Differential expression analysis for sequencing count data

Simon Anders

Two applications of RNA-Seq

• Discovery

- find new transcripts
- find transcript boundaries
- find splice junctions

Comparison

Given samples from different experimental conditions, find effects of the treatment on

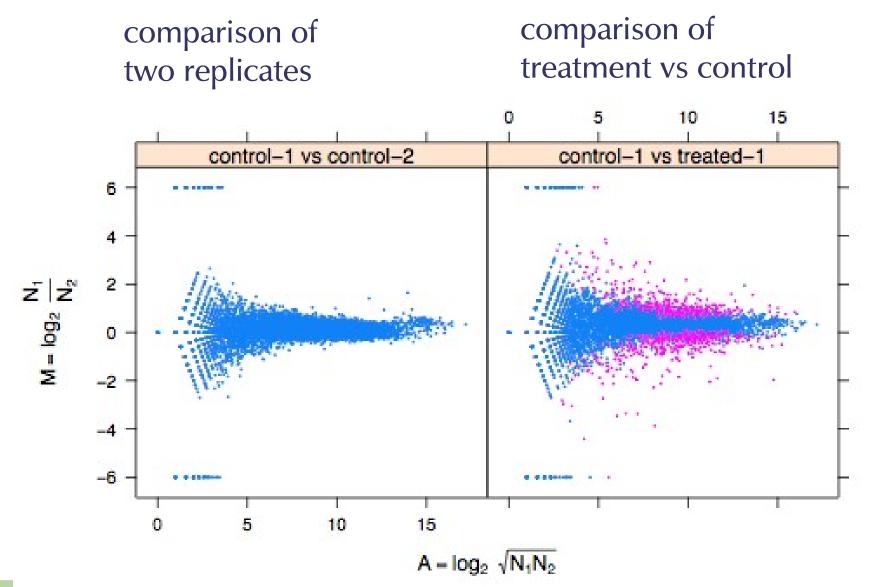
- gene expression strengths
- isoform abundance ratios, splice patterns, transcript boundaries

Count data in HTS

Gene	GliNS 1	G144	G166	G179	CB541	CB660
13CDNA73	4	0	6	1	0	5
A2BP1	19	18	20	7	1	8
A2M	2724	2209	13	49	193	548
A4GALT	0	0	48	0	0	0
AAAS	57	29	224	49	202	92
AACS	1904	1294	5073	5365	3737	3511
AADACL1	3	13	239	683	158	40
[]						

- RNA-Seq
- Tag-Seq
- ChIP-Seq
- HiC
- Bar-Seq

Sample-to-sample variation



Sample-to-sample variability

- In RNA-Seq, the minimum variance given by the Poisson distribution.
- Taking only Poisson noise into account is insufficient, though.
- Many publications ignore this.

Differential expression: Two questions

Assume you use RNA-Seq to determine the concentration of transcripts from some gene in different samples. What is your question?

1. "Is the concentration in one sample different from the expression in another sample?"

Oľ

2. "Can the difference in concentration between treated samples and control samples be attributed to the treatment?"

"Can the difference in concentration between treated samples and control samples be attributed to the treatment?"

Look at the differences between replicates? They show how much variation occurs without difference in treatment.

Could it be that the treatment has no effect and the difference between treatment and control is just a fluctuation of the same kind as between replicates?

To answer this, we need to assess the strength of this sample noise.

Replicates

Two replicates permit to

• globally estimate variation

Sufficiently many replicates permit to

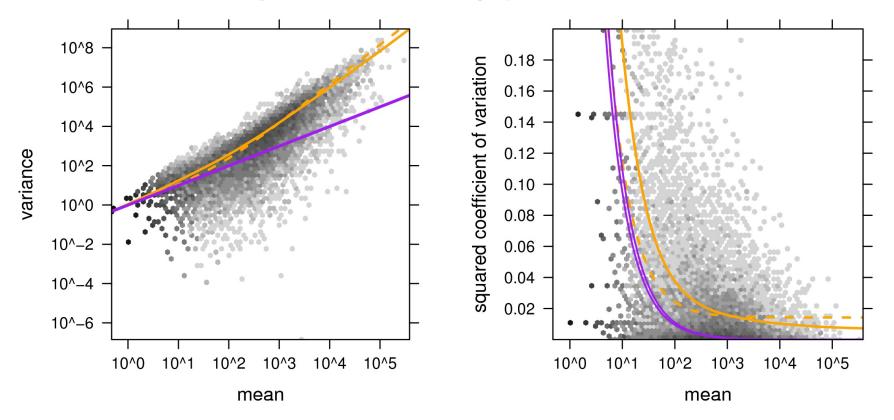
- estimate variation for each gene
- randomize out unknown covariates
- spot outliers
- improve precision of expression and fold-change estimates

Replicates should differ in *all* aspects in which control and treatment samples differ, except for the actual treatment.

Estimating noise from the data

- If we have many replicates, we can estimate the variance for each gene.
- With only few replicates, we need an additional assumption. We use: "Genes with similar expression strength have similar variance."

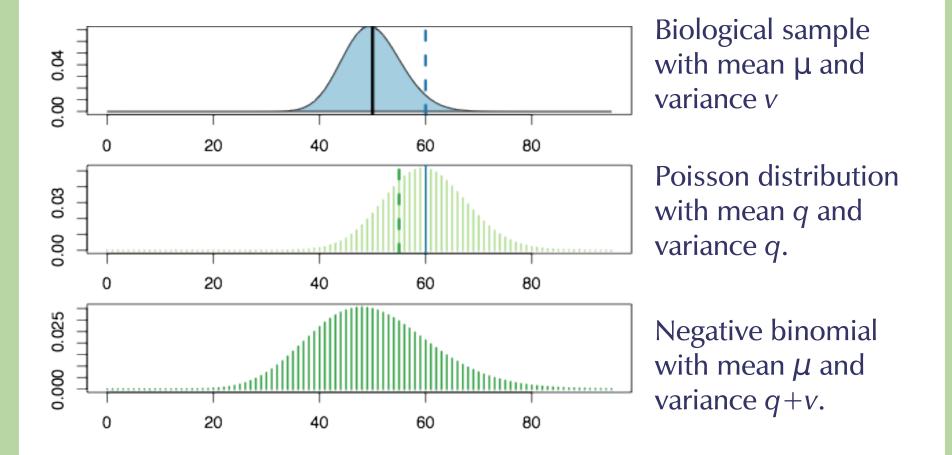
Variance depends strongly on the mean



Variance calculated from comparing two replicates

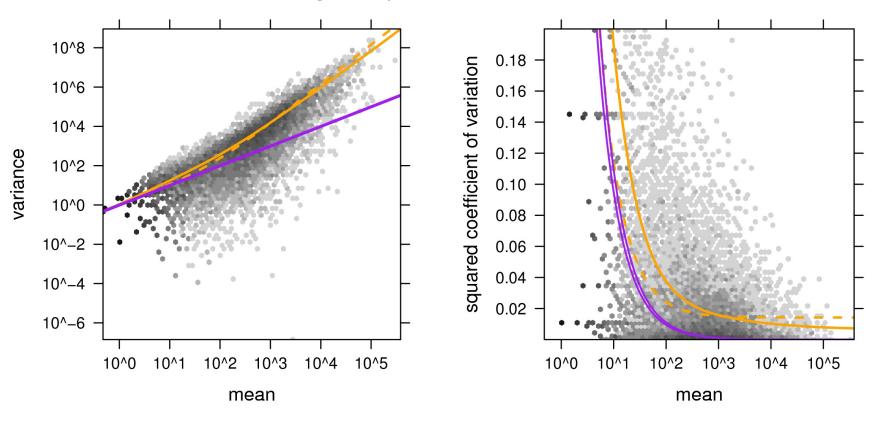
Poisson $v = \mu$ Poisson + constant CV $v = \mu + \alpha \mu^2$ Poisson + local regression $v = \mu + f(\mu^2)$

The NB distribution from a hierarchical model



Model fitting

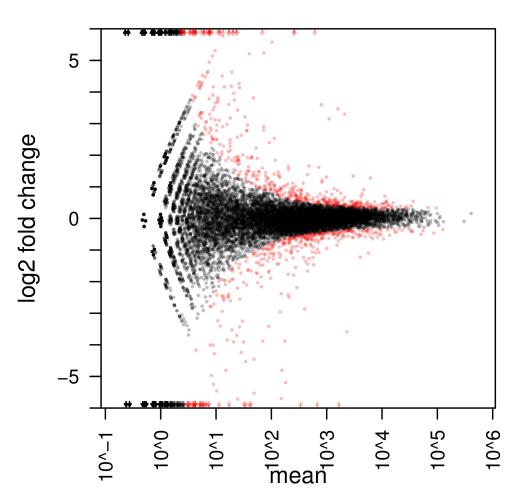
- Estimate the variance from replicates
- Fit a line to get the variance-mean dependence v(µ) (local regression for a gamma-family generalized linear model, extra math needed to handle differing library sizes)



Dispersion fit

EMBL

Differential expression



RNA-Seq data: overexpression of two different genes in flies [data: Furlong group]

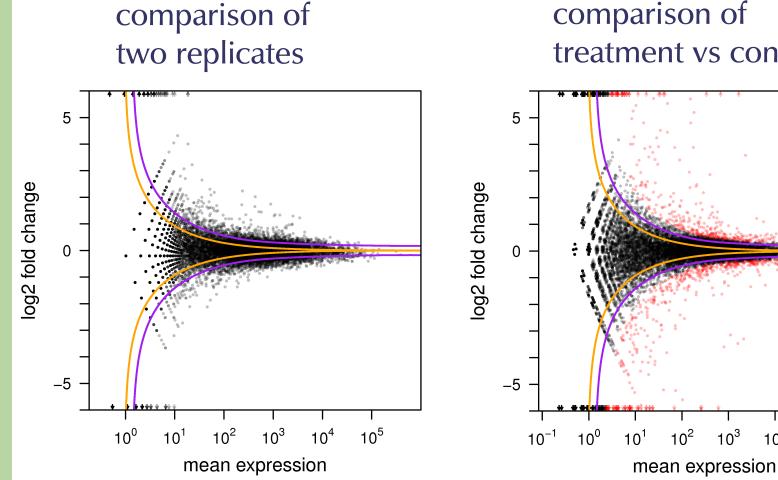
10⁶

10⁵

10³

10²

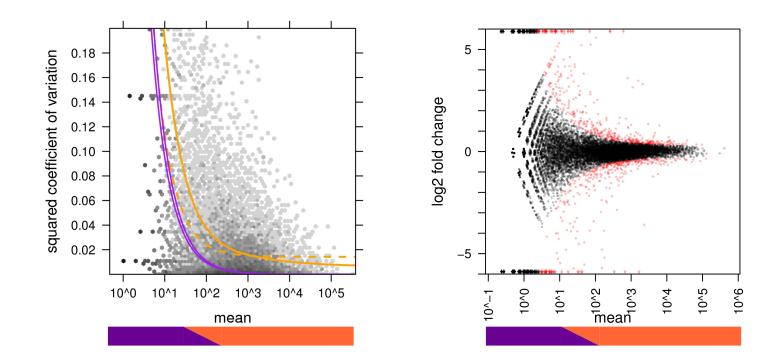
10⁴



Type-I error control

comparison of treatment vs control

Two noise ranges



<u>dominating noise</u> shot noise (Poisson) biological noise How to improve power? deeper sampling more biological replicates EMBL

Further use cases

Similar count data appears in

- comparative ChiP-Seq
- barcode sequencing

• • •

and can be analysed with DESeq as well.

Comparative ChIP-Seq with DESeq

Step 1: Get a list of counting bins by either

- running a peak finder on each samples and merging the peak lists, or
- merging the reads and running the finder on the pooled reads, or
- using windows around annotated features

Step 2: Make a count table: columns – samples; rows – counting bins and use DESeq

Note: The input samples are used in Step 1 only.

Generalized linear models

Simple design:

• Two groups of samples ("control" and "treatment"), no sub-structure within each group.

Common complex designs:

- Designs with blocking factors
- Factorial designs

GLMs: Blocking factor

Sample	treated	sex
S1	no	male
S2	no	male
S3	no	male
S4	no	female
S5	no	female
S6	yes	male
S7	yes	male
S8	yes	female
S9	yes	female
S10	yes	female

GLMs: Blocking factor

$$K_{ij} \sim NB(s_j \mu_{ij}, \alpha_{ij})$$

full model for gene *i*:

$$\log \mu_{ij} = \beta_i^0 + \beta_i^{\mathrm{S}} x_j^{\mathrm{S}} + \beta_i^{\mathrm{T}} x_j^{\mathrm{T}}$$

reduced model for gene *i*:

$$\log \mu_{ij} = \beta_i^0 + \beta_i^{\rm S} x_j^{\rm S}$$

GLMs: Blocking factor

cds <- newCountDataset(countTable, designTable)</pre>

```
cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds, method="pooled-CR" )
fit0 <- fitNbinomGLMs( cds, count ~ sex )
fit1 <- fitNbinomGLMs( cds, count ~ sex + treatment )</pre>
```

```
pvals <- nbinomGLMTest( fit1, fit0 )</pre>
```

Dispersion estimation: Cox, Reid: J Roy Stat Soc B, 1987 McCarthy, Chen, Smyth: Nucl Acid Res, 2012

GLMs: Interaction

$$K_{ij} \sim NB(s_j \mu_{ij}, \alpha_{ij})$$

full model for gene *i*:

$$\log \mu_{ij} = \beta_i^0 + \beta_i^{\mathrm{S}} x_j^{\mathrm{S}} + \beta_i^{\mathrm{T}} x_j^{\mathrm{T}} + \beta_i^{\mathrm{I}} x_j^{\mathrm{S}} x_j^{\mathrm{T}}$$

reduced model for gene *i*:

$$\log \mu_{ij} = \beta_i^0 + \beta_i^{\mathrm{S}} x_j^{\mathrm{S}} + \beta_i^{\mathrm{T}} x_j^{\mathrm{T}}$$

GLMs: paired designs

- Often, samples are paired (e.g., a tumour and a healthy-tissue sample from the same patient)
- Then, using pair identity as blocking factor improves power.

full model:

$$\log \mu_{ijl} = \beta_i^0 + \begin{cases} 0 & \text{for } l = 1 \text{(healthy)} \\ \beta_i^T & \text{for } l = 2 \text{(tumour)} \end{cases}$$

reduced model:

$$\log \mu_{ij} = \beta_i^0$$

- *i* gene
- j subject
- tissue state

Alternative splicing

- So far, we counted reads in genes.
- To study alternative splicing, reads have to be assigned to *transcripts*.
- This introduces ambiguity, which adds uncertainty.
- Proper inference has to take thin into account, and sample-to-sample variability

Data set used for to demonstrate DEXSeq:

Genome Research

Research

21:193-202 © 2011

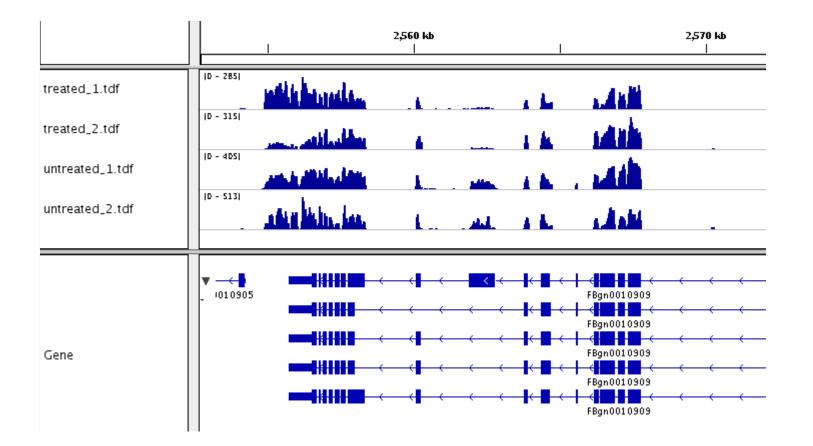
Conservation of an RNA regulatory map between *Drosophila* and mammals

Angela N. Brooks,^{1,7} Li Yang,^{2,7} Michael O. Duff,^{2,3} Kasper D. Hansen,⁴ Jung W. Park,^{2,3} Sandrine Dudoit,^{4,5} Steven E. Brenner,^{1,6,8} and Brenton R. Graveley^{2,3,8}

Drosophila melanogaster S2 cell cultures:

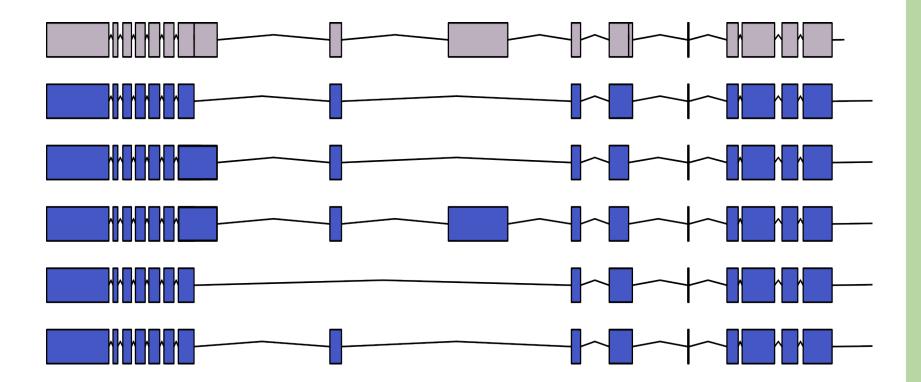
- control (no treatment):
 4 biological replicates (2x single end, 2x paired end)
- treatment: knock-down of pasilla (a splicing factor)
 3 biological replicates (1x single end, 2x paired end)

Alternative isoform regulation



Data: Brooks et al., Genome Res., 2010 EMBL

Exon counting bins

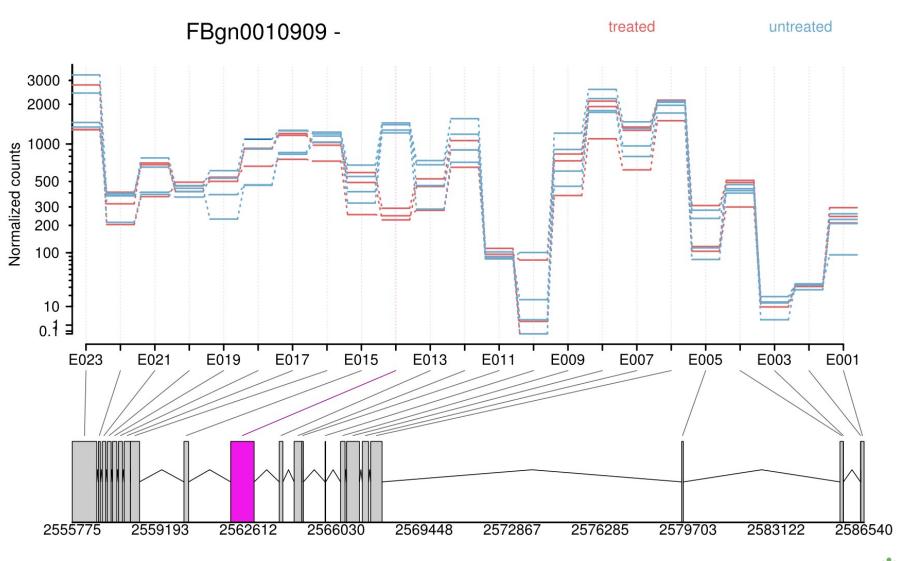


Count table for a gene

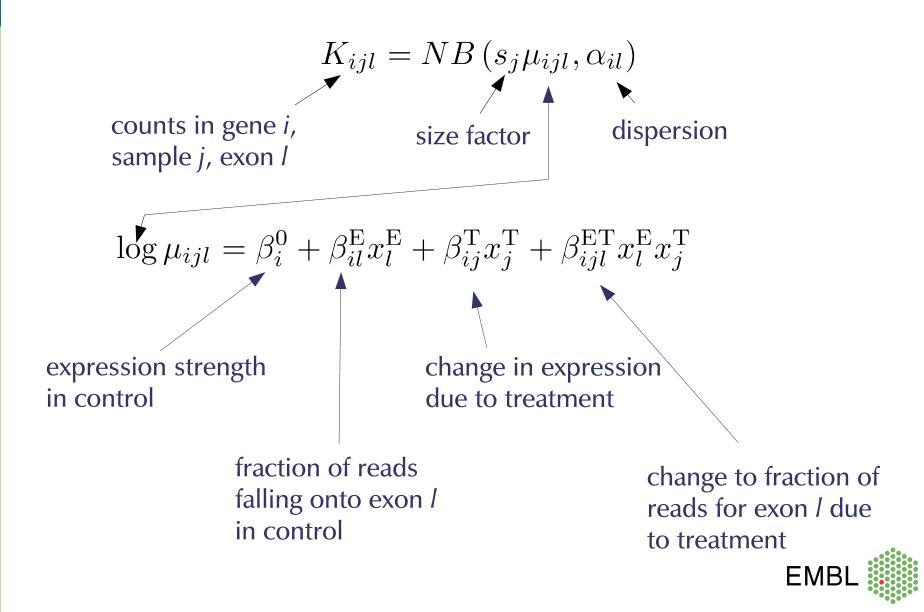
[...]

number of reads mapped to each exon (or part of exon) in gene msn:

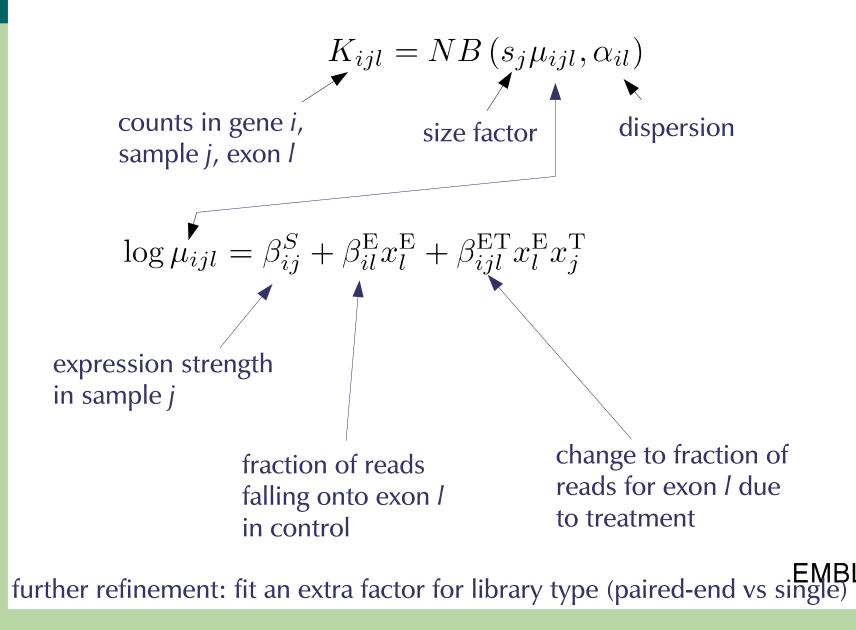
	$treated_1$	treated_2	$\texttt{control}_1$	control_2	
E01	398	556	561	456	
E02	112	180	153	137	
E03	238	306	298	226	
E04	162	171	183	146	
E05	192	272	234	199	
E06	314	464	419	331	
E07	373	525	481	404	
E08	323	427	475	373	
E09	194	213	273	176	
E10	90	90	530	398	< !
E11	172	207	283	227	
E12	290	397	606	368	< ?
E13	33	48	33	33	
E14	0	33	2	37	
E15	248	314	468	287	
E16	554	841	1024	680	



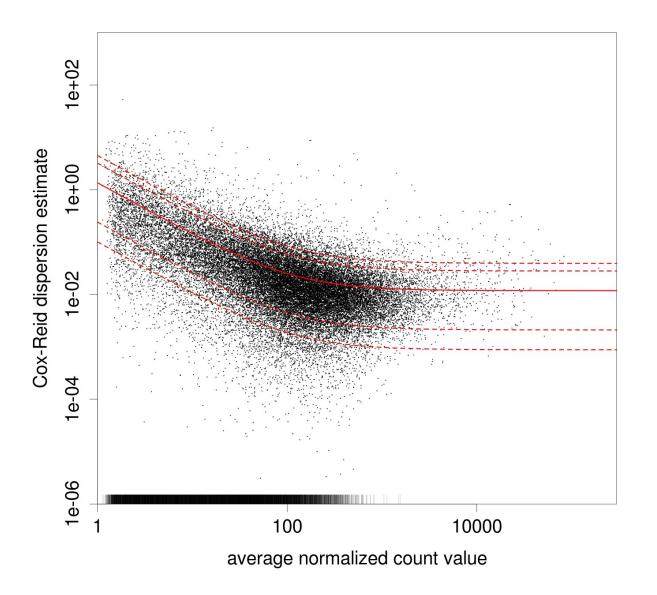
Model



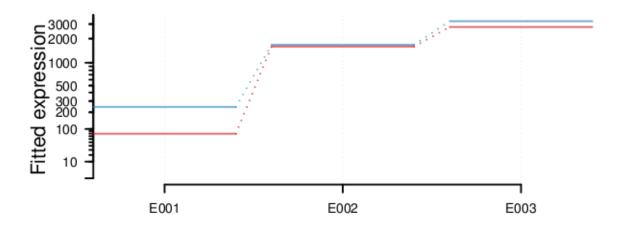
Model, refined

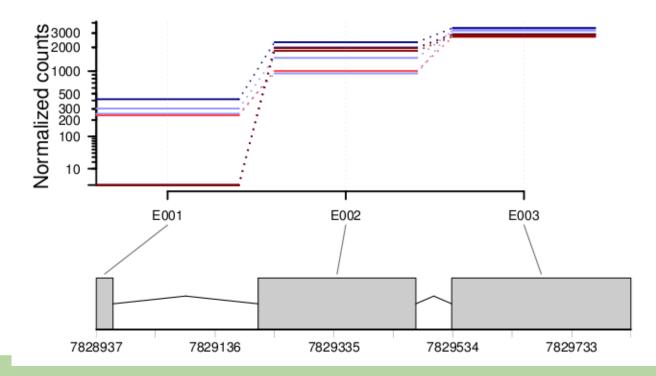


Dispersion vs moon



RpS14a (FBgn0004403)





DEXSeq and other tools

- *MISO* and *ALEXA-Seq* do not account for biological variability.
- Neither does *cuffdiff*, as described in the authors' publications.
- New versions of *cuffdiff* claim to account for biological variability, however ...
- See also Glaus et al.'s EBSeq, though.

DEXSeq and other tools

- *MISO* and *ALEXA-Seq* do not account for biological variability.
- Neither does *cuffdiff*, as described in the authors' publications.
- New versions of *cuffdiff* claim to account for biological variability, however ...
- See also Glaus et al.'s BitSeq, though.

Test cuffdiff vs DEXSeq

Group 1	Group 2	DEXSeq 1.1.5	cuffdiff 1.1.0	cuffdiff $1.2.0$	cuffdiff $1.3.0$	
proper comparisons, treatment (knock-down) vs control:						
T1 - T3	C1 - C4	159	145	69	50	
T1, T2	C2, C3	52	323	120	578	
mock comparisons, control vs control:						
$\tilde{C}1, C3$	C2, C4	8	314	650	639	
C1, C4	C2, C3	7	392	724	728	

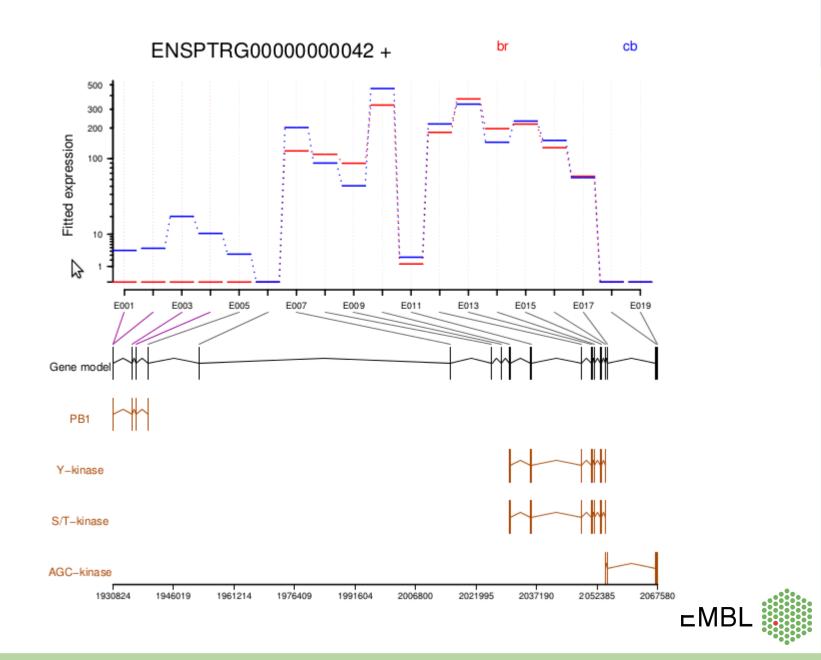
Table S1: Results of the comparison for the Brooks et al. data.

Group 1	Group 2	DEXSeq 1.1.5	${\rm cuffdiff}\; 1.3.0$			
proper comparison, PFC vs CB:						
PFC 1 - PFC 6	CB 1, CB 2	650	114			
PFC 1, PFC 2	CB 1, CB 2	56	230			
PFC 1, PFC 3	CB 1, CB 2	18	361			
PFC 1, PFC 4	CB 1, CB 2	26	370			
PFC 1, PFC 5	CB 1, CB 2	32	215			
PFC 1, PFC 6	CB 1, CB 2	27	380			
mock comparisons, PFC vs PFC:						
PFC 1, PFC 3	PFC 2, PFC 4	3	405			
PFC 1, PFC 2	PFC 3, PFC 4	0	399			
PFC 1, PFC 4	PFC 2, PFC 3	244	590			
PFC 1, PFC 3	PFC 2, PFC 5	2	628			
PFC 1, PFC 2	PFC 3, PFC 5	1	499			
PFC 1, PFC 5	PFC 2, PFC 3	2	555			
PFC 1, PFC 4	PFC 2, PFC 5	2	460			
PFC 1, PFC 2	PFC 4, PFC 5	2	504			
PFC 1, PFC 5	PFC 2, PFC 4	2	308			
PFC 1, PFC 4	PFC 3, PFC 5	10	497			
PFC 1, PFC 3	PFC 4, PFC 5	5	554			
PFC 1, PFC 5	PFC 3, PFC 4	0	353			
PFC 2, PFC 4	PFC 3, PFC 5	1	476			
PFC 2, PFC 3	PFC 4, PFC 5	10	823			
PFC 2, PFC 5 $$	PFC 3, PFC 4 $$	0	526			

Table S2: Results of the comparison for the Brawand et al. data.

Exons vs isoforms

- DEXSeq deliberately tests at the level of exons, not isoforms.
- This might be an advantage: We have more annotation on exons than on isoforms, anyway.



DEXSeq

- combination of Python scripts and an R package
- Python script to get counting bins from a GTF file
- Python script to get count table from SAM files
- R functions to set up model frames and perform GLM fits and ANODEV
- R functions to visualize results and compile an HTML report

Conclusion

- Counting within exons and NB-GLMs allows to study isoform regulation.
- Proper statistical testing allows to see whether changes in isoform abundances are just random variation or may be attributed to changes in tissue type or experimental condition.
- Testing on the level of individual exons gives power and might be helpful to study the mechanisms of alternative isoform regulation.
- DEXSeq is availabe from Bioconductor, paper is published in Genome Research.

Outlook: Current developments

Use of shrinkage estimators (empirical Bayes) for

- dispersion
- fold changes / GLM coefficients

Improvements to DEXSeq

- "splice graphs"
- junction reads

Acknowledgements

Coauthors:

- Alejandro Reyes
- Wolfgang Huber
- Michael Love

Funding:

• EMBL

