               1
                                            +
   [5]
           chr1
                    [1878327, 1878336]
                                               1
                                            +
   [6]
           chr1
                    [2084437, 2084446]
                                                +
   [7]
           chr1
                    [2976788, 2976797]
                                                1
                                            +
```


Example 2

• Using a Pattern Dictionary, e.g. a librar

					,	0	> mato	hedProbes	s <- probes	[whic	hMatch]	
~\	10	f mi	icroa	rrav	nrot	100	> mato	hedProbes	5			
2	γU	1 1 1 1		iiiay	pior	100	A DN	AStringSe	et instance	of 1	ength 15	
-				-	-		w	idth seq				
	> 11	brary(hg	u95av2pro	obe)			[1]	25 TGG	CTCCTGCTGAG	GTCCC	CTTTCC	
	> pro	obes <-	DNAString	Set(hgu95	av2probe\$s	equence[1:100])	[2]	25 GGCT	TGTGAATTCCT	GTACA	TATTTC	
	> pro	obes[1:1	.0]				[3]	25 GCT1	TCAATTCCATT	ATGTT	TTAATG	
	A	DNAStrin	gSet inst	ance of 1	ength 10		[4]	25 GCCC	GTTTGACAGAG	CATGC	TCTGCG	
		width s	seq				[5]	25 TGA	CAGAGCATGCT	CTGCG	TTGTTG	
	[1]	25 1	GGCTCCTGC	TGAGGTCCC	CTTTCC		[6]	25 CTC	TGCGTTGTTGG	TTTCA	CCAGCT	
	[2]	25 0	GCTGTGAAT	TCCTGTACA	TATTTC		[7]	25 GGT	TTCACCAGCTT	CTGCC	CTCACA	
	[3]	25 0	GCTTCAATTC	CATTATGTT	TTAATG		[8]	25 TTC	TGCCCTCACAT	GCACA	GGGATT	
	[4]	25 0	GCCGTTTGAC	AGAGCATGO	TCTGCG		[9]	25 CCT	CACATGCACAG	GGATT	TAACAA	
	[5]	25 T	GACAGAGCA	TGCTCTGCG	TTGTTG		[10]	25 TCC	TTGGTACTCTG	СССТС	CTGTCA	
	[6]	25 0	TCTGCGTTG	TTGGTTTCA	CCAGCT		[11]	25 TGC	CCTCCTGTCAG	TAGTG	GCAGGA	
	[7]	25 0	GTTTCACCA	GCTTCTGCC	CTCACA		[12]	25 ATC	TATTGGCATAT	TCGGG	AGCTTC	
	[8]	25 1	TCTGCCCTC	ACATGCACA	GGGATT		[13]	25 ATT	CGGGAGCTTCT	TAGAG	GGATGA	
	[9]	25 0	CTCACATGO	ACAGGGATT	TAACAA		[14]	25 AAG	ATTTCTGGCAG	TGTGG	GATGGA	
	[10]	25 1	CCTTGGTAC	TCTGCCCTC	CTGTCA		[15]	25 CAG	CCTTCCATGTT	CATTT	GTCTAC	
	> co	unts <-	vcountPDi	ct(probes	, Hsapiens	, exclude=exclude)	> mato	hLocs <-	matchPDict	(PDic	t(matchedProbes),Hsapiens\$d	chr2)
	> co	unts					> mato	hLocs				
	Data	Frame wi	th 400 ro	ows and 4	columns		MIndex	object o	of length 1	5		
		seqname	strand	index o	ount		> extr	actAllMat	tches(Hsapi	ens\$c	hr2, matchLocs)	
		<rle></rle>	<rle> <i< td=""><td>nteger> <</td><td>Rle></td><td></td><td>View</td><td>s on a 24</td><td>43199373-le</td><td>tter</td><td>DNAString subject</td><td></td></i<></rle>	nteger> <	Rle>		View	s on a 24	43199373-le	tter	DNAString subject	
	1	chr1	+	1	0		subjec	t: NNNNN	NNNNNNNNNN	NNNNN	NNNNNNNNNNNNN NNNNNNNNN	INNNN
	2	chr1	+	2	0		views:					
	3	chr1	+	3	0			start	end	width		
	4	chr1	+	4	0		[1] 1	13420812	113420836	25	TGGCTCCTGCTGAGGTCCCCTTTCC	2]
	5	chr1	+	5	0		[2] 1	13420842	113420866	25	[GGCTGTGAATTCCTGTACATATTTC	2]
	6	chr1	+	6	0		[3] 1	13420884	113420908	25	[GCTTCAATTCCATTATGTTTTAATC	3]
	7	chr1	+	7	0		[4] 1	13420962	113420986	25	[GCCGTTTGACAGAGCATGCTCTGCC	3]
	8	chr1	+	8	0		[5] 1	13420968	113420992	25	TGACAGAGCATGCTCTGCGTTGTTC	5]
	9	chr1	+	9	0		[6] 1	13420980	113421004	25	[CTCTGCGTTGTTGGTTTCACCAGCT	[]
							[7] 1	13420992	113421016	25	[GGTTTCACCAGCTTCTGCCCTCACA	4]
	392	chr2	-	92	0		[8] 1	13421004	113421028	25	[TTCTGCCCTCACATGCACAGGGATT	[]
	393	chr2	-	93	0		[9] 1	13421010	113421034	25	[CCTCACATGCACAGGGATTTAACAA	A]
	394	chr2	2-33	94	0		[10] 1	13421082	113421106	25	[TCCTTGGTACTCTGCCCTCCTGTC/	A]
	395	chr2	1.00	95	0		[11] 1	13421094	113421118	25	TGCCCTCCTGTCAGTAGTGGCAGG	4]
	396	chr2	1000	96	0		[12] 1	13421118	113421142	25	[ATCTATTGGCATATTCGGGAGCTTC	[]
	397	chr2	-	97	0		[13] 1	13421130	113421154	25	EATTCGGGAGCTTCTTAGAGGGATGA	4]
	398	chr2	-	98	0		[14] 1	13421274	113421298	25	[AAGATTTCTGGCAGTGTGGGATGGA	4]
	399	chr2	-	99	0		[15] 1	13421340	113421364	25	[CAGCCTTCCATGTTCATTTGTCTAG	[]
	400	chr2	-	100	0		>					

>

> whichMatch

> whichMatch <- seqselect(counts\$index, counts\$count>0)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

Example 3

A new interesting feature is the possibility to inject SNPs!

Recent

> Bi Ch [1 [3	available.SNPs() oC_mirror = http://bio ange using chooseBioCm] "SNPlocs.Hsapiens.db] "SNPlocs.Hsapiens.db	<pre>> SNPlo [1] "SN > SNPco chr1 020222</pre>	Plocs_pkgr Plocs.P	name(Hs Isapien VithSNP chr3	withSNP s.dbSNP s) chr4	s) .2009050 chr5	chr6	chr7	chr8	chr9		
[5] "SNPlocs.Hsapiens.db	SNP.20101109"		chr12	chr13	chr14	chr15	chr16	chr17	chr18	chr19	chr20
>	library("SNPlocs.Hsapi	ens.dbSNP.2009	0506")	558759	427010	365742	331501	354239	316396	322866	268235	323041
>	HSWITHSNPS <- INJECTSN	Ps(Hsapiens,"S	NPLOCS.HSapiens.abSNP.20090506")	chrX	chrY							
Hu	ISWITTISNES			391414	6539							
1	and genome			> alphabetFrequency(Hsapiens\$chr1)								
i	organism: Homo saniens	(Human)			Α	С	G	1		м	R	W
i	provider: UCSC	Critaniariy		6557089	47024	4412 47	016562	65668756	5	0	0	0
i	provider version: ha19				Y	K	V	ŀ	ł	D	В	N
i	release date: Feb. 200	9			0	0	0	0)	0	0	0
i	release name: Genome R	eference Conso	rtium GRCh37		+							
i	with SNPs injected fro	m package: SNP	locs. Hsapiens. dbSNP. 20090506		0							
i		provide the second		> alphabetFrequency(HsWithSNPs\$chr1)								
i	single sequences (see	'?seanames'):			A	C	G	1	r	м	R	W
i	chr1	chr2	chr3	6530615	46833	3464 46	825359	65403357	404	177 1	50327	40710
1	chr4	chr5	chr6		Y	К	V	ŀ	1	D	B	N
1	chr7	chr8	chr9	15011	4:	1304	102527	125770	1263	323 10	02322	410
1	chr10	chr11	chr12		+							
1	chr13	chr14	chr15		0							
				>								

Acknowledgments

- Lars Steinmetz and his lab, especially:
 - Jonathan Landry
 - Julien Gagneur
 - Xing Xiaobin
- Eileen Furlong and her lab, especially:
 - Charles Girardot
- Wolfang Huber and his lab, especially:
 - Simon Anders
- Vladimir Benes and his Gene Core facility:
 - Tobias Rausch
 - Jonathon Blake

