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Introduction

This hands-on workshop introduces use of R and Bioconductor for the analysis and comprehension of high-throughput
genomic data. We assume basic familiarity with R, e.g., entering R commands and writing short scripts. Users will engage
in exercises and activities to familiarize themselves with workshop concepts; all software is provided. The morning provides
a systematic review of essential R data types (vector, matrix, data.frame) and programming concepts (vectorization,
functions, packages). Bioinformatic data is large and complicated, and data provenance and reproducibility are important.
For these reasons, we emphasize ‘best practices’ for writing efficient R code, and the use of classes and methods for
working with complicated data objects. The morning highlights essential R packages, and provides an overview of
Bioconductor resources for working with modern genomic data. The afternoon uses ‘RNA-seq’ approaches to assessing
differential expression of known genes as an exemplar work flow for modern high-throughput genomic analysis. The work
flow includes core activities of data manipulation, statistical analysis, and interpretation of results in biological context.
The work flow provides insight into unique statistical challenges of high-throughput data, including sample normalization,
use of appropriate models, approaches to maximizing information in highly structured data, and reducing the false
discovery rate. Analogous statistical issues are central to many genomic data sets, and are informed by lessons learned
from analysis of micro-arrays. The workshop concludes with static and interactive approaches to effective, accurate and
informed presentation of statistical results in the context of interdisciplinary research teams.

Course participants will have access to a configured Amazon machine instance, with easy access through a web
browser and Rstudio

There are many books to help with using R, but not yet a book-length treatment of R / Bioconductor tools for sequence
analysis. Two useful references introduce the use of ranges for representing genome data in Bioconductor [16], and a
comprehensive RNA-seq differential expression work flow [2] making extensive use of R / Bioconductor packages. Starting
points for bioinformatic analysis in R, still relevant for statistical and informatic concepts though not directly addressing
sequence analysis, are Hahne’s Bioconductor Case Studies [11] and Gentleman’s R Programming for Bioinformatics [10].
For R novices, one place to start is Pardis’ R for Beginners1. General R programming recommendations include Dalgaard’s
Introductory Statistics with R [8], Matloff’s The Art of R Programming [23], and Meys and de Vies’ R For Dummies [26];
an interesting internet resource for intermediate R programming is Burns’ The R Inferno2.

A tentative agenda is in Table 1.

Table 1: Tentative agenda

Morning: R and Bioconductor
� R programming — Data types and programming concepts. Seeking help. Classes and methods.
� Bioconductor — S4 classes and methods. Essential packages for high-throughput sequencing: data representation;

annotation; differential expression; ChIP-Seq; variants.
� Pitfalls and opportunities for efficient programming with large data.

Afternoon: Differential expression workflows
� Statistical issues in high-throughput genomic analysis.
� Case study: RNA-seq differential expression.
� Annotating and visualizing results.

1http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
2http://www.burns-stat.com/documents/books/the-r-inferno/
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Statistical computing

Many academic and commercial software products are available; why would one use R and Bioconductor? One answer
is to ask about the demands high-throughput genomic data places on effective computational biology software.

Effective computational biology software High-throughput questions make use of large data sets. This applies
both to the primary data (microarray expression values, sequenced reads, etc.) and also to the annotations on those
data (coordinates of genes and features such as exons or regulatory regions; participation in biological pathways, etc.).
Large data sets place demands on our tools that preclude some standard approaches, such as spread sheets. Likewise,
intricate relationships between data and annotation, and the diversity of research questions, require flexibility typical of
a programming language rather than a narrowly-enabled graphical user interface.

Analysis of high-throughput data is necessarily statistical. The volume of data requires that it be appropriately
summarized before any sort of comprehension is possible. The data are produced by advanced technologies, and these
introduce artifacts (e.g., probe-specific bias in microarrays; sequence or base calling bias in RNA-seq experiments) that
need to be accommodated to avoid incorrect or inefficient inference. Data sets typically derive from designed experiments,
requiring a statistical approach both to account for the design and to correctly address the large number of observed
values (e.g., gene expression or sequence tag counts) and small number of samples accessible in typical experiments.

Research needs to be reproducible. Reproducibility is both an ideal of the scientific method, and a pragmatic
requirement. The latter comes from the long-term and multi-participant nature of contemporary science. An analysis
will be performed for the initial experiment, revisited again during manuscript preparation, and revisited during reviews
or in determining next steps. Likewise, analysis typically involve a team of individuals with diverse domains of expertise.
Effective collaborations result when it is easy to reproduce, perhaps with minor modifications, an existing result, and
when sophisticated statistical or bioinformatic analysis can be effectively conveyed to other group members.

Science moves very quickly. This is driven by the novel questions that are the hallmark of discovery, and by techno-
logical innovation and accessibility. Rapidity of scientific development places significant burdens on software, which must
also move quickly. Effective software cannot be too polished, because that requires that the correct analyses are ‘known’
and that significant resources of time and money have been invested in developing the software; this implies software that
is tracking the trailing edge of innovation. On the other hand, leading-edge software cannot be too idiosyncratic; it must
be usable by a wider audience than the creator of the software, and fit in with other software relevant to the analysis.

Effective software must be accessible. Affordability is one aspect of accessibility. Another is transparent implemen-
tation, where the novel software is sufficiently documented and source code accessible enough for the assumptions,
approaches, practical implementation decisions, and inevitable coding errors to be assessed by other skilled practitioners.
A final aspect of affordability is that the software is actually usable. This is achieved through adequate documentation,
support forums, and training opportunities.

Bioconductor as effective computational biology software What features of R and Bioconductor contribute to its
effectiveness as a software tool?

Bioconductor is well suited to handle extensive data and annotation. Bioconductor ‘classes’ represent high-throughput
data and their annotation in an integrated way. Bioconductor methods use advanced programming techniques or R re-
sources (such as transparent data base or network access) to minimize memory requirements and integrate with diverse
resources. Classes and methods coordinate complicated data sets with extensive annotation. Nonetheless, the basic
model for object manipulation in R involves vectorized in-memory representations. For this reason, particular program-
ming paradigms (e.g., block processing of data streams; explicit parallelism) or hardware resources (e.g., large-memory
computers) are sometimes required when dealing with extensive data.

R is ideally suited to addressing the statistical challenges of high-throughput data. Three examples include the
development of the ‘RMA’ and other normalization algorithm for microarray pre-processing, use of moderated t-statistics
for assessing microarray differential expression, and development of negative binomial approaches to estimating dispersion
read counts necessary for appropriate analysis of RNAseq designed experiments.

Many of the ‘old school’ aspects of R and Bioconductor facilitate reproducible research. An analysis is often rep-
resented as a text-based script. Reproducing the analysis involves re-running the script; adjusting how the analysis is
performed involves simple text-editing tasks. Beyond this, R has the notion of a ‘vignette’, which represents an analysis
as a LATEX document with embedded R commands. The R commands are evaluated when the document is built, thus
reproducing the analysis. The use of LATEX means that the symbolic manipulations in the script are augmented with
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textual explanations and justifications for the approach taken; these include graphical and tabular summaries at appro-
priate places in the analysis. R includes facilities for reporting the exact version of R and associated packages used in an
analysis so that, if needed, discrepancies between software versions can be tracked down and their importance evaluated.
While users often think of R packages as providing new functionality, packages are also used to enhance reproducibility by
encapsulating a single analysis. The package can contain data sets, vignette(s) describing the analysis, R functions that
might have been written, scripts for key data processing stages, and documentation (via standard R help mechanisms)
of what the functions, data, and packages are about.

The Bioconductor project adopts practices that facilitate reproducibility. Versions of Bioconductor are released twice
each year. Each Bioconductor release is the result of development, in a separate branch, during the previous six months.
The release is built daily against the corresponding version of R on Linux, Mac, and Windows platforms, with an extensive
suite of tests performed. The biocLite function ensures that each release of R uses the corresponding Bioconductor
packages. The user thus has access to stable and tested package versions. R and Bioconductor are effective tools for
reproducible research.

R and Bioconductor exist on the leading portion of the software life cycle. Contributors are primarily from academic
institutions, and are directly involved in novel research activities. New developments are made available in a familiar
format, i.e., the R language, packaging, and build systems. The rich set of facilities in R (e.g., for advanced statistical
analysis or visualization) and the extensive resources in Bioconductor (e.g., for annotation using third-party data such
as Biomart or UCSC genome browser tracks) mean that innovations can be directly incorporated into existing work
flows. The ‘development’ branches of R and Bioconductor provide an environment where contributors can explore new
approaches without alienating their user base.

R and Bioconductor also fair well in terms of accessibility. The software is freely available. The source code is easily
and fully accessible for critical evaluation. The R packaging and check system requires that all functions are documented.
Bioconductor requires that each package contain vignettes to illustrate the use of the software. There are very active
R and Bioconductor mailing lists for immediate support, and regular training and conference activities for professional
development.
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Chapter 1

Basics of R

1.1 Statistical analysis and comprehension

R is an open-source statistical programming language. It is used to manipulate data, to perform statistical analysis,
and to present graphical and other results. R consists of a core language, additional ‘packages’ distributed with the R
language, and a very large number of packages contributed by the broader community. Packages add specific functionality
to an R installation. R has become the primary language of academic statistical analysis, and is widely used in diverse
areas of research, government, and industry.

R has several unique features. It has a surprisingly ‘old school’ interface: users type commands into a console; scripts
in plain text represent work flows; tools other than R are used for editing and other tasks. R is a flexible programming
language, so while one person might use functions provided by R to accomplish advanced analytic tasks, another might
implement their own functions for novel data types. As a programming language, R adopts syntax and grammar that
differ from many other languages: objects in R are ‘vectors’, and functions are ‘vectorized’ to operate on all elements of
the object; R objects have ‘copy on change’ and ‘pass by value’ semantics, reducing unexpected consequences for users at
the expense of less efficient memory use; common paradigms in other languages, such as the ‘for’ loop, are encountered
much less commonly in R. Many authors contribute to R, so there can be a frustrating inconsistency of documentation
and interface. R grew up in the academic community, so authors have not shied away from trying new approaches.
Common statistical analysis functions are very well-developed.

Opening an R session results in a prompt. The user types instructions at the prompt. Here is an example:

> ## assign values 5, 4, 3, 2, 1 to variable 'x'

> x <- c(5, 4, 3, 2, 1)

> x

[1] 5 4 3 2 1

The first line starts with a # to represent a comment; the line is ignored by R. The next line creates a variable x. The
variable is assigned (using <-, we could have used = almost interchangeably) a value. The value assigned is the result of
a call to the c function. That it is a function call is indicated by the symbol named followed by parentheses, c(). The c

function takes zero or more arguments, and returns a vector. The vector is the value assigned to x. R responds to this
line with a new prompt, ready for the next input. The next line asks R to display the value of the variable x. R responds
by printing [1] to indicate that the subsequent number is the first element of the vector. It then prints the value of x.

R has many features to aid common operations. Entering sequences is a very common operation, and expressions of
the form 2:4 create a sequence from 2 to 4. Sub-setting one vector by another is enabled with [. Here we create an
integer sequence from 2 to 4, and use the sequence as an index to select the second, third, and fourth elements of x

> x[2:4]

[1] 4 3 2

Index values can be repeated, and if outside the domain of x return the special value NA. Negative index values remove
elements from the vector. Logical and character vectors (described below) can also be used for sub-setting.

7
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Table 1.1: Essential aspects of the R language.

Category Function Description
Vectors integer, numeric Vectors of length >= 0 holding a single data type

complex, character
raw, factor

List-like list Arbitrary collections of elements
data.frame List of equal-length vectors
environment Pass-by-reference data storage; hash

Array-like data.frame Homogeneous columns; row- and column indexing
array 0 or more dimensions
matrix Two-dimensional, homogeneous types

Statistical NA, factor Essential statistical concepts, integral to the language.
Classes ‘S3’ List-like structured data; simple inheritance & dispatch

‘S4’ Formal classes, multiple inheritance & dispatch
Functions ‘function’ A simple function with arguments, body, and return value

‘generic’ A (S3 or S4) function with associated methods
‘method’ A function implementing a generic for an S3 or S4 class

R functions operate on variables. Functions are usually vectorized, acting on all elements of their argument and
obviating the need for explicit iteration. Functions can generate warnings when performing suspect operations, or errors
if evaluation cannot proceed; try log(-1).

> log(x)

[1] 1.6094379 1.3862944 1.0986123 0.6931472 0.0000000

1.2 Essential data types

R has a number of built-in data types, summarized in Table 1.1. These represent integer, numeric (floating point),
complex, character, logical (Boolean), and raw (byte) data. It is possible to convert between data types, and to
discover the type or mode of a variable.

> c(1.1, 1.2, 1.3) # numeric

[1] 1.1 1.2 1.3

> c(FALSE, TRUE, FALSE) # logical

[1] FALSE TRUE FALSE

> c("foo", "bar", "baz") # character, single or double quote ok

[1] "foo" "bar" "baz"

> as.character(x) # convert 'x' to character

[1] "5" "4" "3" "2" "1"

> typeof(x) # the number 5 is numeric, not integer

[1] "double"

> typeof(2L) # append 'L' to force integer

[1] "integer"
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> typeof(2:4) # ':' produces a sequence of integers

[1] "integer"

R includes data types particularly useful for statistical analysis, including factor to represent categories and NA (used in
any vector) to represent missing values.

> sex <- factor(c("Male", "Female", NA), levels=c("Female", "Male"))

> sex

[1] Male Female <NA>

Levels: Female Male

Lists, data frames, and matrices All of the vectors mentioned so far are homogeneous, consisting of a single type
of element. A list can contain a collection of different types of elements and, like all vectors, these elements can be
named to create a key-value association.

> lst <- list(a=1:3, b=c("foo", "bar"), c=sex)

> lst

$a

[1] 1 2 3

$b

[1] "foo" "bar"

$c

[1] Male Female <NA>

Levels: Female Male

Lists can be subset like other vectors to get another list, or subset with [[ to retrieve the actual list element; as with
other vectors, sub-setting can use names

> lst[c(3, 1)] # another list -- class isomorphism

$c

[1] Male Female <NA>

Levels: Female Male

$a

[1] 1 2 3

> lst[["a"]] # the element itself, selected by name

[1] 1 2 3

A data.frame is a list of equal-length vectors, representing a rectangular data structure not unlike a spread sheet.
Each column of the data frame is a vector, so data types must be homogeneous within a column. A data.frame can be
subset by row or column, and columns can be accessed with $ or [[.

> df <- data.frame(age=c(27L, 32L, 19L),

+ sex=factor(c("Male", "Female", "Male")))

> df

age sex

1 27 Male

2 32 Female

3 19 Male
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> df[c(1, 3),]

age sex

1 27 Male

3 19 Male

> df[df$age > 20,]

age sex

1 27 Male

2 32 Female

A matrix is also a rectangular data structure, but subject to the constraint that all elements are the same type. A
matrix is created by taking a vector, and specifying the number of rows or columns the vector is to represent.

> m <- matrix(1:12, nrow=3)

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> m[c(1, 3), c(2, 4)]

[,1] [,2]

[1,] 4 10

[2,] 6 12

On sub-setting, R coerces a single column data.frame or single row or column matrix to a vector if possible; use
drop=FALSE to stop this behavior.

> m[, 3]

[1] 7 8 9

> m[, 3, drop=FALSE]

[,1]

[1,] 7

[2,] 8

[3,] 9

An array is a data structure for representing homogeneous, rectangular data in higher dimensions.

1.3 S3 (and S4) classes

More complicated data structures are represented using the ‘S3’ or ‘S4’ object system. Objects are often created by
functions (for example, lm, below), with parts of the object extracted or assigned using accessor functions. The following
generates 1000 random normal deviates as x, and uses these to create another 1000 deviates y that are linearly related
to x but with some error. We fit a linear regression using a ‘formula’ to describe the relationship between variables,
summarize the results in a familiar ANOVA table, and access fit (an S3 object) for the residuals of the regression, using
these as input first to the var (variance) and then sqrt (square-root) functions. Objects can be interrogated for their
class.

> x <- rnorm(1000, sd=1)

> y <- x + rnorm(1000, sd=.5)

> fit <- lm(y ~ x) # formula describes linear regression

> fit # an 'S3' object
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Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

-0.01034 1.00745

> anova(fit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 1018.83 1018.83 3912.6 < 2.2e-16 ***

Residuals 998 259.88 0.26

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> sqrt(var(resid(fit))) # residuals accessor and subsequent transforms

[1] 0.5100391

> class(fit)

[1] "lm"

Many Bioconductor packages implement S4 objects to represent data. S3 and S4 systems are quite different from
a programmer’s perspective, but fairly similar from a user’s perspective: both systems encapsulate complicated data
structures, and allow for methods specialized to different data types; accessors are used to extract information from the
objects.

1.4 Functions

R has a very large number of functions; Table 1.2 provides a brief list of those that might be commonly used and
particularly useful. See the help pages (e.g., ?lm) and examples (example(match)) for more details on each of these
functions.

R functions accept arguments, and return values. Arguments can be required or optional. Some functions may take
variable numbers of arguments, e.g., the columns in a data.frame

> y <- 5:1

> log(y)

[1] 1.6094379 1.3862944 1.0986123 0.6931472 0.0000000

> args(log) # arguments 'x' and 'base'; see ?log

function (x, base = exp(1))

NULL

> log(y, base=2) # 'base' is optional, with default value

[1] 2.321928 2.000000 1.584963 1.000000 0.000000

> try(log()) # 'x' required; 'try' continues even on error

> args(data.frame) # ... represents variable number of arguments



Workshop: Introduction to Statistical Computing with R and Bioconductor 12

Table 1.2: A selection of R function.

dir, read.table (and friends), scan List files in a directory, read spreadsheet-like data into
R, efficiently read homogeneous data (e.g., a file of numeric values) to be represented as a
matrix.

c, factor, data.frame, matrix Create a vector, factor, data frame or matrix.

summary, table, xtabs Summarize, create a table of the number of times elements occur in a
vector, cross-tabulate two or more variables.

t.test, aov, lm, anova, chisq.test Basic comparison of two (t.test) groups, or several
groups via analysis of variance / linear models (aov output is probably more familiar to
biologists), or compare simpler with more complicated models (anova); χ2 tests.

dist, hclust Cluster data.

plot Plot data.

ls, str, library, search List objects in the current (or specified) workspace, or peak at the
structure of an object; add a library to or describe the search path of attached packages.

lapply, sapply, mapply, aggregate Apply a function to each element of a list (lapply, sap-
ply), to elements of several lists (mapply), or to elements of a list partitioned by one or
more factors (aggregate).

with Conveniently access columns of a data frame or other element without having to repeat
the name of the data frame.

match, %in% Report the index or existence of elements from one vector that match another.

split, cut, unlist Split one vector by an equal length factor, cut a single vector into intervals
encoded as levels of a factor, unlist (concatenate) list elements.

strsplit, grep, sub Operate on character vectors, splitting it into distinct fields, searching for
the occurrence of a patterns using regular expressions (see ?regex, or substituting a string
for a regular expression.

biocLite, install.packages Install a package from an on-line repository into your R.

traceback, debug, browser Report the sequence of functions under evaluation at the time of
the error; enter a debugger when a particular function or statement is invoked.

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,

stringsAsFactors = default.stringsAsFactors())

NULL

Arguments can be matched by name or position. If an argument appears after ..., it must be named.

> log(base=2, y) # match argument 'base' by name, 'x' by position

[1] 2.321928 2.000000 1.584963 1.000000 0.000000

A function such as anova is a generic that provides an overall signature but dispatches the actual work to the method
corresponding to the class(es) of the arguments used to invoke the generic. A generic may have fewer arguments than a
method, as with the S3 function anova and its method anova.glm.

> args(anova)

function (object, ...)

NULL

> args(anova.glm)

function (object, ..., dispersion = NULL, test = NULL)

NULL

The ... argument in the anova generic means that additional arguments are possible; the anova generic hands these
arguments to the method it dispatches to.
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Table 1.3: Tools for debugging and error-handling.

Function Description
traceback Report the ‘call stack’ at the time of an error.
options(error=) Set a handler to be executed on error, e.g., error=recover.
debug, trace Enter the browser when a function is called
browser Interactive debugging
tryCatch Handle an error condition in a script.

1.5 Warnings, errors, and debugging

R signals unexpected results through warnings and errors. Warnings occur when the calculation produces an unusual
result that nonetheless does not preclude further evaluation. For instance log(-1) results in a value NaN (‘not a number’)
that allows computation to continue, but at the same time signals a warning

> log(-1)

[1] NaN

Warning message:

In log(-1) : NaNs produced

Errors result when the inputs or outputs of a function are such that no further action can be taken, e.g., trying to take
the square root of a character vector

> sqrt("two")

Error in sqrt("two") : Non-numeric argument to mathematical function

Warnings and errors occurring at the command prompt are usually easy to diagnose. They can be more enigmatic
when occurring in a function, and exacerbated by sometimes cryptic (when read out of context) error messages. Some
key tools for figuring out (‘debugging’) errors are summarized in Table 1.3.

An initial step in coming to terms with errors is to simplify the problem as much as possible, aiming for a ‘reproducible’
error. The reproducible error might involve a very small (even trivial) data set that immediately provokes the error. Often
the process of creating a reproducible example helps to clarify what the error is, and what possible solutions might be.

Invoking traceback() immediately after an error occurs provides a ‘stack’ of the function calls that were in effect
when the error occurred. This can help understand the context in which the error occurred. Knowing the context, one
might use debug (or its more elaborate cousin, trace) to enter into a browser (see ?browser) that allows one to step
through the function in which the error occurred.

It can sometimes be useful to use global options (see ?options) to influence what happens when an error occurs.
Two common global options are error and warn. Setting error=recover combines the functionality of traceback

and debug, allowing the user to enter the browser at any level of the call stack in effect at the time the error occurred.
Default error behavior can be restored with options(error=NULL). Setting warn=2 causes warnings to be promoted to
errors. For instance, initial investigation of an error might show that the error occurs when one of the arguments to a
function has value NaN. The error might be accompanied by a warning message that the NaN has been introduced, but
because warnings are by default not reported immediately it is not clear where the NaN comes from. warn=2 means that
the warning is treated as an error, and hence can be debugged using traceback, debug, and so on.

It is possible to continue evaluation even after an error occurs. The simplest mechanism uses the try function, but an
only slightly more complicated version providing greater flexibility is tryCatch. tryCatch allows one to write a handler

(the error argument to tryCatch, below) to address common faults in a way that allows a script to continue executing.
Suppose a function f fails under certain conditions

> f <- function(i) {

+ if (i < 0)

+ stop("i is negative")

+ rnorm(i)

+ }

> lapply(0:1, f)
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Table 1.4: Selected base and contributed packages.

Package Description
base Data input and manipulation; scripting and programming.
stats Essential statistical and plotting functions.
lattice, ggplot2 Approaches to advanced graphics.
methods ‘S4’ classes and methods.
parallel Facilities for parallel evaluation.
Matrix Diverse matrix representations
data.table Efficient management of large data tables

[[1]]

numeric(0)

[[2]]

[1] -1.298479

but we wish to continue, e.g., replacing failed conditions with NA:

> lapply(-1:1, function(i) {

+ tryCatch({

+ f(i)

+ }, error=function(err) {

+ ## return 'NA' when error occurs, instead of stopping

+ NA_real_

+ })

+ })

[[1]]

[1] NA

[[2]]

numeric(0)

[[3]]

[1] -0.4513331

1.6 Packages

Packages provide functionality beyond that available in base R. There are over 4000 packages in CRAN (comprehensive
R archive network) and more than 670 Bioconductor packages. Packages are contributed by diverse members of the
community; they vary in quality (many are excellent) and sometimes contain idiosyncratic aspects to their implementation.
Table 1.4 outlines key base packages and selected contributed packages; see a local CRAN mirror (including the task
views summarizing packages in different domains) and Bioconductor for additional contributed packages.

The lattice package illustrates the value packages add to base R. lattice is distributed with R but not loaded by
default. It provides a very expressive way to visualize data. The following example plots yield for a number of barley
varieties, conditioned on site and grouped by year. Figure 1.1 is read from the lower left corner. Note the common scales,
efficient use of space, and not-too-pleasing default color palette. The Morris sample appears to be mis-labeled for ‘year’,
an apparent error in the original data. Find out about the built-in data set used in this example with ?barley.

> library(lattice)

> plt <- dotplot(variety ~ yield | site, data = barley, groups = year,

+ xlab = "Barley Yield (bushels/acre)" , ylab=NULL,

+ key = simpleKey(levels(barley$year), space = "top",

http://cran.fhcrc.org
http://cran.fhcrc.org/web/views/
http://cran.fhcrc.org/web/views/
http://bioconductor.org
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Figure 1.1: Variety yield conditional on site and grouped by year, for the barley data set. What’s up with Morris?

+ columns=2),

+ aspect=0.5, layout = c(2,3))

> print(plt)

New packages (from Bioconductor or CRAN) can be added to an R installation using biocLite():

source("http://bioconductor.org/biocLite.R")

biocLite(c("GenomicRanges", "ShortRead"))

A package is installed only once per R installation, but needs to be loaded (with library) in each session in which it is
used. Loading a package also loads any package that it depends on. Packages loaded in the current session are displayed
with search. The ordering of packages returned by search represents the order in which the global environment (where
commands entered at the prompt are evaluated) and attached packages are searched for symbols.

> length(search())

[1] 23

> search()

[1] ".GlobalEnv" "package:lattice"

[3] "package:SequenceAnalysisData" "package:edgeR"

[5] "package:limma" "package:GenomicFeatures"

[7] "package:AnnotationDbi" "package:Biobase"

[9] "package:GenomicRanges" "package:XVector"

[11] "package:IRanges" "package:BiocGenerics"

[13] "package:parallel" "package:BiocInstaller"

[15] "package:stats" "package:graphics"

[17] "package:grDevices" "package:utils"

[19] "package:datasets" "package:methods"

[21] "Autoloads" "ESSR"

[23] "package:base"
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It is possible for a package earlier in the search path to mask symbols later in the search path; these can be disambiguated
using ::.

> pi <- 3.2 ## http://en.wikipedia.org/wiki/Indiana_Pi_Bill

> base::pi

[1] 3.141593

> rm(pi) ## remove from the .GlobalEnv

Exercise 1
Use the library function to load the StatisticalComputing2013 package. Use the sessionInfo function to verify that
you are using R version 3.0.2 and current packages, similar to those reported here. What other packages were loaded
along with StatisticalComputing2013?

Solution:

> library(StatisticalComputing2013)

> sessionInfo()

1.7 Help!

Find help using the R help system. Start a web browser with

> help.start()

The ‘Search Engine and Keywords’ link is helpful in day-to-day use.

Manual pages Use manual pages to find detailed descriptions of the arguments and return values of functions, and
the structure and methods of classes. Find help within an R session as

> ?data.frame

> ?lm

> ?anova # a generic function

> ?anova.lm # an S3 method, specialized for 'lm' objects

S3 methods can be queried interactively. For S3,

> methods(anova)

[1] anova.glm anova.glmlist anova.lm anova.loess* anova.MAList

[6] anova.mlm anova.nls*

Non-visible functions are asterisked

> methods(class="glm")

[1] add1.glm* anova.glm confint.glm*

[4] cooks.distance.glm* deviance.glm* drop1.glm*

[7] effects.glm* extractAIC.glm* family.glm*

[10] formula.glm* influence.glm* logLik.glm*

[13] model.frame.glm nobs.glm* predict.glm

[16] print.glm residuals.glm rstandard.glm

[19] rstudent.glm summary.glm vcov.glm*

[22] weights.glm*

Non-visible functions are asterisked
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It is often useful to view a method definition, either by typing the method name at the command line or, for ‘non-visible’
methods, using getAnywhere:

> anova.lm

> getAnywhere("anova.loess")

For instance, the source code of a function is printed if the function is invoked without parentheses. Here we discover
that the function head (which returns the first 6 elements of anything) defined in the utils package, is an S3 generic
(indicated by UseMethod) and has several methods. We use head to look at the first six lines of the head method
specialized for matrix objects.

> utils::head

function (x, ...)

UseMethod("head")

<environment: namespace:utils>

> methods(head)

[1] head.data.frame* head.default* head.ftable* head.function*

[5] head.matrix head.table* head.Vector

Non-visible functions are asterisked

> head(head.matrix)

1 function (x, n = 6L, ...)

2 {

3 stopifnot(length(n) == 1L)

4 n <- if (n < 0L)

5 max(nrow(x) + n, 0L)

6 else min(n, nrow(x))

Vignettes Vignettes, especially in Bioconductor packages, provide an extensive narrative describing overall package
functionality. Use

> vignette(package="StatisticalComputing2013")

to see, in your web browser, vignettes available in the StatisticalComputing2013 package. Vignettes usually consist of
text with embedded R code, a form of literate programming. The vignette can be read as a PDF document, while the
R source code is present as a script file ending with extension .R. The script file can be sourced or copied into an R
session to evaluate exactly the commands used in the vignette. For Bioconductor packages, vignettes are available on
the package ‘landing page’, e.g., for IRanges1

1.8 Exercises

Exercise 2
This exercise uses data describing 128 microarray samples as a basis for exploring R functions. Covariates such as age,
sex, type, stage of the disease, etc., are in a data file pData.csv.

The following command creates a variable pdataFiles that is the location of a comma-separated value (‘csv’) file
to be used in the exercise. A csv file can be created using, e.g., ‘Save as...’ in spreadsheet software.

> pdataFile <- system.file(package="SequenceAnalysisData", "extdata",

+ "pData.csv")

1http://bioconductor.org/packages/devel/bioc/html/IRanges.html

http://bioconductor.org/packages/devel/bioc/html/IRanges.html
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Input the csv file using read.table, assigning the input to a variable pdata. Use dim to find out the dimensions
(number of rows, number of columns) in the object. Are there 128 rows? Use names or colnames to list the names of
the columns of pdata. Use summary to summarize each column of the data. What are the data types of each column
in the data frame?

A data frame is a list of equal length vectors. Select the ‘sex’ column of the data frame using [[ or $. Pause to
explain to your neighbor why this sub-setting works. Since a data frame is a list, use sapply to ask about the class of
each column in the data frame. Explain to your neighbor what this produces, and why.

Use table to summarize the number of males and females in the sample. Consult the help page ?table to figure
out additional arguments required to include NA values in the tabulation.

The mol.biol column summarizes molecular biological attributes of each sample. Use table to summarize the
different molecular biology levels in the sample. Use %in% to create a logical vector of the samples that are either
BCR/ABL or NEG. Subset the original phenotypic data to contain those samples that are BCR/ABL or NEG.

After sub-setting, what are the levels of the mol.biol column? Set the levels to be BCR/ABL and NEG, i.e., the levels
in the subset.

One would like covariates to be similar across groups of interest. Use t.test to assess whether BCR/ABL and NEG

have individuals with similar age. To do this, use a formula that describes the response age in terms of the predictor
mol.biol. If age is not independent of molecular biology, what complications might this introduce into subsequent
analysis? Use the boxplot function to visualize the relationship between age and mol.biol.

Solution: Here we input the data and explore basic properties.

> pdata <- read.table(pdataFile)

> dim(pdata)

[1] 128 21

> names(pdata)

[1] "cod" "diagnosis" "sex" "age"

[5] "BT" "remission" "CR" "date.cr"

[9] "t.4.11." "t.9.22." "cyto.normal" "citog"

[13] "mol.biol" "fusion.protein" "mdr" "kinet"

[17] "ccr" "relapse" "transplant" "f.u"

[21] "date.last.seen"

> summary(pdata)

cod diagnosis sex age BT

10005 : 1 11/15/1997: 2 F :42 Min. : 5.00 B2 :36

1003 : 1 1/15/1997 : 2 M :83 1st Qu.:19.00 B3 :23

remission CR date.cr t.4.11.

CR :99 CR :96 11/11/1997: 3 Mode :logical

REF :15 DEATH IN CR : 3 10/18/1999: 2 FALSE:86

t.9.22. cyto.normal citog mol.biol

Mode :logical Mode :logical normal :24 ALL1/AF4:10

FALSE:67 FALSE:69 simple alt. :15 BCR/ABL :37

fusion.protein mdr kinet ccr relapse

p190 :17 NEG :101 dyploid:94 Mode :logical Mode :logical

p190/p210: 8 POS : 24 hyperd.:27 FALSE:74 FALSE:35

transplant f.u date.last.seen

Mode :logical REL :61 12/15/1997: 2

FALSE:91 CCR :23 12/31/2002: 2

[ reached getOption("max.print") -- omitted 5 rows ]

A data frame can be subset as if it were a matrix, or a list of column vectors.

> head(pdata[,"sex"], 3)
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[1] M M F

Levels: F M

> head(pdata$sex, 3)

[1] M M F

Levels: F M

> head(pdata[["sex"]], 3)

[1] M M F

Levels: F M

> sapply(pdata, class)

cod diagnosis sex age BT

"factor" "factor" "factor" "integer" "factor"

remission CR date.cr t.4.11. t.9.22.

"factor" "factor" "factor" "logical" "logical"

cyto.normal citog mol.biol fusion.protein mdr

"logical" "factor" "factor" "factor" "factor"

kinet ccr relapse transplant f.u

"factor" "logical" "logical" "logical" "factor"

date.last.seen

"factor"

The number of males and females, including NA, is

> table(pdata$sex, useNA="ifany")

F M <NA>

42 83 3

An alternative version of this uses the with function: with(pdata, table(sex, useNA="ifany")).
The mol.biol column contains the following samples:

> with(pdata, table(mol.biol, useNA="ifany"))

mol.biol

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

10 37 5 74 1 1

A logical vector indicating that the corresponding row is either BCR/ABL or NEG is constructed as

> ridx <- pdata$mol.biol %in% c("BCR/ABL", "NEG")

We can get a sense of the number of rows selected via table or sum (discuss with your neighbor what sum does, and
why the answer is the same as the number of TRUE values in the result of the table function).

> table(ridx)

ridx

FALSE TRUE

17 111

> sum(ridx)

[1] 111
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The original data frame can be subset to contain only BCR/ABL or NEG samples using the logical vector ridx that we
created.

> pdata1 <- pdata[ridx,]

The levels of each factor reflect the levels in the original object, rather than the levels in the subset object, e.g.,

> levels(pdata1$mol.biol)

[1] "ALL1/AF4" "BCR/ABL" "E2A/PBX1" "NEG" "NUP-98" "p15/p16"

These can be re-coded by updating the new data frame to contain a factor with the desired levels.

> pdata1$mol.biol <- factor(pdata1$mol.biol)

> table(pdata1$mol.biol)

BCR/ABL NEG

37 74

To ask whether age differs between molecular biology types, we use a formula age ~ mol.biol to describe the
relationship (‘age as a function of molecular biology’) that we wish to test

> with(pdata1, t.test(age ~ mol.biol))

Welch Two Sample t-test

data: age by mol.biol

t = 4.8172, df = 68.529, p-value = 8.401e-06

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

7.13507 17.22408

sample estimates:

mean in group BCR/ABL mean in group NEG

40.25000 28.07042

This summary can be visualize with, e.g., the boxplot function

> ## not evaluated

> boxplot(age ~ mol.biol, pdata1)

Molecular biology seem to be strongly associated with age; individuals in the NEG group are considerably younger than
those in the BCR/ABL group. We might wish to include age as a covariate in any subsequent analysis seeking to relate
molecular biology to gene expression.



Chapter 2

Bioconductor

Bioconductor is a collection of R packages for the analysis and comprehension of high-throughput genomic data. Biocon-
ductor started more than 10 years ago, and is widely used (Figure 2.1). It gained credibility for its statistically rigorous
approach to microarray pre-processing and analysis of designed experiments, and integrative and reproducible approaches
to bioinformatic tasks. There are now more than 670 Bioconductor packages for expression and other microarrays, se-
quence analysis, flow cytometry, imaging, and other domains. The Bioconductor web site provides installation, package
repository, help, and other documentation.

The Bioconductor web site is at bioconductor.org. Features include:
� Introductory work flows.

� A manifest of Bioconductor packages arranged in BiocViews.

� Annotation (data bases of relevant genomic information, e.g., Entrez gene ids in model organisms, KEGG pathways)
and experiment data (containing relatively comprehensive data sets and their analysis) packages.

� Mailing lists, including searchable archives, as the primary source of help.

� Course and conference information, including extensive reference material.

� General information about the project.

� Package developer resources, including guidelines for creating and submitting new packages.

Exercise 3
Scavenger hunt. Spend five minutes tracking down the following information.

a. From the Bioconductor web site, instructions for installing or updating Bioconductor packages.

b. A list of all packages in the current release of Bioconductor.

c. The URL of the Bioconductor mailing list subscription page.

Solution: Possible solutions from the Bioconductor web site are, e.g., http://bioconductor.org/install/ (in-

Figure 2.1: Bioconductor Google analytics, 1-month access, 10 December 2012. Left: access by country. Right: daily
access in 2011 (orange) and 2012 (blue).

21

http://bioconductor.org
bioconductor.org
http://bioconductor.org/help/workflows/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/packages/release/BiocViews.html
http://bioconductor.org/packages/release/data/annotation/
http://bioconductor.org/packages/release/data/experiment/
http://bioconductor.org/help/mailing-list/
http://bioconductor.org/help/course-materials/
http://bioconductor.org/about/
http://bioconductor.org/developers/
http://bioconductor.org/install/
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Table 2.1: Selected Bioconductor packages for high-throughput sequence analysis.

Concept Packages
Data representation IRanges, GenomicRanges, Biostrings, BSgenome, VariantAnnotation.
Input / output ShortRead (FASTQ), Rsamtools (BAM), rtracklayer (GFF, WIG, BED), Vari-

antAnnotation (VCF).
Annotation AnnotationHub, biomaRt, GenomicFeatures, TxDb.*, org.*, ChIPpeakAnno,

VariantAnnotation.
Alignment gmapR, Rsubread , Biostrings.
Visualization ggbio, Gviz .
Quality assessment qrqc, seqbias, ReQON, htSeqTools, TEQC , ShortRead .
RNA-seq BitSeq, cqn, cummeRbund , DESeq2 , DEXSeq, EDASeq, edgeR, gage, goseq,

iASeq, tweeDEseq.
ChIP-seq, etc. BayesPeak, baySeq, ChIPpeakAnno, chipseq, ChIPseqR, ChIPsim, CSAR,

DiffBind , MEDIPS , mosaics, NarrowPeaks, nucleR, PICS , PING , REDseq,
Repitools, TSSi .

Variants VariantAnnotation, VariantTools, gmapR
SNPs snpStats, GWASTools, SeqVarTools, hapFabia, GGtools
Copy number cn.mops, genoset, fastseq, CNAnorm, exomeCopy , seqmentSeq.
Motifs MotifDb, BCRANK , cosmo, MotIV , seqLogo, rGADEM.
3C, etc. HiTC , r3Cseq.
Microbiome phyloseq, DirichletMultinomial , clstutils, manta, mcaGUI .
Work flows QuasR, easyRNASeq, ArrayExpressHTS , oneChannelGUI .
Database SRAdb, GEOquery .

stallation instructions), http://bioconductor.org/packages/release/bioc/ (current software packages), http:

//bioconductor.org/help/mailing-list/ (mailing lists).

2.1 Bioconductor for high-throughput sequence analysis

Recent technological developments introduce high-throughput sequencing approaches. A variety of experimental protocols
and analysis work flows address gene expression, regulation, and encoding of genetic variants. Experimental protocols
produce a large number (tens to hundreds of millions per sample) of short (e.g., 35-150, single or paired-end) nucleotide
sequences. These are aligned to a reference or other genome. Analysis work flows use the alignments to infer levels of
gene expression (RNA-seq), binding of regulatory elements to genomic locations (ChIP-seq), or prevalence of structural
variants (e.g., SNPs, short indels, large-scale genomic rearrangements). Sample sizes range from minimal replication
(e.g,. 2 samples per treatment group) to thousands of individuals.

Table 2.1 enumerates many of the packages available for sequence analysis. The table includes packages for repre-
senting sequence-related data (e.g., GenomicRanges, Biostrings), as well as domain-specific analysis such as RNA-seq
(e.g., edgeR, DEXSeq), ChIP-seq (e.g,. ChIPpeakAnno, DiffBind), variants (e.g., VariantAnnotation, VariantTools),
and SNPs and copy number variation (e.g., genoset, ggtools).

S4 Classes and methods Bioconductor makes extensive use of ‘S4’ classes. Essential operations are sketched in
Table 2.2. Bioconductor has tried to develop and use ‘best practices’ for S4 classes. Usually instances are created by a
call to a constructor, such as GRanges (an object representing genomic ranges, with information on sequence, strand,
start, and end coordinate of each range), or are returned by a function call that makes the object ‘behind the scenes’
(e.g., readFastq). Objects can have complicated structure, but users are not expected to have to concern themselves
with the internal representation, just as the details of the S3 object returned by the lm function are not of direct concern.
Instead, one might query the object to retrieve information; functions providing this functionality are sometimes called
accessors, e.g., seqnames; the data that is returned by the accessor may involve some calculation, e.g., querying a data
base, that the user can remain blissfully unaware of. It can be important to appreciate that an object can be related
to other objects, in particular inheriting parts of its internal structure and external behavior from other classes. For

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/gmapR.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/seqbias.html
http://bioconductor.org/packages/release/bioc/html/ReQON.html
http://bioconductor.org/packages/release/bioc/html/htSeqTools.html
http://bioconductor.org/packages/release/bioc/html/TEQC.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/BitSeq.html
http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/cummeRbund.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/gage.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/iASeq.html
http://bioconductor.org/packages/release/bioc/html/tweeDEseq.html
http://bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://bioconductor.org/packages/release/bioc/html/baySeq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://bioconductor.org/packages/release/bioc/html/ChIPsim.html
http://bioconductor.org/packages/release/bioc/html/CSAR.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/MEDIPS.html
http://bioconductor.org/packages/release/bioc/html/mosaics.html
http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/release/bioc/html/nucleR.html
http://bioconductor.org/packages/release/bioc/html/PICS.html
http://bioconductor.org/packages/release/bioc/html/PING.html
http://bioconductor.org/packages/release/bioc/html/REDseq.html
http://bioconductor.org/packages/release/bioc/html/Repitools.html
http://bioconductor.org/packages/release/bioc/html/TSSi.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantTools.html
http://bioconductor.org/packages/release/bioc/html/gmapR.html
http://bioconductor.org/packages/release/bioc/html/snpStats.html
http://bioconductor.org/packages/release/bioc/html/GWASTools.html
http://bioconductor.org/packages/release/bioc/html/SeqVarTools.html
http://bioconductor.org/packages/release/bioc/html/hapFabia.html
http://bioconductor.org/packages/release/bioc/html/GGtools.html
http://bioconductor.org/packages/release/bioc/html/cn.mops.html
http://bioconductor.org/packages/release/bioc/html/genoset.html
http://bioconductor.org/packages/release/bioc/html/fastseq.html
http://bioconductor.org/packages/release/bioc/html/CNAnorm.html
http://bioconductor.org/packages/release/bioc/html/exomeCopy.html
http://bioconductor.org/packages/release/bioc/html/seqmentSeq.html
http://bioconductor.org/packages/release/bioc/html/MotifDb.html
http://bioconductor.org/packages/release/bioc/html/BCRANK.html
http://bioconductor.org/packages/release/bioc/html/cosmo.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://bioconductor.org/packages/release/bioc/html/seqLogo.html
http://bioconductor.org/packages/release/bioc/html/rGADEM.html
http://bioconductor.org/packages/release/bioc/html/HiTC.html
http://bioconductor.org/packages/release/bioc/html/r3Cseq.html
http://bioconductor.org/packages/release/bioc/html/phyloseq.html
http://bioconductor.org/packages/release/bioc/html/DirichletMultinomial.html
http://bioconductor.org/packages/release/bioc/html/clstutils.html
http://bioconductor.org/packages/release/bioc/html/manta.html
http://bioconductor.org/packages/release/bioc/html/mcaGUI.html
http://bioconductor.org/packages/release/bioc/html/QuasR.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/ArrayExpressHTS.html
http://bioconductor.org/packages/release/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://bioconductor.org/packages/release/bioc/html/GEOquery.html
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/help/mailing-list/
http://bioconductor.org/help/mailing-list/
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantTools.html
http://bioconductor.org/packages/release/bioc/html/genoset.html
http://bioconductor.org/packages/release/bioc/html/ggtools.html
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Table 2.2: Using S4 classes and methods.

Best practices
gr <- GRanges() ‘Constructor’; create an instance of the GRanges class
seqnames(gr) ‘Accessor’, extract information from an instance
countOverlaps(gr1, gr2) A method implementing a generic with useful functionality

Older packages
s <- new("MutliSet) A constructor
s@annotation A ‘slot’ accessor

Help
class(gr) Discover class of instance
getClass(gr) Display class structure, e.g., inheritance
showMethods(findOverlaps) Classes for which methods of findOverlaps are implemented
showMethods(class="GRanges", where=search())

Generics with methods implemented for the GRanges class, limited to
currently loaded packages.

class?GRanges Documentation for the GRanges class.
method?"findOverlaps,GRanges,GRanges"

Documentation for the findOverlaps method when the two arguments
are both GRanges instances.

selectMethod(findOverlaps, c("GRanges", "GRanges"))

View source code for the method, including method ‘dispatch’

instance, the GRanges class inherits structure and behavior from the GenomicRanges and IRanges classes. The details
of structural inheritance should not be important to the user, but the fact that once class inherits from another can be
useful information to know especially when navigating the help system.

One often calls a function in which one or more objects are arguments, e.g., countOverlaps can take two GRanges
instances. The role of the function is to transform inputs into outputs. In the case of countOverlaps the transformation
is to summarize the number of ranges in the second argument (the subject function argument) overlap with ranges in
the first argument (the query) argument. This establishes a kind of contract, e.g., the return value of countOverlaps
should be a non-negative integer vector, with as many elements as there are ranges in the query argument, and with a
one-to-one correspondence between elements in the query input argument and the output. Having established such a
contract, it can be convenient to write variations of countOverlaps that fulfill the contract but for different objects,
e.g., when the arguments are instances of class IRanges, which do not have information about chromosomal sequence or
strand. To indicate that the same contract is being fulfilled, and perhaps to simplify software development, one typically
makes countOverlaps a generic function, and implements methods for different types of arguments.

Attending courses and reading vignette pages are obviously an excellent way to get an initial orientation about
available classes and methods. It can be very helpful, as one becomes more proficient, to use the interactive help system
to discover what can be done with the objects one has or the functions one knows about. The showMethods function is
a key entry point into discovery of available methods, e.g., showMethods("countOverlaps") to show methods defined
on the countOverlaps generic, or showMethods(class="GRanges", where=search()) to discover methods available
to transform GRanges instances. The definition of a method can be retrieved as

> selectMethod(countOverlaps, c("GRanges", "GRanges"))

Exercise 4
Load the GenomicRanges package.

a. Use getClass to discover the class structure of GRanges, paying particular attention to inheritance relationships
summarized in the “Extends:” section of the display.

b. Use showMethods to see what methods are defined for the countOverlaps function.

c. There are many methods defined for countOverlaps, but none are listed for the GRanges,GRanges combination
of arguments. Yet countOverlaps does work when provided with two GRanges arguments. Why is that?

Solution: Here we load the package and ask about class structure.

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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> library(GenomicRanges)

> getClass("GRanges")

Class "GRanges" [package "GenomicRanges"]

Slots:

Name: seqnames ranges strand elementMetadata

Class: Rle IRanges Rle DataFrame

Name: seqinfo metadata

Class: Seqinfo list

Extends:

Class "GenomicRanges", directly

Class "Vector", by class "GenomicRanges", distance 2

Class "GenomicRangesORmissing", by class "GenomicRanges", distance 2

Class "Annotated", by class "GenomicRanges", distance 3

Class "GenomicRangesORGRangesList", by class "GenomicRanges", distance 2

GRanges extends several classes, including GenomicRanges. Methods defined on the countOverlaps generic can be
discovered with

> showMethods("countOverlaps")

Function: countOverlaps (package IRanges)

query="ANY", subject="missing"

query="ANY", subject="Vector"

query="GAlignmentPairs", subject="GAlignmentPairs"

query="GAlignmentPairs", subject="Vector"

query="GAlignments", subject="GAlignments"

query="GAlignments", subject="GenomicRanges"

query="GAlignments", subject="GRangesList"

query="GAlignmentsList", subject="GAlignmentsList"

query="GAlignmentsList", subject="Vector"

query="GAlignments", subject="Vector"

query="GenomicRanges", subject="GAlignments"

query="GenomicRanges", subject="GenomicRanges"

query="GenomicRanges", subject="Vector"

query="GRanges", subject="GRangesList"

query="GRangesList", subject="GAlignments"

query="GRangesList", subject="GRanges"

query="GRangesList", subject="GRangesList"

query="GRangesList", subject="Vector"

query="RangedData", subject="RangedData"

query="RangedData", subject="RangesList"

query="RangesList", subject="IntervalForest"

query="RangesList", subject="RangedData"

query="RangesList", subject="RangesList"

query="SummarizedExperiment", subject="SummarizedExperiment"

query="SummarizedExperiment", subject="Vector"

query="Vector", subject="GAlignmentPairs"

query="Vector", subject="GAlignments"

query="Vector", subject="GAlignmentsList"

query="Vector", subject="GenomicRanges"
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query="Vector", subject="GRangesList"

query="Vector", subject="SummarizedExperiment"

query="Vector", subject="ViewsList"

query="ViewsList", subject="Vector"

query="ViewsList", subject="ViewsList"

Note that there is no method defined for the GRanges,GRanges combination of arguments. Yet countOverlaps does
work. . . (skim over the details of these objects; we are using a constructor to make genomic ranges on plus strand of
chromosome 1; there are two ranges in gr0, and one in gr1.

> gr0 <- GRanges("chr1", IRanges(start=c(10, 20), width = 5), "+")

> gr1 <- GRanges("chr1", IRanges(start=12, end=18), "+")

> countOverlaps(gr0, gr1)

[1] 1 0

gr1 overlaps the first range of gr0, but not the second, and we end up with a vector of counts c(1, 0). The reason
that this ‘works’ is because of inheritance – GRanges extends GenomicRanges, and we end up selecting the inherited
method countOverlaps,GenomicRanges,GenomicRanges-method.

Exercise 5
To illustrate how help work with S4 classes and generics, consider the DNAStringSet class complement generic in the
Biostrings package:

> library(Biostrings)

> showMethods(complement)

Function: complement (package Biostrings)

x="DNAString"

x="DNAStringSet"

x="MaskedDNAString"

x="MaskedRNAString"

x="RNAString"

x="RNAStringSet"

x="XStringViews"

(Most) methods defined on the DNAStringSet class of Biostrings and available on the current search path can be found
with S4-showMethods, eval=FALSE = showMethods(class=”DNAStringSet”, where=search()) Obtaining help on S4
classes and methods requires syntax such as

> class ? DNAStringSet

> method ? "complement,DNAStringSet"

The specification of method and class in the latter must not contain a space after the comma.

2.2 Sequencing technologies and work flows

Recent technological developments introduce high-throughput sequencing approaches. A variety of experimental protocols
and analysis work flows address gene expression, regulation, and encoding of genetic variants. Experimental protocols
produce a large number (tens of millions per sample) of short (e.g., 35-150, single or paired-end) nucleotide sequences.
These are aligned to a reference or other genome. Analysis work flows use the alignments to infer levels of gene expression
(RNA-seq), binding of regulatory elements to genomic locations (ChIP-seq), or prevalence of structural variants (e.g.,
SNPs, short indels, large-scale genomic rearrangements). Sample sizes range from minimal replication (e.g,. 2 samples
per treatment group) to thousands of individuals.

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
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Figure 2.2: High-throughput sequencing. Left: Illumina bridge PCR [3]; mis-call errors. Right: Roche 454 [33]; ho-
mopolymer errors.

2.2.1 Technologies

The most common ‘second generation’ technologies readily available to labs are
� Illumina single- and paired-end reads. Short (≈ 100 per end) and very numerous. Flow cell, lane, bar-code.

� Roche 454. 100’s of nucleotides, 100,000’s of reads.

� Life Technologies SOLiD. Unique ‘color space’ model.

� Complete Genomics. Whole genome sequence / variants / etc as a service; end user gets derived results.
Figure 2.2 illustrates Illumina and 454 sequencing. Bioconductor has good support for Illumina and some support for
Roche 454 sequencing products, and very good support for derived data such as aligned reads or called variants; use of
SOLiD color space reads in Bioconductor requires conversion to FASTQ files that undermine the benefit of the color
space model.

All second-generation technologies rely on PCR and other techniques to generate reads from samples that represent
aggregations of many DNA molecules. ‘Third-generation’ technologies shift to single-molecule sequencing, with relevant
players including Pacific Biosciences and IonTorent. This data is not widely available, and will not be discussed further.

The most common data in Bioconductor work flows is from Illumina sequencers. Reads are either single-end or
paired-end. Single-end reads represent 30 − 130 nucleotides sequenced from DNA that has been sheared into ∼ 300
nucleotide fragments. Paired-end reads represent 30 − 130 nucleotide reads that are paired, and from both ends of the
300 nucleotide fragment.

Sequence data can be derived from a tremendous diversity of experiments. Some of the most common include:
RNA-seq Sequencing of reverse-complemented mRNA from the entire expressed transcriptome, typically. Used for

differential expression studies like micro-arrays, or for novel transcript discovery.

DNA-seq Sequencing of whole or targeted (e.g., exome) genomic DNA. Common goals include SNP detection, indel and
other structural polymorphisms, and CNV (copy number variation). DNA-seq is also used for de novo assembly,
but de novo assembly is not an area where Bioconductor contributes.

ChIP-seq ChIP (chromatin immuno-precipitation) is used to enrich genomic DNA for regulatory elements, followed by
sequencing and mapping of the enriched DNA to a reference genome. The initial statistical challenge is to identify
regions where the mapped reads are enriched relative to a sample that did not undergo ChIP[29]; a subsequent
task is to identify differential binding across a designed experiment, e.g., [32].

Metagenomics Metagenomic sequencing generates sequences from samples containing multiple species, typically micro-
bial communities sampled from niches such as the human oral cavity. Goals include inference of species composition
(when sequencing typically targets phylogenetically informative genes such as 16S) or metabolic contribution.

2.2.2 Data and work flows

At a very high level, a typical work flow starts with an sapmles from a designed experiment being sequences to produce
FASTA files of raw reads and their quality scores. These are aligned to a reference genome, with the alignments represented
in BAM files. For DNA-seq experiments, BAM files may be further summarized to called variants represented in VCF
files. For RNA-seq BAM files and VCF files, One typically interprets reads in BAM files or called variants in VCF files
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Table 2.3: Common file types (e.g., http://genome.ucsc.edu/FAQ/FAQformat.html) and Bioconductor packages
used for input.

File Description Package
FASTQ Unaligned sequences: identifier, sequence, and encoded quality score

tuples
ShortRead

BAM Aligned sequences: identifier, sequence, reference sequence name, strand
position, cigar and additional tags

Rsamtools

GFF, GTF Gene annotations: reference sequence name, data source, feature type,
start and end positions, strand, etc.

rtracklayer

BED Range-based annotation: reference sequence name, start, end coordi-
nates.

rtracklayer

WIG, bigWig ‘Continuous’ single-nucleotide annotation. rtracklayer
VCF Called single nucleotide, indel, copy number, and structural variants,

often compressed and indexed (with Rsamtools bgzip, indexTabix)
VariantAnnotation

in terms of known whole-genome annotations, these are represented by GFF, GTF, BED, WIG, or bigWig files. R and
Bioconductor are useful for accessing each of these data types, as summarized in Table 2.3.

Many relevant statistical computations involve extracting summaries of data from BAM (e.g., reads overlapping
regions of interest) or VCF (e.g., variant frequencies across individuals in large population samples) files. Important
statistical issues arising during analysis, (e.g., assessment of quality or technological bias) require access to details of this
data.

Common analyses often use well-established third-party tools for initial stages of the analysis; some of these have Bio-
conductor counterparts that are particularly useful when the question under investigation does not meet the assumptions
of other facilities. Some common work flows (a more comprehensive list is available on the SeqAnswers wiki1) include:
ChIP-seq ChIP-seq experiments typically use DNA sequencing to identify regions of genomic DNA enriched in prepared

samples relative to controls. A central task is thus to identify peaks, with common tools including MACS and
PeakRanger.

RNA-seq In addition to the aligners mentioned above, RNA-seq for differential expression might use the HTSeq2 python
tools for counting reads within regions of interest (e.g., known genes) or a pipeline such as the bowtie (basic
alignment) / tophat (splice junction mapper) / cufflinks (esimated isoform abundance) (e.g., 3) or RSEM4 suite
of tools for estimating transcript abundance.

DNA-seq especially variant calling can be facilitated by software such as the GATK5 toolkit.
There are many R packages that replace or augment the analyses outlined above, as summarized in Table 2.1.

Programs such as those outlined the previous paragraph often rely on information about gene or other structure as
input, or produce information about chromosomal locations of interesting features. The GTF and BED file formats are
common representations of this information. Representing these files as R data structures is often facilitated by the
rtracklayer package. Variants are very commonly represented in VCF (Variant Call Format) files; these are explored in
other Bioconductor tutorials.

2.3 Strings and reads

2.3.1 DNA (and other) Strings with the Biostrings package

The Biostrings package provides tools for working with sequences. The essential data structures are DNAString and
DNAStringSet. The Biostrings package contains additional classes for representing amino acid and general biological
strings. The BSgenome and related packages (e.g., BSgenome.Dmelanogaster.UCSC.dm3) are used to represent whole-
genome sequences. Table 2.5 summarizes common operations; the following exercise explores these packages.

1http://seqanswers.com/wiki/RNA-Seq
2http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
3http://bowtie-bio.sourceforge.net/index.shtml
4http://deweylab.biostat.wisc.edu/rsem/
5http://www.broadinstitute.org/gatk/

http://genome.ucsc.edu/FAQ/FAQformat.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
http://seqanswers.com/wiki/RNA-Seq
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://bowtie-bio.sourceforge.net/index.shtml
http://deweylab.biostat.wisc.edu/rsem/
http://www.broadinstitute.org/gatk/
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Table 2.4: Selected Bioconductor packages for representing strings and reads.

Package Description
Biostrings Classes (e.g., DNAStringSet) and methods (e.g., alphabetFrequency,

pairwiseAlignment) for representing and manipulating DNA and other bio-
logical sequences.

BSgenome Representation and manipulation of large (e.g., whole-genome) sequences.
ShortRead I/O and manipulation of FASTQ files.

Table 2.5: Operations on strings in the Biostrings package.

Function Description
Access length, names Number and names of sequences

[, head, tail, rev Subset, first, last, or reverse sequences
c Concatenate two or more objects
width, nchar Number of letters of each sequence
Views Light-weight sub-sequences of a sequence

Compare ==, !=, match, %in% Element-wise comparison
duplicated, unique Analog to duplicated and unique on character vectors
sort, order Locale-independent sort, order
split, relist Split or relist objects to, e.g., DNAStringSetList

Edit subseq, subseq<- Extract or replace sub-sequences in a set of sequences
reverse, complement Reverse, complement, or reverse-complement DNA
reverseComplement

translate Translate DNA to Amino Acid sequences
chartr Translate between letters
replaceLetterAt Replace letters at a set of positions by new letters
trimLRPatterns Trim or find flanking patterns

Count alphabetFrequency Tabulate letter occurrence
letterFrequency

letterFrequencyInSlidingView

consensusMatrix Nucleotide × position summary of letter counts
dinucleotideFrequency 2-mer, 3-mer, and k-mer counting
trinucleotideFrequency

oligonucleotideFrequency

nucleotideFrequencyAt Nucleotide counts at fixed sequence positions
Match matchPattern, countPattern Short patterns in one or many (v*) sequences

vmatchPattern, vcountPattern
matchPDict, countPDict Short patterns in one or many (v*) sequences (mismatch only)
whichPDict, vcountPDict
vwhichPDict

pairwiseAlignment Needleman-Wunsch, Smith-Waterman, etc. pairwise alignment
matchPWM, countPWM Occurrences of a position weight matrix
matchProbePair Find left or right flanking patterns
findPalindromes Palindromic regions in a sequence. Also

findComplementedPalindromes

stringDist Levenshtein, Hamming, or pairwise alignment scores
I/0 readDNAStringSet FASTA (or sequence only from FASTQ). Also

readBStringSet, readRNAStringSet, readAAStringSet
writeXStringSet

writePairwiseAlignments Write pairwiseAlignment as “pair” format
readDNAMultipleAlignment Multiple alignments (FASTA, “stockholm”, or “clustal”). Also

readRNAMultipleAlignment, readAAMultipleAlignment
write.phylip

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
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Exercise 6
The objective of this exercise is to calculate the GC content of the exons of a single gene. We jump into the middle of
some of the data structures common in Bioconductor; these are introduced more thoroughly in later exercises..

Load the BSgenome.Dmelanogaster.UCSC.dm3 data package, containing the UCSC representation of D. melanogaster
genome assembly dm3. Discover the content of the package by evaluating Dmelanogaster.

Load the SequenceAnalysisData package, and evaluate the command data(ex) to load an example of a GRangesList
object. the GRangesList represents coordinates of exons in the D. melanogaster genome, grouped by gene.

Look at ex[1]. These are the genomic coordinates of the first gene in the ex object. Load the D. melanogaster
chromosome that this gene is on by subsetting the Dmelanogaster object.

Use Views to create views on to the chromosome that span the start and end coordinates of all exons in the first
gene; the start and end coordinates are accessed with start(ex[[1]]) and similar.

Develop a function gcFunction to calculate GC content. Use this to calculate the GC content in each of the exons.

Solution: Here we load the D. melanogaster genome, select a single chromosome, and create Views that reflect the
ranges of the FBgn0002183.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> Dmelanogaster

Fly genome

|

| organism: Drosophila melanogaster (Fly)

| provider: UCSC

| provider version: dm3

| release date: Apr. 2006

| release name: BDGP Release 5

|

| single sequences (see '?seqnames'):

| chr2L chr2R chr3L chr3R chr4 chrX chrU

| chrM chr2LHet chr2RHet chr3LHet chr3RHet chrXHet chrYHet

| chrUextra

|

| multiple sequences (see '?mseqnames'):

| upstream1000 upstream2000 upstream5000

|

| (use the '$' or '[[' operator to access a given sequence)

> library(SequenceAnalysisData)

> data(ex)

> ex[1]

GRangesList of length 1:

$FBgn0002183

GRanges with 9 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr3L [1871574, 1871917] -

[2] chr3L [1872354, 1872470] -

[3] chr3L [1872582, 1872735] -

[4] chr3L [1872800, 1873062] -

[5] chr3L [1873117, 1873983] -

[6] chr3L [1874041, 1875218] -

[7] chr3L [1875287, 1875586] -

[8] chr3L [1875652, 1875915] -

[9] chr3L [1876110, 1876336] -

http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
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---

seqlengths:

chr2L chr2LHet chr2R chr2RHet ... chrXHet chrYHet chrM

23011544 368872 21146708 3288761 ... 204112 347038 19517

> nm <- "chr3L"

> chr <- Dmelanogaster[[nm]]

> v <- Views(chr, start=start(ex[[1]]), end=end(ex[[1]]))

Here is the gcFunction helper function to calculate GC content:

> gcFunction <-

+ function(x)

+ {

+ alf <- alphabetFrequency(x, as.prob=TRUE)

+ rowSums(alf[,c("G", "C")])

+ }

The gcFunction is really straight-forward: it invokes the function alphabetFrequency from the Biostrings package.
This returns a simple matrix of exon × nucleotide probabilities. The row sums of the G and C columns of this matrix are
the GC contents of each exon.

The subject GC content is

> subjectGC <- gcFunction(v)

2.3.2 Reads and the ShortRead package

Short read formats The Illumina GAII and HiSeq technologies generate sequences by measuring incorporation of
florescent nucleotides over successive PCR cycles. These sequencers produce output in a variety of formats, but FASTQ
is ubiquitous. Each read is represented by a record of four components:

@SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

+SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

The first and third lines (beginning with @ and + respectively) are unique identifiers. The second and fourth lines are
the nucleotides and qualities of each cycle in the read. This information is given in 5’ to 3’ orientation as seen by the
sequencer. A letter N in the sequence is used to signify bases that the sequencer was not able to call. The fourth line of
the FASTQ record encodes the quality (confidence) of the corresponding base call. The quality score is encoded following
one of several conventions, with the general notion being that letters later in the visible ASCII alphabet

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO

PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

are of higher quality; this is developed further below. Both the sequence and quality scores may span multiple lines.

Short reads in R The ShortRead package provides tools for working with short reads. Data can be input using
readFastq or FastqSampler and FastqStreamer; the later are preferred because they allow input of subsets of these
large files. Functions for accessing the read and quality scores are provided, as are other methods to perform common
operations (Tabl 2.6. Reads and quality scores are represented by DNAStringSet and related objects, so the methods in
Table 2.6 are available.

Exercise 7
Use the file path bigdata and the file.path and dir functions to locate the fastq file from [4] (the file was obtained
as described in the pasilla experiment data package).

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
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Table 2.6: Operations on FASTQ (and FASTA) files from the ShortRead and Rsamtools packages (see also Table 2.5).

Function Description
Classes FaFile Reference a FASTA flie

FastqFile Reference a FASTQ file
ShortReadQ Read and quality scores

I/O readFastq, writeFastq Read and write fastq files
FastqSampler, FastqStreamer Sample from or iterate through a large file
scanFa Selectively input an (indexed) FASTA file
razip Compress a FASTA file for random access

Access sread, quality, id Reads, quality scores, and identifiers
Calculation alphabetByCycle Nucleotide frequency by cycle

alphabetScore Log read score across cycle
tables Tabulate read occurrence

Quality SRFilter Filter reads based on diverse criteria
trimEnds, trimTails, trimTailw Trim reads based on quality.
qa, report Prepare a quality report

Input the fastq files using readFastq from the ShortRead package.
Use alphabetFrequency to summarize the GC content of all reads (hint: use the sread accessor to extract the

reads, and the collapse=TRUE argument to the alphabetFrequency function). Using the helper function gcFunction

defined elsewhere in this document, draw a histogram of the distribution of GC frequencies across reads.
Use alphabetByCycle to summarize the frequency of each nucleotide, at each cycle. Plot the results using matplot,

from the graphics package.
As an advanced exercise, and if on Mac or Linux, use the parallel package and mclapply to read and summarize the

GC content of reads in two files in parallel.

Solution: Discovery:

> library(ShortRead)

> bigdata <- system.file("bigdata", package="SequenceAnalysisData")

> dir(bigdata)

[1] "bam" "fastq"

> fls <- dir(file.path(bigdata, "fastq"), full=TRUE)

Input:

> fq <- readFastq(fls[1])

GC content:

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE, collapse=TRUE)

> sum(alf0[c("G", "C")])

[1] 0.5457237

A histogram of the GC content of individual reads is obtained with

> gc <- gcFunction(sread(fq))

> hist(gc)

Alphabet by cycle:

> abc <- alphabetByCycle(sread(fq))

> matplot(t(abc[c("A", "C", "G", "T"),]), type="l")

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
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Advanced (Mac, Linux only): processing on multiple cores.

> library(parallel)

> gc0 <- mclapply(fls, function(fl) {

+ fq <- readFastq(fl)

+ gc <- gcFunction(sread(fq))

+ table(cut(gc, seq(0, 1, .05)))

+ })

> ## simplify list of length 2 to 2-D array

> gc <- simplify2array(gc0)

> matplot(gc, type="s")

Exercise 8
Use quality to extract the quality scores of the short reads. Interpret the encoding qualitatively.

Convert the quality scores to a numeric matrix, using as. Inspect the numeric matrix (e.g., using dim) and understand
what it represents.

Use colMeans to summarize the average quality score by cycle. Use plot to visualize this.

Solution:

> head(quality(fq))

class: FastqQuality

quality:

A BStringSet instance of length 6

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+

[4] 37 IIIIIIIIIIIIIIIIIIIIIIII,II*E,&4HI++B

[5] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII&.$

[6] 37 III.IIIIIIIIIIIIIIIIIII%IIE(-EIH<IIII

> qual <- as(quality(fq), "matrix")

> dim(qual)

[1] 1000000 37

> plot(colMeans(qual), type="b")

Exercise 9
As an independent exercise, visit the qrqc landing page and explore the package vignette. Use the qrqc package (you
may need to install this) to generate base and average quality plots for the data, like those in the report generated by
ShortRead.

2.4 Ranges and alignments

Ranges describe both features of interest (e.g., genes, exons, promoters) and reads aligned to the genome. Bioconductor
has very powerful facilities for working with ranges, some of which are summarized in Table 2.7.

http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
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Table 2.7: Selected Bioconductor packages for representing and manipulating ranges.

Package Description
IRanges Defines important classes (e.g., IRanges, Rle) and methods (e.g., findOverlaps,

countOverlaps) for representing and manipulating ranges of consecutive values.
Also introduces DataFrame, SimpleList and other classes tailored to representing
very large data.

GenomicRanges Range-based classes tailored to sequence representation (e.g., GRanges, GRanges-
List), with information about strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic ranges, e.g., representing coor-
dinates and organization of exons and transcripts of known genes.

2.4.1 Ranges and the GenomicRanges package

Next-generation sequencing data consists of a large number of short reads. These are, typically, aligned to a reference
genome. Basic operations are performed on the alignment, asking e.g., how many reads are aligned in a genomic range
defined by nucleotide coordinates (e.g., in the exons of a gene), or how many nucleotides from all the aligned reads cover
a set of genomic coordinates. How is this type of data, the aligned reads and the reference genome, to be represented in
R in a way that allows for effective computation?

The IRanges, GenomicRanges, and GenomicFeatures Bioconductor packages provide the essential infrastructure for
these operations; we start with the GRanges class, defined in GenomicRanges.

GRanges Instances of GRanges are used to specify genomic coordinates. Suppose we wish to represent two D.
melanogaster genes. The first is located on the positive strand of chromosome 3R, from position 19967117 to 19973212.
The second is on the minus strand of the X chromosome, with ‘left-most’ base at 18962306, and right-most base at
18962925. The coordinates are 1-based (i.e., the first nucleotide on a chromosome is numbered 1, rather than 0),
left-most (i.e., reads on the minus strand are defined to ‘start’ at the left-most coordinate, rather than the 5’ coordinate),
and closed (the start and end coordinates are included in the range; a range with identical start and end coordinates
has width 1, a 0-width range is represented by the special construct where the end coordinate is one less than the start
coordinate).

A complete definition of these genes as GRanges is:

> genes <- GRanges(seqnames=c("3R", "X"),

+ ranges=IRanges(

+ start=c(19967117, 18962306),

+ end=c(19973212, 18962925)),

+ strand=c("+", "-"),

+ seqlengths=c(`3R`=27905053L, `X`=22422827L))

The components of a GRanges object are defined as vectors, e.g., of seqnames, much as one would define a data.frame.
The start and end coordinates are grouped into an IRanges instance. The optional seqlengths argument specifies
the maximum size of each sequence, in this case the lengths of chromosomes 3R and X in the ‘dm2’ build of the D.
melanogaster genome. This data is displayed as

> genes

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 3R [19967117, 19973212] +

[2] X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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For the curious, the gene coordinates and sequence lengths are derived from the org.Dm.eg.db package for genes with
Flybase identifiers FBgn0039155 and FBgn0085359, using the annotation facilities described in Chapter 6.1.

The GRanges class has many useful methods defined on it. Consult the help page

> ?GRanges

and package vignettes (especially ‘An Introduction to GenomicRanges’)

> vignette(package="GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with accessors for getting and updating information.

> genes[2]

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

> strand(genes)

factor-Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

> width(genes)

[1] 6096 620

> length(genes)

[1] 2

> names(genes) <- c("FBgn0039155", "FBgn0085359")

> genes # now with names

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

FBgn0039155 3R [19967117, 19973212] +

FBgn0085359 X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

strand returns the strand information in a compact representation called a run-length encoding, this is introduced in
greater detail below. The ‘names’ could have been specified when the instance was constructed; once named, the GRanges
instance can be subset by name like a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges class by adding information about
seqnames, strand, and other information particularly relevant to representing ranges that are on genomes. The IRanges
class and related data structures (e.g., RangedData) are meant as a more general description of ranges defined in an
arbitrary space. Many methods implemented on the GRanges class are ‘aware’ of the consequences of genomic location,
for instance treating ranges on the minus strand differently (reflecting the 5’ orientation imposed by DNA) from ranges
on the plus strand.

http://bioconductor.org/packages/release/data/annotation/html/org.Dm.eg.db.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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Figure 2.3: Ranges

Operations on ranges The GRanges class has many useful methods from the IRanges class; some of these methods
are illustrated here. We use IRanges to illustrate these operations to avoid complexities associated with strand and
seqnames, but the operations are comparable on GRanges. We begin with a simple set of ranges:

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

+ end=c(15, 11, 12, 18, 26, 27, 28))

These and some common operations are illustrated in the upper panel of Figure 2.3 and summarized in Table 2.8.
Methods on ranges can be grouped as follows:

Intra-range methods act on each range independently. These include flank, narrow, reflect, resize, restrict,
and shift, among others. An illustration is shift, which translates each range by the amount specified by the
shift argument. Positive values shift to the right, negative to the left; shift can be a vector, with each element
of the vector shifting the corresponding element of the IRanges instance. Here we shift all ranges to the right by
5, with the result illustrated in the middle panel of Figure 2.3.

> shift(ir, 5)

IRanges of length 7

start end width

[1] 12 20 9

[2] 14 16 3

[3] 17 17 1

[4] 19 23 5

[5] 27 31 5

[6] 28 32 5

[7] 29 33 5

Inter-range methods act on the collection of ranges as a whole. These include disjoin, reduce, gaps, and range.
An illustration is reduce, which reduces overlapping ranges into a single range, as illustrated in the lower panel of
Figure 2.3.

> reduce(ir)

IRanges of length 2

start end width

[1] 7 18 12

[2] 22 28 7

coverage is an inter-range operation that calculates how many ranges overlap individual positions. Rather than
returning ranges, coverage returns a compressed representation (run-length encoding)

> coverage(ir)
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Table 2.8: Common operations on IRanges, GRanges and GRangesList.

Category Function Description
Accessors start, end, width Get or set the starts, ends and widths

names Get or set the names
mcols, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end

Ordering <, <=, >, >=, ==, != Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates

Arithmetic r + x, r - x, r * x Shrink or expand ranges r by number x
shift Move the ranges by specified amount
resize Change width, anchoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end

Set operations reduce Merge overlapping and adjacent ranges
intersect, union, setdiff Set operations on reduced ranges
pintersect, punion, psetdiff Parallel set operations, on each x[i], y[i]
gaps, pgap Find regions not covered by reduced ranges
disjoin Ranges formed from union of endpoints

Overlaps findOverlaps Find all overlaps for each x in y

countOverlaps Count overlaps of each x range in y

nearest Find nearest neighbors (closest endpoints)
precede, follow Find nearest y that x precedes or follows
x %in% y Find ranges in x that overlap range in y

Coverage coverage Count ranges covering each position
Extraction r[i] Get or set by logical or numeric index

r[[i]] Get integer sequence from start[i] to end[i]

subsetByOverlaps Subset x for those that overlap in y

head, tail, rev, rep Conventional R semantics
Split, combine split Split ranges by a factor into a RangesList

c Concatenate two or more range objects

integer-Rle of length 28 with 12 runs

Lengths: 6 2 4 1 2 3 3 1 1 3 1 1

Values : 0 1 2 1 2 1 0 1 2 3 2 1

The run-length encoding can be interpreted as ‘a run of length 6 of nucleotides covered by 0 ranges, followed by a
run of length 2 of nucleotides covered by 1 range. . . ’.

Between methods act on two (or sometimes more) IRanges instances. These include intersect, setdiff, union,
pintersect, psetdiff, and punion.
The countOverlaps and findOverlaps functions operate on two sets of ranges. countOverlaps takes its first
argument (the query) and determines how many of the ranges in the second argument (the subject) each overlaps.
The result is an integer vector with one element for each member of query. findOverlaps performs a similar
operation but returns a more general matrix-like structure that identifies each pair of query / subject overlaps.
Both arguments allow some flexibility in the definition of ‘overlap’.

Common operations on ranges are summarized in Table 2.8.

mcols and metadata The GRanges class (actually, most of the data structures defined or extending those in the
IRanges package) has two additional very useful data components. The mcols function allows information on each range
to be stored and manipulated (e.g., subset) along with the GRanges instance. The element metadata is represented as

http://bioconductor.org/packages/release/bioc/html/IRanges.html
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a DataFrame, defined in IRanges and acting like a standard R data.frame but with the ability to hold more complicated
data structures as columns (and with element metadata of its own, providing an enhanced alternative to the Biobase
class AnnotatedDataFrame).

> mcols(genes) <- DataFrame(EntrezId=c("42865", "2768869"),

+ Symbol=c("kal-1", "CG34330"))

metadata allows addition of information to the entire object. The information is in the form of a list; any data can be
provided.

> metadata(genes) <-

+ list(CreatedBy="A. User", Date=date())

GRangesList The GRanges class is extremely useful for representing simple ranges. Some next-generation sequence
data and genomic features are more hierarchically structured. A gene may be represented by several exons within it. An
aligned read may be represented by discontinuous ranges of alignment to a reference. The GRangesList class represents
this type of information. It is a list-like data structure, which each element of the list itself a GRanges instance. The
gene FBgn0039155 contains several exons, and can be represented as a list of length 1, where the element of the list
contains a GRanges object with 7 elements:

GRangesList of length 1:

$FBgn0039155

GRanges with 7 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr3R [19967117, 19967382] + | 50486 <NA>

[2] chr3R [19970915, 19971592] + | 50487 <NA>

[3] chr3R [19971652, 19971770] + | 50488 <NA>

[4] chr3R [19971831, 19972024] + | 50489 <NA>

[5] chr3R [19972088, 19972461] + | 50490 <NA>

[6] chr3R [19972523, 19972589] + | 50491 <NA>

[7] chr3R [19972918, 19973212] + | 50492 <NA>

---

seqlengths:

chr3R

27905053

The GRangesList object has methods one would expect for lists (e.g., length, sub-setting). Many of the methods
introduced for working with IRanges are also available, with the method applied element-wise.

The GenomicFeatures package Many public resources provide annotations about genomic features. For instance,
the UCSC genome browser maintains the ‘knownGene’ track of established exons, transcripts, and coding sequences of
many model organisms. The GenomicFeatures package provides a way to retrieve, save, and query these resources. The
underlying representation is as sqlite data bases, but the data are available in R as GRangesList objects. The following
exercise explores the GenomicFeatures package and some of the functionality for the IRanges family introduced above.

Exercise 10
Load the TxDb.Dmelanogaster.UCSC.dm3.ensGene annotation package, and create an alias txdb pointing to the Tran-
scriptDb object this class defines.

Extract all exon coordinates, organized by gene, using exonsBy. What is the class of this object? How many elements
are in the object? What does each element correspond to? And the elements of each element? Use elementLengths

and table to summarize the number of exons in each gene, for instance, how many single-exon genes are there?
Select just those elements corresponding to flybase gene ids FBgn0002183, FBgn0003360, FBgn0025111, and

FBgn0036449. Use reduce to simplify gene models, so that exons that overlap are considered ‘the same’.

Solution:

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/Biobase.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Dmelanogaster.UCSC.dm3.ensGene.html
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> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene # alias

> ex0 <- exonsBy(txdb, "gene")

> head(table(elementLengths(ex0)))

1 2 3 4 5 6

3161 2845 2157 1678 1172 929

> ids <- c("FBgn0002183", "FBgn0003360", "FBgn0025111", "FBgn0036449")

> ex <- reduce(ex0[ids])

2.4.2 Alignments and the Rsamtools Package

Most down-stream analysis of short read sequences is based on reads aligned to reference genomes.

Alignment formats Most main-stream aligners produce output in SAM (text-based) or BAM format. A SAM file is a
text file, with one line per aligned read, and fields separated by tabs. Here is an example of a single SAM line, split into
fields.

> fl <- system.file("extdata", "ex1.sam", package="Rsamtools")

> strsplit(readLines(fl, 1), "\t")[[1]]

[1] "B7_591:4:96:693:509"

[2] "73"

[3] "seq1"

[4] "1"

[5] "99"

[6] "36M"

[7] "*"

[8] "0"

[9] "0"

[10] "CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG"

[11] "<<<<<<<<<<<<<<<;<<<<<<<<<5<<<<<;:<;7"

[12] "MF:i:18"

[13] "Aq:i:73"

[14] "NM:i:0"

[15] "UQ:i:0"

[16] "H0:i:1"

[17] "H1:i:0"

Fields in a SAM file are summarized in Table 2.9. We recognize from the FASTQ file the identifier string, read sequence
and quality. The alignment is to a chromosome ‘seq1’ starting at position 1. The strand of alignment is encoded in the
‘flag’ field. The alignment record also includes a measure of mapping quality, and a CIGAR string describing the nature
of the alignment. In this case, the CIGAR is 36M, indicating that the alignment consisted of 36 Matches or mismatches,
with no indels or gaps; indels are represented by I and D; gaps (e.g., from alignments spanning introns) by N.

BAM files encode the same information as SAM files, but in a format that is more efficiently parsed by software;
BAM files are the primary way in which aligned reads are imported in to R.

Aligned reads in R Important classes and methods for working with aligned reads are summarized in Table 2.10. The
readGAlignments function from the GenomicRanges package reads essential information from a BAM file in to R. The
result is an instance of the GAlignments class. The GAlignments class has been designed to allow useful manipulation
of many reads (e.g., 20 million) under moderate memory requirements (e.g., 4 GB).

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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Table 2.9: Fields in a SAM record. From http://samtools.sourceforge.net/samtools.shtml

Field Name Value
1 QNAME Query (read) NAME
2 FLAG Bitwise FLAG, e.g., strand of alignment
3 RNAME Reference sequence NAME
4 POS 1-based leftmost POSition of sequence
5 MAPQ MAPping Quality (Phred-scaled)
6 CIGAR Extended CIGAR string
7 MRNM Mate Reference sequence NaMe
8 MPOS 1-based Mate POSition
9 ISIZE Inferred insert SIZE
10 SEQ Query SEQuence on the reference strand
11 QUAL Query QUALity
12+ OPT OPTional fields, format TAG:VTYPE:VALUE

Table 2.10: Input, representation, and manipulation of aligned reads from the Rsamtools and GenomicRanges packages;
most GRanges operations are also supported.

Category Function Description
Classes GAlignments Single-end reads, see ?GAlignments

GAlignmentPairs Strict paired-end reads, ?GAlignmentPairs
GAlignmentsList Paired-end reads, ?GAlignmentsList
BamFile, BamFileList BAM file reference
ScanBamParam Select regions and fields for input, ?ScanBamParam

Input scanBamHeader Header summary
seqinfo ‘rname’s and lengths
readGAlignments* Simple BAM file input
readBamGAlignments* Selective BAM input and iteration
scanBam ‘Low-level’ input
applyPileups Per-nucleotide iteration

File manipulation
countBam, quickCountBam Summarize file content
filterBam Filter one BAM file to another
sortBam Sort by position or ‘qname’
indexBam Create an index

> alnFile <- system.file("extdata", "ex1.bam", package="Rsamtools")

> aln <- readGAlignments(alnFile)

> head(aln, 3)

GAlignments with 3 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] seq1 + 36M 36 1 36 36

[2] seq1 + 35M 35 3 37 35

[3] seq1 + 35M 35 5 39 35

ngap

<integer>

[1] 0

[2] 0

[3] 0

---

seqlengths:

http://samtools.sourceforge.net/samtools.shtml
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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seq1 seq2

1575 1584

The readGAlignments function takes an additional argument, param, allowing the user to specify regions of the BAM
file (e.g., known gene coordinates) from which to extract alignments.

A GAlignments instance is like a data frame, but with accessors as suggested by the column names. It is easy to
query, e.g., the distribution of reads aligning to each strand, the width of reads, or the cigar strings

> table(strand(aln))

+ - *

1647 1624 0

> table(width(aln))

30 31 32 33 34 35 36 38 40

2 21 1 8 37 2804 285 1 112

> head(sort(table(cigar(aln)), decreasing=TRUE))

35M 36M 40M 34M 33M 14M4I17M

2804 283 112 37 6 4

Exercise 11
Use bigdata, file.path and dir to obtain file paths to the BAM files. These are a subset of the aligned reads,
overlapping just four genes.

Input the aligned reads from one file using readGAlignments. Explore the reads, e.g., using table or xtabs, to
summarize which chromosome and strand the subset of reads is from.

The object ex created earlier contains coordinates of four genes. Use countOverlaps to first determine the number
of genes an individual read aligns to, and then the number of uniquely aligning reads overlapping each gene. Since the
RNAseq protocol was not strand-sensitive, set the strand of aln to *.

Write the sequence of steps required to calculate counts as a simple function, and calculate counts on each file. On
Mac or Linux, can you easily parallelize this operation?

Solution: We discover the location of files using standard R commands:

> bigdata <- system.file("bigdata", package="SequenceAnalysisData")

> fls <- dir(file.path(bigdata, "bam"), ".bam$", full=TRUE) #$

> names(fls) <- sub("_.*", "", basename(fls))

Use readGAlignments to input data from one of the files, and standard R commands to explore the data.

> ## input

> aln <- readGAlignments(fls[1])

> xtabs(~seqnames + strand, as.data.frame(aln))

strand

seqnames - +

chr3L 5974 5402

chrX 2283 2278

To count overlaps in regions defined in a previous exercise, load the regions.

> data(ex) # from an earlier exercise

Many RNA-seq protocols are not strand aware, i.e., reads align to the plus or minus strand regardless of the strand on
which the corresponding gene is encoded. Adjust the strand of the aligned reads to indicate that the strand is not known.

> strand(aln) <- "*" # protocol not strand-aware
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One important issue when counting reads is to make sure that the reference names in both the annotation and the
read files are identical.

Exercise 12
Check the reference name in both the ex and aln. If they are not similar, how could you correct them?

For simplicity, we are interested in reads that align to only a single gene. Count the number of genes a read aligns
to. . .

> hits <- countOverlaps(aln, ex)

> table(hits)

hits

0 1 2

772 15026 139

and reverse the operation to count the number of times each region of interest aligns to a uniquely overlapping alignment.

> cnt <- countOverlaps(ex, aln[hits==1])

A simple function for counting reads (see GenomicRangese::summarizeOverlaps for greater detail) is

> counter <-

+ function(filePath, range)

+ {

+ aln <- readGAlignments(filePath)

+ strand(aln) <- "*"

+ hits <- countOverlaps(aln, range)

+ countOverlaps(range, aln[hits==1])

+ }

This can be applied to all files using sapply

> counts <- sapply(fls, counter, ex)

The counts in one BAM file are independent of counts in another BAM file. This encourages us to count reads in
each BAM file in parallel, decreasing the length of time required to execute our program. On Linux and Mac OS, a
straight-forward way to parallelize this operation is:

> if (require(parallel))

+ simplify2array(mclapply(fls, counter, ex))

2.5 Integrating data and annotations: SummarizedExperiment

The SummarizedExperiment class represents one way to integrate information on samples (e.g., covariates, treatment
group), ranges of interest, and derived measurements. This class contains a list of assay matrix elements, each with the
same dimension and corresponding to an analysis performed on regions of interest (rowData, represented by a GRanges
or GRangesList instance) across samples (colData, a DataFrame describing sample attributes). The SummarizedExperi-
ment class is designed so that it behaves in important ways like a GenomicRanges instance, e.g., subsetByOverlaps can
be used to select the subset of rows in the SummarizedExperiment instance that overlap annotated regions of interest.
By tightly coupling the row and column annotations with the assay data, one reduces the consequences of clerical or
other errors and greatly facilitates development of reproducible work flows.



Chapter 3

Working with large data

Bioinformatics data is now very large; it is not reasonable to expect all of a FASTQ or BAM file, for instance, to fit into
memory. How is this data to be processed? This challenge confronts us in whatever language or tool we are using. In
R and Bioconductor , the main approaches are to: (1) write efficient R code; (2) restrict data input to the interesting
subset of the larger data set; (3) sample from the large data, knowing that an appropriately sized sample will accurately
estimate statistics we are interested in; (4) iterate through large data in chunks; and (5) use parallel evaluation on one
or several computers. Let’s look at each of these approaches.

3.1 Efficient R code

There are often many ways to accomplish a result in R, but these different ways often have very different speed or memory
requirements. For small data sets these performance differences are not that important, but for large data sets (e.g.,
high-throughput sequencing; genome-wide association studies, GWAS) or complicated calculations (e.g., bootstrapping)
performance can be important. Several approaches to achieving efficient R programming are summarized in Table 3.1;
common tools used to help with assessing performance (including comparison of results from different implementations!)
are in Table 3.2.

Easy solutions Several common performance bottlenecks often have easy solutions; these are outlined here.

Table 3.1: Common ways to improve efficiency of R code.

Easy
1. Selective input

2. Vectorize

3. Pre-allocate and fill

4. Avoid expensive conveniences

Moderate
1. Know relevant packages

2. Understand algorithm complexity

3. Use parallel evaluation

4. Exploit libraries and C++ code

Table 3.2: Tools for measuring performance.

Function Description
identical Compare content of objects.
all.equal

system.time Time required to evaluate an expression
Rprof Time spent in each function; also summaryRprof.
tracemem Indicate when memory copies occur (R must be configured to support this).
rbenchmark Packages for standardizing speed measurment
microbenchmark

42
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Text files often contain more information, for example 1000’s of individuals at millions of SNPs, when only a subset
of the data is required, e.g., during algorithm development. Reading in all the data can be demanding in terms of both
memory and time. A solution is to use arguments such as colClasses to specify the columns and their data types that
are required, and to use nrow to limit the number of rows input. For example, the following ignores the first and fourth
column, reading in only the second and third (as type integer and numeric).

> ## not evaluated

> colClasses <-

+ c("NULL", "integer", "numeric", "NULL")

> df <- read.table("myfile", colClasses=colClasses)

R is vectorized, so traditional programming for loops are often not necessary. Rather than calculating 100000 random
numbers one at a time, or squaring each element of a vector, or iterating over rows and columns in a matrix to calculate
row sums, invoke the single function that performs each of these operations.

> x <- runif(100000); x2 <- x^2

> m <- matrix(x2, nrow=1000); y <- rowSums(m)

This often requires a change of thinking, turning the sequence of operations ‘inside-out’. For instance, calculate the log
of the square of each element of a vector by calculating the square of all elements, followed by the log of all elements x2
<- x^2; x3 <- log(x2), or simply logx2 <- log(x^2).

It may sometimes be natural to formulate a problem as a for loop, or the formulation of the problem may require
that a for loop be used. In these circumstances the appropriate strategy is to pre-allocate the result object, and to fill
the result in during loop iteration.

> ## not evaluated

> result <- numeric(nrow(df))

> for (i in seq_len(nrow(df)))

+ result[[i]] <- some_calc(df[i,])

Failure to pre-allocate and fill is the second cirle of R hell [6].
Some R operations are helpful in general, but misleading or inefficient in particular circumstances. An example is the

behavior of unlist when the list is named – R creates new names that have been made unique. This can be confusing
(e.g., when Entrez gene identifiers are ‘mangled’ to unintentionally look like other identifiers) and expensive (when a
large number of new names need to be created). Avoid creating unnecessary names, e.g.,

> unlist(list(a=1:2)) # name 'a' becomes 'a1', 'a2'

a1 a2

1 2

> unlist(list(a=1:2), use.names=FALSE) # no names

[1] 1 2

Names can be very useful for avoiding book-keeping errors, but are inefficient for repeated look-ups; use vectorized access
or numeric indexing.

Moderate solutions Several solutions to inefficient code require greater knowledge to implement.
Using appropriate functions can greatly influence performance; it takes experience to know when an appropriate

function exists. For instance, the lm function could be used to assess differential expression of each gene on a microarray,
but the limma package implements this operation in a way that takes advantage of the experimental design that is
common to each probe on the microarray, and does so in a very efficient manner.

> ## not evaluated

> library(limma) # microarray linear models

> fit <- lmFit(eSet, design)
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Using appropriate algorithms can have significant performance benefits, especially as data becomes larger. This
solution requires moderate skills, because one has to be able to think about the complexity (e.g., expected number of
operations) of an algorithm, and to identify algorithms that accomplish the same goal in fewer steps. For example, a
naive way of identifying which of 100 numbers are in a set of size 10 might look at all 100× 10 combinations of numbers
(i.e., polynomial time), but a faster way is to create a ‘hash’ table of one of the set of elements and probe that for each
of the other elements (i.e., linear time). The latter strategy is illustrated with

> x <- 1:100; s <- sample(x, 10)

> inS <- x %in% s

R supports parallel evaluation, most easily through the mclapply function of the parallel package distributed with
base R (mclapply is unfortunately not available on Windows). Parallel evaluation is discussed further in Chapter 3.

R is an interpreted language, and for very challenging computational problems it may be appropriate to write critical
stages of an analysis in a compiled language like C or Fortran, or to use an existing programming library (e.g., the
BOOST library) that efficiently implements advanced algorithms. R has a well-developed interface to C or Fortran, so it
is ‘easy’ to do this; the Rcpp package provides a very nice approach for those familiar with C++ concepts. This places
a significant burden on the person implementing the solution, requiring knowledge of two or more computer languages
and of the interface between them.

Measuring performance When trying to improve performance, one wants to ensure (a) that the new code is actually
faster than the previous code, and (b) both solutions arrive at the same, correct, answer.

The system.time function is a straight-forward way to measure the length of time a portion of code takes to evaluate.

> m <- matrix(runif(200000), 20000)

> system.time(apply(m, 1, sum))

user system elapsed

0.104 0.004 0.107

When comparing performance of different functions, it is appropriate to replicate timings to average over vagaries of
system use, and to shuffle the order in which timings of alternative algorithms are calculated to avoid artifacts such as
initial memory allocation. Rather than creating ad hoc approaches to timing, it is convenient to use packages such as
rbenchmark:

> library(rbenchmark)

> f0 <- function(x) apply(x, 1, sum)

> f1 <- function(x) rowSums(x)

> benchmark(f0(m), f1(m),

+ columns=c("test", "elapsed", "relative"),

+ replications=5)

test elapsed relative

1 f0(m) 0.524 131

2 f1(m) 0.004 1

Speed is an important metric, but equivalent results are also needed. The functions identical and all.equal

provide different levels of assessing equivalence, with all.equal providing ability to ignore some differences, e.g., in the
names of vector elements.

> res1 <- apply(m, 1, sum)

> res2 <- rowSums(m)

> identical(res1, res2)

[1] TRUE

> identical(c(1, -1), c(x=1, y=-1))

[1] FALSE

http://www.boost.org/
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> all.equal(c(1, -1), c(x=1, y=-1),

+ check.attributes=FALSE)

[1] TRUE

Two additional functions for assessing performance are Rprof and tracemem; these are mentioned only briefly here.
The Rprof function profiles R code, presenting a summary of the time spent in each part of several lines of R code.
It is useful for gaining insight into the location of performance bottlenecks when these are not readily apparent from
direct inspection. Memory management, especially copying large objects, can frequently contribute to poor performance.
The tracemem function allows one to gain insight into how R manages memory; insights from this kind of analysis can
sometimes be useful in restructuring code into a more efficient sequence.

3.2 Restriction

Just because a data file contains a lot of data does not mean that we are interested in all of it. In base R, one might use
the colClasses argument to read.delim or similar function (e.g., setting some elements to NULL) to read only some
columns of a large comma-separated value file. In addition to the obvious benefit of using less memory than if all of the
file had been read in, input will be substantially faster because less computation needs to be done to coerce values from
their representation in the file to their representation in R’s memory.

A variation on the idea of restricting data input is to organize the data on disk into a representation that facilitates
restriction. In base R, large data might be stored in a relational data base like the sqlite data bases that are built in to
R and used in the AnnotationDbi Bioconductor packages. In addition to facilitating restriction, these approaches are
typically faster than parsing a plain text file, because the data base software has stored data in a way that efficiently
transforms from on-disk to in-memory representation.

Restriction is such a useful concept that many Bioconductor high throughput sequence analysis functions enable doing
the right thing. Functions such as coverage,BamFile-method use restrictions to read in the specific data required for
them to compute the statistic of interest. Most “higher level” functions have a param=ScanBamParam() argument. For
instance, the primary user-friendly function for reading BAM files is readGAlignments. This function reads the most
useful information, allowing the user to specify additional fields if desired.

> fls <- RNAseqData.HNRNPC.bam.chr14_BAMFILES # 8 BAM files

> bamfls <- BamFileList(fls, yieldSize=500000) # yieldSize can be larger

> gal <- readGAlignments(bamfls[[1]])

> head(gal, 3)

GAlignments with 3 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] chr14 + 72M 72 19069583 19069654 72

[2] chr14 + 72M 72 19363738 19363809 72

[3] chr14 - 72M 72 19363755 19363826 72

ngap

<integer>

[1] 0

[2] 0

[3] 0

---

seqlengths:

chr1 chr10 ... chrY

249250621 135534747 ... 59373566

> param <- ScanBamParam(what="seq") ## also input sequence

> gal <- readGAlignments(bamfls[[1]], param=param)

> head(mcols(gal)$seq)

http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
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A DNAStringSet instance of length 6

width seq

[1] 72 TGAGAATGATGATTTCCAATTTCATCCATGTCCC...AGGACATGAACTCATCATTTTTTATGGCTGCAT

[2] 72 CCCATATGTACATCAGGCCCCAGGTATACACTGG...AGGTGGACACCAGCACTCAGTTGGATACACACA

[3] 72 CCCCAGGTATACACTGGACTCCAGGTGGACACCA...CAGTTGGATACACACACTCAAGGTGGACACCAG

[4] 72 CATAGATGCAAGAATCCTCAATCAAATACTAGCA...AATTCAACAGCACATTAAAAAGATAACTTACCA

[5] 72 TAGCACACTGAATTCAACAGCACATTAAAAAGAT...ACCATGCTCAAGTGGATTTACCCCAAGGATACA

[6] 72 TGCTGGTGCAGGATTTATTCTACTAAGCAATGAG...GGATCAAATCCACTTTCTTATCTCAGGAATCAG

Exercise 13
Let’s use BAM files and the Rsamtools package to illustrate restriction. Rather than using simple text files (“sam”format),
we use“bam”(binary alignment) files that have been indexed. Use of a binary format enhances data input speed, while the
index facilitates restrictions that take into account genomic coordinates. The basic approach will use the ScanBamParam

function to specify a restriction.
A BAM record can contain a lot of information, including the relatively large sequence, quality, and query name

strings. Not all information in the BAM file is needed for some calculations. For instance, one could calculate coverage
(number of nucleotides overlapping each reference position) using only the rname (reference sequence name), pos, and
cigar fields. We could arrange to input this just information with

> param <- ScanBamParam(what=c("rname", "pos", "cigar"))

Another common restriction is to particular genomic regions, for instance known genes in an RNAseq differential
expression study or to promoter regions in a ChIP-seq study. Restrictions in genome space are specified using GRanges

objects (typically computed from some reference source, rather than entered by hand) provided as the which argument
to ScanBamParam. Here we create a GRanges instance representing all exons on D. melanogaster chromosome 3L, and
use that as a restriction to ScanBamParam’s which argument:

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> exByGn <- exonsBy(TxDb.Dmelanogaster.UCSC.dm3.ensGene, "gene")

> seqlevels(exByGn, force=TRUE) <- "chr3L"

> gns <- unlist(range(exByGn))

> param <- ScanBamParam(which=gns)

The what and which restrictions can be combined with other restrictions into a single ScanBamParam object

> param <- ScanBamParam(what=c("rname", "pos", "cigar"), which=gns)

We can also restrict input to, e.g., paired-end reads that represent the primary (best) alignment; see the help page
?ScanBamParam for a more complete description.

Reaching ahead a little bit, here are some BAM files from an experiment in D. melanogaster; the BAM files contain
a subset of aligned reads

> bigdata <- system.file("bigdata", package="SequenceAnalysisData")

> bamfls <- dir(file.path(bigdata, "bam"), ".bam$", full=TRUE) #$

> names(bamfls) <- sub("_.*", "", basename(bamfls))

We’ll read in the first BAM file, but restrict input to“rname”to find how many reads map to each chromosome. We use
the “low-level” function scanBam to input the data

> param <- ScanBamParam(what="rname")

> bam <- scanBam(bamfls[1], param=param)[[1]]

> table(bam$rname)

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

0 0 11376 0 0 0 4561 0

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
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3.3 Sampling

R is after all a statistical language, and it sometimes makes sense to draw inferences from a sample of large data. For
instance, many quality assessment statistics summarize overall properties (e.g., GC content or per-nucleotide base quality
of FASTQ reads) that don’t require processing of the entire data. For these statistics to be valid, the sample from the
file needs to be a random sample, rather than a sample of convenience.

There are two advantages to sampling from a FASTQ (or BAM) file. The sample uses less memory than the full data.
And because less data needs to be parsed from the on-disk to in-memory representation the input is faster.

The ShortRead package FastqSampler (see also Rsamtools::BamSampler visits a FASTQ file but retains only a
random sample from the file. Here is our function to calculate GC content from a DNAStringSet:

> gcFunction <-

+ function(x)

+ {

+ alf <- alphabetFrequency(x, as.prob=TRUE)

+ rowSums(alf[,c("G", "C")])

+ }

and a subset of a FASTQ file with 1 million reads:

> bigdata <- system.file("bigdata", package="SequenceAnalysisData")

> fqfl <- dir(file.path(bigdata, "fastq"), ".fastq$", full=TRUE) #$

FastqSampler works by specifying the file name and desired sample size, e.g., 100,000 reads. This creates an object
from which an independent sample can be drawn using the yield function.

> sampler <- FastqSampler(fqfl, 100000)

> fq <- yield(sampler) # 100,000 reads

> lattice::densityplot(gcFunction(sread(fq)), plot.points=FALSE)

> fq <- yield(sampler) # a different 100,000 reads

Generally, one would choose a sample size large enough to adequately characterize the data but not so large as to consume
all (or a fraction, see section 3.5 below) of the memory. The default (1 million) is a reasonable starting point.

FastqSampler relies on the R random number generator, so the same sequence of reads can be sampled by using
the same random number seed. This is a convenient way to sample the same read pairs from the FASTQ files typically
used to represent paired-end reads

> ## NOT RUN

> set.seed(123)

> end1 <- yield(FastqSampler("end_1.fastq"))

> set.seed(123)

> end2 <- yield(FastqSampler("end_2.fastq"))

3.4 Iteration

Restriction may not be enough to wrestle large data down to size, and sampling may be inappropriate for the task at
hand. A solution is then to iterate through the file. An example in base R is to open a file connection, and then read
and process successive chunks of the file, e.g., reading chunks of 10000 lines

> ## NOT RUN

> con <- file("<hypothetical-file>.txt")

> open(f)

> while (length(x <- readLines(f, n=10000))) {

+ ## work on character vector 'x'

+ }

> close(f)

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
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The pattern length(x <- readLines(f, n=10000)) is a convenient short-hand pattern that reads the next 10000
lines into a variable x and then asks x it’s length. x is created in the calling environment (so it is available for processing
in the while loop) When there are no lines left to read, length(x) will evaluate to zero and the while loop will end.

Iteration really involves three steps: input of a ‘chunk’ of the data; calculation of a desired summary; and aggregation
of summaries across chunks. We illustrate this with BAM files in the Rsamtools package; see also FastqStreamer in
the ShortRead package and TabixFile for iterating through large VCF files (via readVCF in the VariantAnnotation
package).

The first stage in iteration is to arrange for input of a chunk of data. In many programming languages one would
iterate ‘record-at-a-time’, reading in one record, processing it, and moving to the next. R is not efficient when used in
this fashion. Instead, we want to read in a larger chunk of data, typically as much as can comfortably fit in the available
memory. In Rsamtools for reading BAM files we arrange for this by creating a BamFile (or TabixFile for VCF) object
where we specify an appropriate yieldSize. Here we go for a bigger BAM file

> library(RNAseqData.HNRNPC.bam.chr14)

> bamfl <- RNAseqData.HNRNPC.bam.chr14_BAMFILES[1]

> countBam(bamfl)

space start end width file records nucleotides

1 NA NA NA NA ERR127306_chr14.bam 800484 57634848

> bf <- BamFile(bamfl, yieldSize=200000) # could be larger, e.g., 2 million

A BamFile object can be used to read data from a BAM file, e.g., using readGAlignments. Instead of reading all the
data, the reading function will read just yieldSize records. The idea then is to open the BAM file and iterate through
until no records are input. The pattern is

> ## initialize, e.g., for step 3 ...

> open(bf)

> while (length(gal <- readGAlignments(bf))) {

+ ## step 2: do work...

+ ## step 3: aggregate results...

+ }

> close(bf)

The second step is to perform a useful calculation on the chunk of data. This is particularly easy to do if chunks are
independent of one another. For instance, a common operation is to count the number of times reads overlap regions
of interest. There are functions that implement a variety of counting modes (see, e.g., summarizeOverlaps in the
GenomicRanges package); here we’ll go for a simple counter that arranges to tally one ‘hit’ each time a read overlaps
(in any way) at most one range. Here is our counter function, taking as arguments a GRanges or GRangesList object
representing the regions for which counts are desired, and a GAlignments object representing reads to be counted:

> counter <-

+ function(query, subject, ..., ignore.strand=TRUE)

+ ## query: GRanges or GRangesList

+ ## subject: GAlignments

+ {

+ if (ignore.strand)

+ strand(subject) <- "*"

+ hits <- countOverlaps(subject, query)

+ countOverlaps(query, subject[hits==1])

+ }

To set this step up a little more completely, we need to know the regions over which counting is to occur. Here we
retrieve exons grouped by gene for the genome to which the BAM files were aligned:

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> query <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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Thus we’ll add the following lines to our loop:

> ## initialize, e.g., for step 3 ...

> open(bf)

> while (length(gal <- readGAlignments(bf))) {

+ ## step 2: do work...

+ count0 <- counter(query, gal, ignore.strand=TRUE)

+ ## step 3: aggregate results...

+ }

> close(bf)

It is worth asking whether the ‘do work’ step will always be as straight-forward. The current example is easy because
counting overlaps of one read does not depend on other reads, so the chunks can be processed independently of one an-
other. FIXME: These are paired-end reads, so counting is not this easy! See ?summarizeOverlaps in the GenomicRanges
package.

The final step in iteration is to aggregate results across chunks. In our present case, counter always returns an integer
vector with length(query) elements. We want to add these over chunks, and we can arrange to do this by starting
with an initial vector of counts counts <- integer(length(query)) and simply adding count0 at each iteration. The
complete iteration, packaged as a function to facilitate re-use is

> counter1 <-

+ function(bf, query, ...)

+ {

+ ## initialize, e.g., for step 3 ...

+ counts <- integer(length(query))

+ open(bf)

+ while (length(gal <- readGAlignments(bf, ...))) {

+ ## step 2: do work...

+ count0 <- counter(query, gal, ignore.strand=TRUE)

+ ## step 3: aggregate results...

+ counts <- counts + count0

+ }

+ close(bf)

+ counts

+ }

In action, this is invoked as

> bf <- BamFile(bamfl, yieldSize=500000)

> counts <- counter1(bf, query)

Counting is a particularly simple operation; one will often need to think carefully about how to aggregate statistics
derived from individual chunks. A useful general approach is to identify sufficient statistics that represent a sufficient
description of the data and can be easily aggregated across chunks. This is the approach taken by, for instance, the biglm
package for fitting linear models to large data sets – the linear model is fit to successive chunks and the fit reduced to
sufficient statistics, the sufficient statistics are then added across chunks to arrive at an overall fit.

3.5 Parallel evaluation

Each of the preceding sections addressed memory management; what about overall performance?
The starting point is really writing efficient, vectorized code, with common strategies outlined in Chapter 1. Perfor-

mance differences between poorly written versus well written R code can easily span two orders of magnitude, whereas
parallel processing can only increase throughput by an amount inversely proportional to the number of processing units
(e.g., CPUs) available.

The memory management techniques outlined earlier in this chapter are important in a parallel evaluation context.
This is because we will typically be trying to exploit multiple processing cores on a single computer, and the cores will be

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html


Workshop: Introduction to Statistical Computing with R and Bioconductor 50

competing for the same pool of shared memory. We thus want to arrange for the collection of processors to cooperate
in dividing available memory between them, i.e., each processor needs to use only a fraction of total memory.

There are a number of ways in which R code can be made to run in parallel. The least painful and most effective
will use ‘multicore’ functionality provided by the parallel package; the parallel package is installed by default with base
R, and has a useful vignette [30]. Unfortunately, multicore facilities are not available on Windows computers.

Parallel evaluation on several cores of a single Linux or MacOS computer is particularly easy to achieve when the
code is already vectorized. The solution on these operating systems is to use the functions mclapply or pvec. These
functions allow the ‘master’ process to ‘fork’ processes for parallel evaluation on each of the cores of a single machine.
The forked processes initially share memory with the master process, and only make copies when the forked process
modifies a memory location (‘copy on change’ semantics). On Linux and MacOS, the mclapply function is meant to be
a ‘drop-in’ replacement for lapply, but with iterations being evaluated on different cores. The following illustrates the
use of mclapply and pvec, for a toy vectorized function f:

> library(parallel)

> f <- function(i) {

+ cat("'f' called, length(i) = ", length(i), "\n")

+ sqrt(i)

+ }

> res0 <- mclapply(1:5, f, mc.cores=2)

'f' called, length(i) = 1

'f' called, length(i) = 1

'f' called, length(i) = 1

'f' called, length(i) = 1

'f' called, length(i) = 1

> res1 <- pvec(1:5, f, mc.cores=2)

'f' called, length(i) = 3

'f' called, length(i) = 2

> identical(unlist(res0), res1)

[1] TRUE

pvec takes a vectorized function and distributes computation of different chunks of the vector across cores. Both functions
allow the user to specify the number of cores used, and how the data are divided into chunks.

The parallel package does not support fork-like behavior on Windows, where users need to more explicitly create a
cluster of R workers and arrange for each to have the same data loaded into memory; similarly, parallel evaluation across
computers (e.g., in a cluster) require more elaborate efforts to coordinate workers; this is typically done using lapply-like
functions provided by the parallel package but specialized for simple (‘snow’) or more robust (‘MPI’) communication
protocols between workers.

Data movement and random numbers are two important additional considerations in parallel evaluation. Moving
data to and from cores to the manager can be expensive, so strategies that minimize explicit movement (e.g., passing file
names data base queries rather than R objects read from files; reducing data on the worker before transmitting results to
the manager) can be important. Random numbers need to be synchronized across cores to avoid generating the same
sequences on each ‘independent’ computation.

How might parallel evaluation be exploited in Bioconductor work flows? One approach when working with BAM files
exploits the fact that data are often organized with one sample per BAM file. Suppose we are interested in running
our iterating counter counter1 over several BAM files. We could do this by creating a BamFileList with appropriate
yieldSize

> fls <- RNAseqData.HNRNPC.bam.chr14_BAMFILES # 8 BAM files

> bamfls <- BamFileList(fls, yieldSize=500000) # yieldSize can be larger

and using an lapply to take each file in turn and performing the count.
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> counts <- simplify2array(lapply(bamfls, counter1, query))

The parallel equivalent of this is simply (note the change from lapply to mclapply)

> options(mc.cores=detectCores()) # use all cores

> counts <- simplify2array(mclapply(bamfls, counter1, query))

> head(counts[rowSums(counts) != 0,], 3)

ERR127306 ERR127307 ERR127308 ERR127309 ERR127302 ERR127303 ERR127304

10001 207 277 217 249 303 335 362

100128927 572 629 597 483 379 319 388

100129075 62 70 56 63 34 51 88

ERR127305

10001 300

100128927 435

100129075 79

3.6 And. . .

The foreach package can be useful for parallel evaluation written using coding styles more like for loops rather than
lapply. The iterator package is an abstraction that simplifies the notion of iterating over objects. The Rmpi package
provides access to MPI, a structured environment for calculation on clusters. The pbdR formalism1 is especially useful
for well-structured distributed matrix computations.

The MatrixEQTL package is an amazing example implementing high performance algorithms on large data; the
corresponding publication [35] is well worth studying.

Bioconductor provides an Amazon machine instance with MPI and Rmpi installed2. This can be an effective way to
gain access to large computing resources.

1https://rdav.nics.tennessee.edu/2012/09/pbdr/
2http://bioconductor.org/help/bioconductor-cloud-ami/

https://rdav.nics.tennessee.edu/2012/09/pbdr/
http://bioconductor.org/help/bioconductor-cloud-ami/
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Chapter 4

Statistical Issues in High-Throughput
Sequence Analysis

4.1 General work flows

A running example: the pasilla data set As a running example, we use the pasilla data set, derived from [4]. The
authors investigate conservation of RNA regulation between D. melanogaster and mammals. Part of their study used
RNAi and RNA-seq to identify exons regulated by Pasilla (ps), the D. melanogaster ortholog of mammalian NOVA1 and
NOVA2. Briefly, their experiment compared gene expression as measured by RNAseq in S2-DRSC cells cultured with, or
without, a 444 bp dsRNA fragment corresponding to the ps mRNA sequence. Their assessment investigated differential
exon use, but our worked example will focus on gene-level differences. For several examples we look at a subset of the
ps data, corresponding to reads obtained from lanes of their RNA-seq experiment, and to the same reads aligned to a D.
melanogaster reference genome. Reads were obtained from GEO and the Short Read Archive (SRA), and were aligned
to the D. melanogaster reference genome dm3 as described in the pasilla experiment data package.

Work flow At a very high level, one can envision a work flow that starts with a challenging biological question (how does
ps influence gene and transcript regulation?). The biological question is framed in terms of wet-lab protocols coupled
with an appropriate and all-important experimental design. There are several well-known statistical challenges, common
to any experimental data What treatments are going to be applied? How many replicates will there be of each? Is
there likely to be sufficient power to answer the biologically relevant question? Reality is also important at this stage, as
evidenced in the pasilla data where, as we will see, samples were collected using different methods (single versus paired
end reads) over a time when there were rapid technological changes. Such reality often introduces confounding factors
that require appropriate statistical treatment in subsequent analysis.

The work flow proceeds with data generation, involving both a wet-lab (sample preparation) component and actual
sequencing. It is essential to acknowledge the biases and artifacts that are introduced at each of these stages. Sample
preparation involves non-trivial amounts of time and effort. Large studies are likely to have batch effects (e.g., because
work was done by different lab members, or different batches of reagent). Samples might have been prepared in ways that
are likely to influence down-stream analysis, e.g., using a protocol involving PCR and hence introducing opportunities for
sample-specific bias. DNA isolation protocols may introduce many artifacts, e.g., non-uniform representation of reads
across the length of expressed genes in RNA-seq. The sequencing reaction itself is far from bias-free, with known artifacts
of called base frequency, cycle-dependent accuracy and bias, non-uniform coverage, etc. At a minimum, the research
needs to be aware of the opportunities for bias that can be introduced during sample preparation and sequencing.

The informatics component of work flows becomes increasing important during and after sequence generation. The
sequencer is often treated as a ‘black box’, producing short reads consisting of 10’s to 100’s of nucleotides and with
associated quality scores. Usually, the chemistry and informatics processing pipeline are sufficiently well documented that
one can arrive at an understanding of biases and quality issues that might be involved; such an understanding is likely
to be particularly important when embarking on questions or using protocols that are at the fringe of standard practice
(where, after all, the excitement is).

The first real data seen by users are fastq files (Table 2.3). These files are often simple text files consisting of many
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millions of records, and are described in greater detail in Section 2.3.2. The center performing the sequencing typically
vets results for quality, but these quality measures are really about the performance of their machines. It is very important
to assess quality with respect to the experiment being undertaken – Are the numbers of reads consistent across samples?
Is the GC content and other observable aspects of the reads consistent with expectation? Are there anomalies in the
sequence results that reflect primers or other reagents used during sample preparation? Are well-known artifacts of the
protocol used evident in the reads in hand?

The next step in many work flows involves alignment of reads to a reference genome. There are many aligners
available, including BWA [21], Bowtie / Bowtie2 [15], and GSNAP; merits of these are discussed in the literature.
Bioconductor packages ‘wrapping’ these tools are increasingly common (e.g., Rbowtie, gmapR; cummeRbund for parsing
output of the cufflinks transcript discovery pathway). There are also alignment algorithms implemented in Bioconductor
(e.g., matchPDict in the Biostrings package, and the Rsubread package); matchPDict is particularly useful for flexible
alignment of moderately sized subsets of data. Most main-stream aligners produce output in ‘SAM’ or ‘BAM’ (binary
alignment) format. BAM files are the primary starting point for many analyses, and their manipulation and use in
Bioconductor is introduced in Section 2.4.2.

4.2 RNA-seq: case study

4.2.1 Varieties of RNA-seq

RNA-seq experiments typically ask about differences in transcription of genes or other features across experimental groups.
The analysis of designed experiments is statistical, and hence an ideal task for R. The overall structure of the analysis,
with tens of thousands of features and tens of samples, is reminiscent of microarray analysis; some insights from the
microarray domain will apply, at least conceptually, to the analysis of RNA-seq experiments.

The most straight-forward RNA-seq experiments quantify abundance for known gene models. The known models are
derived from reference databases, reflecting the accumulated knowledge of the community responsible for the data. The
‘knownGenes’ track of the UCSC genome browser represents one source of such data. A track like this describes, for each
gene, the transcripts and exons that are expected based on current data. The GenomicFeatures package allows ready
access to this information by creating a local database out of the track information. This data base of known genes is
coupled with high throughput sequence data by counting reads overlapping known genes and modeling the relationship
between treatment groups and counts.

A more ambitious approach to RNA-seq attempts to identify novel transcripts. This requires that sequenced reads
be assembled into contigs that, presumably, correspond to expressed transcripts that are then located in the genome.
Regions identified in this way may correspond to known transcripts, to novel arrangements of known exons (e.g., through
alternative splicing), or to completely novel constructs. We will not address the identification of completely novel
transcripts here, but will instead focus on the analysis of the designed experiments: do the transcript abundances, novel
or otherwise, differ between experimental groups?

4.2.2 RNA-seq work flows

RNA-seq work flows aim at measuring gene expression through assessment of mRNA abundance. Work flows involve:
1. Experimental design.

2. Wet-lab protocols for mRNA extraction and reverse transcription to cDNA.

3. Sequencing; QA.

4. Alignment of sequenced reads to a reference genome; QA.

5. Summarizing of the number of reads aligning to a region; QA.

6. Normalization of samples to accommodate purely technical differences in preparation.

7. Statistical assessment of differential representation, including specification of an appropriate error model.

8. Interpretation of results in the context of original biological questions; QA.
The inference is that higher levels of gene expression translate to more abundant cDNA, and greater numbers of reads
aligned to the reference genome. The enumeration above seems simplistic, but oddly enough one has concerns and
commentary on each point.

http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/
http://research-pub.gene.com/gmap/
http://bioconductor.org/packages/release/bioc/html/Rbowtie.html
http://bioconductor.org/packages/release/bioc/html/gmapR.html
http://bioconductor.org/packages/release/bioc/html/cummeRbund.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
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Table 4.1: Statistical issues in RNA-seq differential expression.

Analysis stage Issues
Experimental design Replication, complexity, feasibility
Batch effects Known and unknown factors.
Summarize Counts versus RPKM and other summaries.
Normalize Robust estimates of library size.
Differential expression Appropriate error model (Negative Binomial, Poisson, . . . ); dispersion (under nega-

tive binomial) as parameter requiring estimation; ‘shrinkage’ to balance accuracy of
per-gene estimates with precision of experiment-wide estimates.

Testing Filtering to reduce multiple comparisons & false discovery rate.

4.2.3 Wet-lab protocols, sequencing, and alignment

The important point here is that wet-lab protocols, sequencing reactions, and alignment introduce artifacts that need
to be acknowledged and, if possible, accommodated in down-stream analysis. These artifacts and approaches to their
remediation are discussed in the following sections.

4.3 Statistical issues

Important statistical issues are summarized in Table 4.1.

4.3.1 Experimental design

Technical versus biological replication Obviously one should follow best practices for designing experiments appro-
priate for the data under analysis. A typical experiment will have one or several groups. Because there is uncertainty in
each measurement, we require replication. Previous work shows that technical replication (repeating identical wet-lab and
sequencing protocols on a single biological sample) introduces variation that is small [22] compared to biological repli-
cates (using different samples). Most RNA-seq experiments require biological replication, and seldom include technical
replicates.

Sample size How many biological replicates? It is helpful to think in terms of orders of magnitude – biological
treatments with strong and consistent consequences for gene expression will be detected with a handful – 2 or 3 –
replicates per treatment. Conversely, statistically subtle effects will not be much revealed by samples of say 5 or 8,
but will instead require 10’s or 100’s of samples. The RNASeqPower package provides data-driven guidance on power
calculations in RNA-seq experiments; CSSP provides ChIP-seq power calculations based on Bayesian estimation for local
counting processes.

Complexity How complicated an experimental design? The advice must be to ‘keep it simple’. There are many
interesting biological questions that one could ask, but experimental designs with more than one or at most two factors,
or with multiple levels per factor, will undermine statistical power and complicate analysis. There are exceptions of course,
for instance a time course design or an experiment with two or more factors, but these require strong a priori motivation
and confidence that the design is amenable to analysis even in the face of wet-lab or sequencing catastrophe.

Feasibility of intended statistical analysis What kind of treatment? Two ‘lessons learned’ from microarray analysis
and applicable to RNA-seq inform this question. (a) It is necessary to normalize observations between samples to
accommodate purely technical variation in overall patterns of expression. For example, samples provided to the sequencer
have different amounts of DNA, resulting in variation in total numbers of sequenced and aligned reads independent of
any difference in gene-level differential representation. This implies that the treatment should affect only a fraction of
the genes assayed, otherwise treatment effects and protocol artifacts are confounded. (b) Between-gene measures of
expression differ for reasons unrelated to levels of expression. For instance, standard protocols mean that a long gene is
sequenced more often than a short gene, even when the number of mRNA molecules of the two genes are identical. This
means that the most productive approach to differential representation will compare genes across samples, rather than

http://bioconductor.org/packages/release/bioc/html/RNASeqPower.html
http://bioconductor.org/packages/release/bioc/html/CSSP.html
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compare levels of representation of different genes (gene set enrichment analysis and other approaches to between-gene
comparison are statistically interesting in part because of the need to overcome between-gene differences arising for purely
technical reasons). The combination of lessons (a) and (b) dictate that the treatment should affect only a subset of the
genes under study, and that ‘interesting’ results correspond to treatment groups with differences at the gene level. A
priori motivation, e.g., about well-defined pathways as targets of differential representation, may trump part (b) of this
guideline.

4.3.2 Batch effects

The reality of executing designed experiments may mean that there are known but unavoidable factors that confound the
analysis, but that are not of fundamental biological interest. Perhaps samples are being processed by different groups,
or processing is spread over several months to accommodate personnel or sequencer availability. It is essential to avoid
confounding such factors with biologically relevant parts of the experiment. Such batch effects are pervasive in high-
throughput analysis of diverse data types [20]; addressing batch effects helps to reduce dependence, stabilize error rate
estimates, and improve reproducibility.

Having acknowledged a potentially confounding factor, what is to be done? A first reaction might be randomization
– arrange for samples to be processed in a random order, for instance, rather than by treatment group – but a better
strategy is usually to include a blocking factor, e.g., processed by lab ‘A’ versus lab ‘B’ and to ensure that treatments
are represented by replicates in each blocking factor. The down-stream analysis can then use replication to statistically
accommodate such effects.

An alternative to explicitly modeling batch effects is to identify ‘surrogate variables’. Surrogate variables are covariates
constructed directly from the data, and can be used in subsequent analysis to adjust for unknown, un-modeled, or latent
sources of noise [17, 18, 19]. The sva package implements surrogate variable analysis, and can be used with RNA-seq
and many other high dimensional data types. sva estimates surrogate variables for inclusion in subsequent analysis, or
removes known batch effects using ComBat [14].

An interesting approach to addressing batch effects in studies where new samples are accumulated incrementally (e.g.,
patient assays from physician offices) is to create a ‘frozen’ correction on a training data set, and perform per-sample
correction on new samples as they become available. This is similar to the ‘frozen’ RMA approach to normalization
developed by McCall et al., [24], and is implemented by the fsva function in the sva package.

4.3.3 Summarizing

The summary process tallies the number of reads aligning in each region (e.g., gene) of interest. The simplest method is
to simply count reads overlapping each region, dividing by the length of the region of interest to accommodate differences
in gene length. This is the ‘RPKM’ (reads per kilobase per million reads) of Mortazavi et al. [27]. One problem with
this approach is that reads are not sampled uniformly across genes (Figure 4.1; [12]), so gene length (the ‘PK’ part of
RPKM) is not a good proxy for expression level.

More fundamentally, each read represents an observation, and contributes to the certainty with which a gene is
measured as ‘expressed’. A summary measure like RPKM fails to incorporate uncertainty – a particular value of RPKM
might result from alignment of one or 100 reads. This contrasts with a simple count of the number of reads in the region
of interest. Furthermore, count data has known statistical properties that can be exploited in down-stream statistical
analysis. Thus the result of summarization most useful for assessing differential expression is read count.

How to count? For instance, should a read that partly overlaps a 5’ UTR or an intron be included in a tally? What
about reads that overlap multiple genes? This is a non-trivial question because alignment is only approximate (reflecting
sequencing and other biases) and because sample preparation protocols and organism biology (e.g., whether the UTR or
fully mature mRNA is sequenced) may dictate particular counting strategies; more elaborate counting strategies might
be entertained for paired end reads. Anders enumerates some counting strategies1; these are implemented in his HTSeq
python scripts, in summarizeOverlaps in the GenomicRanges package, or in functions in the (linux-only) Rsubread and
gmapR packages.

1http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

http://bioconductor.org/packages/release/bioc/html/sva.html
http://bioconductor.org/packages/release/bioc/html/sva.html
http://bioconductor.org/packages/release/bioc/html/sva.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/gmapR.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
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Figure 4.1: Nucleotide frequency versus position relative to start of alignment, various experiments and protocols; see [12].

4.3.4 Normalization

Normalization arises from the need to correct for purely technical differences between samples. The most common
symptom of the need for normalization is differences in the total number of aligned reads. The ‘M’ part of RPKM
measure mentioned in the context of summarization is one way of normalizing for total count. This normalization is not
appropriate, because the distribution of aligned reads across genes within a sample is not uniform – some regions receive
many more alignments than do others – and this distribution may differ between samples.

The overall strategy with normalization is to choose an appropriate baseline, and express sample counts relative to that
baseline. There are several approaches to choice of appropriate baseline. One might choose total count for normalization,
but this is a poor choice when one or a few regions of interest are very well represented – we are normalizing to the
well-represented genes rather than to sequencing depth in each sample. Other straight-forward approaches include use of
house-keeping genes, or the expression level from a particular quantile of the distribution of gene expression values of each
sample [5]. One might attempt a robust estimate of sample abundance that is less sensitive to extreme outliers, e.g., the
trimmed geometric mean of counts [1]. Another approach is TMM [31], which measures the trimmed mean of M and A
values (M values are the log fold change in the number of reads aligning to a region of interest measured relative to an
average or arbitrary sample, A is the average count of a gene; the trimmed mean discards regions of interest that have
extreme M or A values and calculates the mean M value of the remainder); the inverse of this mean is used to weight
samples. More data-driven approaches exploiting the gene-specific properties include conditional quantile normalization
(implemented in the cqn package; [13]).

Another approach to normalization, increasingly popular as experiment size and data consistency increases, is to
perform a data transformation and apply normalization methods developed for analysis of microarrays. Examples of
this approach include varianceStabilizingTransformation from the DESeq2 package, and voom from the limma
package; see the corresponding help pages of these functions for details).

4.3.5 Error model

A Negative Binomial error model is often appropriate for ‘smaller’ experiments. These models combine Poisson (‘shot’
noise, i.e., within-sample techincal and sampling variation in read counts) with variation between biological samples. The
edgeR [25] and DESeq [1] (now DESeq2) packages implement these models. Negative bionomial error models involve
estimation of dispersion parameters, which are estimated poorly in small samples. edgeR and DESeq2 adopt different
data-driven approaches to arrive at more robust dispersion estimates; the packages, relying on different strategies to
moderate per-gene estimates with more robust local estimates derived from genes with similar expression values. Other

http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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Table 4.2: Selected Bioconductor packages for RNA-seq analysis.

Package Description
EDASeq Exploratory analysis and QA; also qrqc, ShortRead , DESeq2 .
edgeR, DESeq2 Generalized Linear Models using negative binomial error.
BitSeq Bayesian inference of individual transcript abundances followed by differential expres-

sion.
DEXSeq Exon-level differential representation.
DSS , vsn, cqn RNA-seq normalization methodologies. Also voom in limma.
goseq Gene set enrichment tailored to RNAseq count data; also limma’s roast or camera

after transformation with voom.
QuasR Workflow.
Rsubread Alignment (Linux only); also gmapR; Biostrings matchPDict for special-purpose

alignments.
cummeRbund Exploration and analysis of Cufflinks results.

approaches are possible; DSS [37] estimates are based on γ-Poisson or β-Binomial distributions.
As number of replicates become large, the importance of explicitly modeling biological sampling variance decrease.

This encourages use of the Poisson-Tweedie family of distributions to model count data [9].

4.3.6 Multiple comparison

1. Increase statistical power and reduce false discovery rate by filtering regions of interest prior to analysis.

2. Motivation (a): just because genes are assayed does not mean, a priori, that they represent something requiring
a statistical test. (b) Some observations, e.g., zero counts across all samples, cannot possibly be statistically
significant, independent of hypothesis under investigation.

3. Approach – detection or ‘K over A’-style filter; representation of a minimum of A (normalized) read counts in at
least K samples. A usually measured as counts per million. Guidelines for choice of values a little ad hoc; see, e.g.,
the edgeR user manual. Variance filter, e.g., IQR (inter-quartile range) provides a robust estimate of variability;
can be used to rank and discard least-varying regions.

4.4 Selected Bioconductor software for RNA-seq Analysis

Bioconductor packages play a role in several stages of an RNA-seq analysis (Table 4.2; a more comprehensive list is under
the RNAseq and HighThroughputSequencing BiocViews terms). The GenomicRanges infrastructure can be effectively
employed to quantify known exon or transcript abundances. Quantified abundances are in essence a matrix of counts,
with rows representing features and columns samples. The edgeR [31] and DESeq2 [1] packages facilitate analysis of this
data in the context of designed experiments, and are appropriate when the questions of interest involve between-sample
comparisons of relative abundance. The DEXSeq package extends the approach in edgeR and DESeq2 to ask about
within-gene, between group differences in exon use, i.e., for a given gene, do groups differ in their exon use?

http://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/BitSeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/DSS.html
http://bioconductor.org/packages/release/bioc/html/vsn.html
http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/QuasR.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/gmapR.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/cummeRbund.html
http://bioconductor.org/packages/release/bioc/html/DSS.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/2.10/BiocViews.html#___RNAseq
http://bioconductor.org/packages/2.10/BiocViews.html#___HighThroughputSequencing
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html


Chapter 5

DESeq2 Work Flow Exercises

For this chapter, follow in-course instructions for working with the DESeq2 vignette1.
One strategy is:

1. Read section 4 to gain insight into the theoretical basis of the approach

2. Pursue section 1.2.3 to input data from a ’count’ matrix, and description of column (sample) data. This is the
most likely starting point for a typical analysis.

3. Note sections 1.2.5 and 1.2.6, but follow the main thread at section 1.3.

1http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf
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Chapter 6

Annotation and Visualization

6.1 Gene-centric Annotation

Bioconductor provides extensive annotation resources. These can be gene-, or genome-centric. Annotations can be
provided in packages curated by Bioconductor, or obtained from web-based resources. Gene-centric AnnotationDbi
packages include:

� Organism level: e.g. org.Mm.eg.db, Homo.sapiens.

� Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf .

� Homology level: e.g. hom.Dm.inp.db.

� System biology level: GO.db, KEGG.db, Reactome.db.
Examples of genome-centric packages include:

� GenomicFeatures, to represent genomic features, including constructing reproducible feature or transcript data
bases from file or web resources.

� Pre-built transcriptome packages, e.g. TxDb.Hsapiens.UCSC.hg19.knownGene based on the H. sapiens UCSC hg19
knownGenes track.

� BSgenome for whole genome sequence representation and manipulation.

� Pre-built genomes, e.g., BSgenome.Hsapiens.UCSC.hg19 based on the H. sapiens UCSC hg19 build.
Web-based resources include

� biomaRt to query biomart resource for genes, sequence, SNPs, and etc.

� rtracklayer for interfacing with browser tracks, especially the UCSC genome browser.

6.1.1 AnnotationDbi

Organism-level (‘org’) packages contain mappings between a central identifier (e.g., Entrez gene ids) and other identifiers
(e.g. GenBank or Uniprot accession number, RefSeq id, etc.). The name of an org package is always of the form
org.<Sp>.<id>.db (e.g. org.Sc.sgd.db) where <Sp> is a 2-letter abbreviation of the organism (e.g. Sc for Saccha-
romyces cerevisiae) and <id> is an abbreviation (in lower-case) describing the type of central identifier (e.g. sgd for
gene identifiers assigned by the Saccharomyces Genome Database, or eg for Entrez gene ids). The “How to use the
‘.db’ annotation packages” vignette in the AnnotationDbi package (org packages are only one type of “.db” annotation
packages) is a key reference. The ‘.db’ and most other Bioconductor annotation packages are updated every 6 months.

Annotation packages contain an object named after the package itself. These objects are collectively called An-
notationDb objects, with more specific classes named OrgDb, ChipDb or TranscriptDb objects. Methods that can be
applied to these objects include cols, keys, keytypes and select. Common operations for retrieving annotations are
summarized in Table 6.1.

Exercise 14
What is the name of the org package for Drosophila? Load it. Display the OrgDb object for the org.Dm.eg.db package.
Use the cols method to discover which sorts of annotations can be extracted from it.

Use the keys method to extract UNIPROT identifiers and then pass those keys in to the select method in such a
way that you extract the SYMBOL (gene symbol) and KEGG pathway information for each.
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http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.db.html
http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.probes.html
http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.cdf.html
http://bioconductor.org/packages/release/data/annotation/html/hom.Dm.inp.db.html
http://bioconductor.org/packages/release/bioc/html/GO.db.html
http://bioconductor.org/packages/release/bioc/html/KEGG.db.html
http://bioconductor.org/packages/release/bioc/html/Reactome.db.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.biomart.org/
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http:://genome.ucsc.edu
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/data/annotation/html/org.Sc.sgd.db.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/org.Dm.eg.db.html
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Table 6.1: Common operations for retrieving and manipulating annotations.

Category Function Description
Discover cols List the kinds of columns that can be returned

keytypes List columns that can be used as keys
keys List values that can be expected for a given keytype
select Retrieve annotations matching keys, keytype and cols

Manipulate setdiff, union, intersect Operations on sets
duplicated, unique Mark or remove duplicates
%in%, match Find matches
any, all Are any TRUE? Are all?
merge Combine two different data.frames based on shared keys

GRanges* transcripts, exons, cds Features (transcripts, exons, coding sequence) as GRanges.
transcriptsBy , exonsBy Features group by gene, transcript, etc., as GRangesList.
cdsBy

Use select to retrieve the ENTREZ and SYMBOL identifiers of all genes in the KEGG pathway 00310.

Solution: The OrgDb object is named org.Dm.eg.db.

> library(org.Dm.eg.db)

> columns(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"

[11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"

[16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"

[21] "ONTOLOGY" "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "FLYBASE"

[26] "FLYBASECG" "FLYBASEPROT"

> keytypes(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"

[11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"

[16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"

[21] "ONTOLOGY" "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "FLYBASE"

[26] "FLYBASECG" "FLYBASEPROT"

> uniprotKeys <- head(keys(org.Dm.eg.db, keytype="UNIPROT"))

> cols <- c("SYMBOL", "PATH")

> select(org.Dm.eg.db, keys=uniprotKeys, columns=cols, keytype="UNIPROT")

UNIPROT SYMBOL PATH

1 Q8IRZ0 CG3038 <NA>

2 Q95RP8 CG3038 <NA>

3 M9PGH7 G9a 00310

4 Q95RU8 G9a 00310

5 Q9W5H1 CG13377 <NA>

6 P39205 cin <NA>

Selecting UNIPROT and SYMBOL ids of KEGG pathway 00310 is very similar:

> kegg <- select(org.Dm.eg.db, "00310", c("UNIPROT", "SYMBOL"), "PATH")

> nrow(kegg)

[1] 35
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> head(kegg, 3)

PATH UNIPROT SYMBOL

1 00310 M9PGH7 G9a

2 00310 Q95RU8 G9a

3 00310 M9NE25 Hmt4-20

Exercise 15
For convenience, lrTest, a DGEGLM object from the RNA-seq chapter, is included in the SequenceAnalysisData package.
The following code loads this data and creates a ‘top table’ of the ten most differentially represented genes. This top
table is then coerced to a data.frame.

> library(SequenceAnalysisData)

> library(edgeR)

> library(org.Dm.eg.db)

> data(lrTest)

> tt <- as.data.frame(topTags(lrTest))

Extract the Flybase gene identifiers (FLYBASE) from the row names of this table and map them to their corresponding
Entrez gene (ENTREZID) and symbol ids (SYMBOL) using select. Use merge to add the results of select to the top
table.

Solution:

> fbids <- rownames(tt)

> cols <- c("ENTREZID", "SYMBOL")

> anno <- select(org.Dm.eg.db, fbids, cols, "FLYBASE")

> ttanno <- merge(tt, anno, by.x=0, by.y="FLYBASE")

> dim(ttanno)

[1] 10 8

> head(ttanno, 3)

Row.names logConc logFC LR.statistic PValue FDR ENTREZID SYMBOL

1 FBgn0000071 -11 2.8 183 1.1e-41 1.1e-38 40831 Ama

2 FBgn0024288 -12 -4.7 179 7.1e-41 6.3e-38 45039 Sox100B

3 FBgn0033764 -12 3.5 188 6.8e-43 7.8e-40 <NA> <NA>

6.1.2 biomaRt and other web-based resources

A short summary of select Bioconductor packages enabling web-based queries is in Table 6.2.

Using biomaRt The biomaRt package offers access to the online biomart resource. this consists of several data base
resources, referred to as ‘marts’. Each mart allows access to multiple data sets; the biomaRt package provides methods
for mart and data set discovery, and a standard method getBM to retrieve data.

Exercise 16
Load the biomaRt package and list the available marts. Choose the ensembl mart and list the datasets for that mart.
Set up a mart to use the ensembl mart and the hsapiens gene ensembl dataset.

A biomaRt dataset can be accessed via getBM. In addition to the mart to be accessed, this function takes filters and
attributes as arguments. Use filterOptions and listAttributes to discover values for these arguments. Call getBM
using filters and attributes of your choosing.

http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.biomart.org
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
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Table 6.2: Selected packages querying web-based annotation services.

Package Description
AnnotationHub Ensembl, Encode, dbSNP, UCSC data objects
biomaRt http://biomart.org, Ensembl and other annotations
uniprot.ws http://uniprot.org, protein annotations
KEGGREST http://www.genome.jp/kegg, KEGG pathways
SRAdb http://www.ncbi.nlm.nih.gov/sra, sequencing experiments.
rtracklayer http://genome.ucsc.edu, genome tracks.
GEOquery http://www.ncbi.nlm.nih.gov/geo/, array and other data
ArrayExpress http://www.ebi.ac.uk/arrayexpress/, array and other data

Solution:

> library(biomaRt)

> head(listMarts(), 3) ## list the marts

> head(listDatasets(useMart("ensembl")), 3) ## mart datasets

> ensembl <- ## fully specified mart

+ useMart("ensembl", dataset = "hsapiens_gene_ensembl")

> head(listFilters(ensembl), 3) ## filters

> myFilter <- "chromosome_name"

> head(filterOptions(myFilter, ensembl), 3) ## return values

> myValues <- c("21", "22")

> head(listAttributes(ensembl), 3) ## attributes

> myAttributes <- c("ensembl_gene_id","chromosome_name")

> ## assemble and query the mart

> res <- getBM(attributes = myAttributes, filters = myFilter,

+ values = myValues, mart = ensembl)

Use head(res) to see the results.

6.2 Genomic Annotation

6.2.1 AnnotationHub

6.2.2 Whole genome sequences

There are a diversity of packages and classes available for representing large genomes. Several include:
TxDb.* For transcript and other genome / coordinate annotation.

BSgenome For whole-genome representation. See available.packages for pre-packaged genomes, and the vignette
‘How to forge a BSgenome data package’ in the

Homo.sapiens For integrating TxDb* and org.* packages.

SNPlocs.* For model organism SNP locations derived from dbSNP.

FaFile (Rsamtools) for accessing indexed FASTA files.

SIFT.*, PolyPhen Variant effect scores.

6.2.3 Gene models: TxDb.* packages for model organisms

Genome-centric packages are very useful for annotations involving genomic coordinates. It is straight-forward, for instance,
to discover the coordinates of coding sequences in regions of interest, and from these retrieve corresponding DNA or
protein coding sequences. Other examples of the types of operations that are easy to perform with genome-centric
annotations include defining regions of interest for counting aligned reads in RNA-seq experiments and retrieving DNA
sequences underlying regions of interest in ChIP-seq analysis, e.g., for motif characterization.

http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://biomart.org
http://bioconductor.org/packages/release/bioc/html/uniprot.ws.html
http://uniprot.org
http://bioconductor.org/packages/release/bioc/html/KEGGREST.html
http://www.genome.jp/kegg
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://www.ncbi.nlm.nih.gov/sra
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://genome.ucsc.edu
http://bioconductor.org/packages/release/bioc/html/GEOquery.html
http://www.ncbi.nlm.nih.gov/geo/
http://bioconductor.org/packages/release/bioc/html/ArrayExpress.html
http://www.ebi.ac.uk/arrayexpress/
http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/Homo.sapiens.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
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Exercise 17
Load the ‘transcript.db’ package relevant to the dm3 build of D. melanogaster. Use select and friends to select the
Flybase gene ids of the top table tt and the Flybase transcript names (TXNAME) and Entrez gene identifiers (GENEID).

Use cdsBy to extract all coding sequences, grouped by transcript. Subset the coding sequences to contain just the
transcripts relevant to the top table. How many transcripts are there? What is the structure of the first transcript’s
coding sequence?

Load the ‘BSgenome’ package for the dm3 build of D. melanogaster. Use the coding sequences ranges of the previous
part of this exercise to extract the underlying DNA sequence, using the extractTranscriptsFromGenome function. Use
Biostrings’ translate to convert DNA to amino acid sequences.

Solution: The following loads the relevant Transcript.db package, and creates a more convenient alias to the TranscriptDb
instance defined in the package.

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

We also need the data – flybase IDs from our differential expression analysis.

> library(SequenceAnalysisData)

> data(lrTest)

> fbids <- rownames(topTags(lrTest))

We can discover available keys (using keys) and columns (cols) in txdb, and then use select to retrieve the transcripts
associated with each differentially expressed gene. The mapping between gene and transcript is not one-to-one – some
genes have more than one transcript.

> txnm <- select(txdb, fbids, "TXNAME", "GENEID")

> nrow(txnm)

[1] 14

> head(txnm, 3)

GENEID TXNAME

1 FBgn0039155 FBtr0084549

2 FBgn0039827 FBtr0085755

3 FBgn0039827 FBtr0085756

The TranscriptDb instances can be queried for data that is more structured than simple data frames, and in particular
return GRanges or GRangesList instances to represent genomic coordinates. These queries are performed using cdsBy

(coding sequence), transcriptsBy (transcripts), etc., where a function argument by specifies how coding sequences or
transcripts are grouped. Here we extract the coding sequences grouped by transcript, returning the transcript names,
and subset the resulting GRangesList to contain just the transcripts of interest to us. The first transcript is composed of
6 distinct coding sequence regions.

> txnm <- txnm[!is.na(txnm$TXNAME),,drop=FALSE]

> cds <- cdsBy(txdb, "tx", use.names=TRUE)[txnm$TXNAME]

> length(cds)

[1] 13

> cds[1]

GRangesList of length 1:

$FBtr0084549

GRanges with 6 ranges and 3 metadata columns:

seqnames ranges strand | cds_id cds_name exon_rank

<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr3R [19970946, 19971592] + | 41058 <NA> 2

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
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[2] chr3R [19971652, 19971770] + | 41059 <NA> 3

[3] chr3R [19971831, 19972024] + | 41060 <NA> 4

[4] chr3R [19972088, 19972461] + | 41061 <NA> 5

[5] chr3R [19972523, 19972589] + | 41062 <NA> 6

[6] chr3R [19972918, 19973094] + | 41063 <NA> 7

---

seqlengths:

chr2L chr2R chr3L chr3R ... chrXHet chrYHet chrUextra

23011544 21146708 24543557 27905053 ... 204112 347038 29004656

The following code loads the appropriate BSgenome package; the Dmelanogaster object refers to the whole genome
sequence represented in this package. The remaining steps extract the DNA sequence of each transcript, and translates
these to amino acid sequences. Issues of strand are handled correctly.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> txx <- extractTranscriptsFromGenome(Dmelanogaster, cds)

> length(txx)

[1] 13

> head(txx, 3)

A DNAStringSet instance of length 3

width seq names

[1] 1578 ATGGGCAGCATGCAAGTGGCGCT...TGCAGATCAAGTGCAGCGACTAG FBtr0084549

[2] 2760 ATGCTGCGTTATCTGGCGCTTTC...TTGCTGCCCCATTCGAACTTTAG FBtr0085755

[3] 2217 ATGGCACTCAAGTTTCCCACAGT...TTGCTGCCCCATTCGAACTTTAG FBtr0085756

> head(translate(txx), 3)

A AAStringSet instance of length 3

width seq

[1] 526 MGSMQVALLALLVLGQLFPSAVANGSSSYSSTST...VLDDSRNVFTFTTPKCENFRKRFPKLQIKCSD*

[2] 920 MLRYLALSEAGIAKLPRPQSRCYHSEKGVWGYKP...YCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*

[3] 739 MALKFPTVKRYGGEGAESMLAFFWQLLRDSVQAN...YCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*

6.3 Visualizing Sequence Data

R has some great visualization packages; essential references include [7] for a general introduction, Murrell [28] for base
graphics, Sarkar [34] for lattice, and Wickham [36] for ggplot2. Here we take a quick tour of visualization facilities tailed
for sequence data and using Bioconductor approaches.

6.3.1 Gviz

The Gviz package produces very elegant data organized in a more-or-less familiar ‘track’ format. The following exercises
walk through the Gviz User guide Section 2.

Exercise 18
Load the Gviz package and sample GRanges containing genomic coordinates of CpG islands. Create a couple of variables
with information on the chromosome and genome of the data (how can this information be extracted from the cpgIslands
object?).

http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/2.12/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
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> library(Gviz)

> data(cpgIslands)

> chr <- "chr7"

> genome <- "hg19"

The basic idea is to create a track, perhaps with additional attributes, and to plot it. There are different types of track,
and we create these one at a time. We start with a simple annotation track

> atrack <- AnnotationTrack(cpgIslands, name="CpG")

> plotTracks(atrack)

Then add a track that represents genomic coordinates. Tracks are combined when plotted, as a simple list. The vertical
ordering of tracks is determined by their position in the list.

> gtrack <- GenomeAxisTrack()

> plotTracks(list(gtrack, atrack))

We can add an ideogram to provide overall orientation. . .

> itrack <- IdeogramTrack(genome=genome, chromosome=chr)

> plotTracks(list(itrack, gtrack, atrack))

and a more elaborate gene model, as an data.frame or GRanges object with specific columns of metadata.

> data(geneModels)

> grtrack <-

+ GeneRegionTrack(geneModels, genome=genome,

+ chromosome=chr, name="Gene Model")

> tracks <- list(itrack, gtrack, atrack, grtrack)

> plotTracks(tracks)

Zooming out changes the location box on the ideogram

> plotTracks(tracks, from=2.5e7, to=2.8e7)

When zoomed in we can add sequence data

> library(BSgenome.Hsapiens.UCSC.hg19)

> strack <- SequenceTrack(Hsapiens, chromosome=chr)

> plotTracks(c(tracks, strack), from=26450430, to=26450490, cex=.8)

As the Gviz vignette humbly says, ‘so far we have replicated the features of a whole bunch of other genome browser
tools out there‘. We’d like to be able integrate our data into these plots, with a rich range of plotting options. The key
is the DataTrack function, which we demonstrate with some simulated data; this final result is shown in Figure 6.1.

> ## some data

> lim <- c(26700000, 26900000)

> coords <- seq(lim[1], lim[2], 101)

> dat <- runif(length(coords) - 1, min=-10, max=10)

> ## DataTrack

> dtrack <-

+ DataTrack(data=dat, start=coords[-length(coords)],

+ end= coords[-1], chromosome=chr, genome=genome,

+ name="Uniform Random")

> plotTracks(c(tracks, dtrack))

Section 4.3 of the Gviz vignette illustrates flexibility of the data track.

http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html


Workshop: Introduction to Statistical Computing with R and Bioconductor 67

Figure 6.1: Gviz ideogram, genome coordinate, annotation, and data tracks.
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6.3.2 shiny for easy interactive reports

As a final example of visualization, the shiny package and web site 1 offers a fun and comparatively easy way to develop
interactive, browser-based visualizations. These visualizations are an excellent way to provide sophisticated exploratory or
summary analysis in a very accessible way. The idea is to write a ‘user interface’ component that describes how a page is
to be presented to users, and a ‘server’ that describes how the data are to be calculated or modified in responses to user
choices. The programming model is ‘reactive’, where changes in a user choice automatically trigger re-calculations in
the server. This reactive model is like in a spreadsheet with a formula, where adjusting a cell that the formula references
triggers re-calculation of the formula. Just like in a spreadsheet, someone creating a shiny application does not have to
work hard to make reactivity work.

A simple shiny application is at

> library(shiny)

> appDir <- system.file("shiny",

+ "AnnotationTable", package="StatisticalComputing2013")

The application provides a simple way to to select annotations from different org.* packages. Take the application for a
spin:

> runApp(appDir)

The application consists of three files. ui.R defines the user interface, how various widgets appear in a web browser.
This is the code that a ‘client’ would need to be able to use the application. View the content of this file with

> noquote(readLines(file.path(appDir, "ui.R")))

1http://www.rstudio.com/shiny/

http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://www.rstudio.com/shiny/
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[1] shinyUI(pageWithSidebar(

[2]

[3] headerPanel("Annotation"),

[4]

[5] sidebarPanel(

[6]

[7] textInput("keys", "ENTREZ identifiers"),

[8]

[9] selectInput("organism", "Organism",

[10] choices=names(map)),

[11]

[12] selectInput("columns", "Selected annotations",

[13] choices=columns(map[[ "Human" ]]),

[14] selected=c("SYMBOL", "GENENAME"),

[15] multiple=TRUE)

[16]

[17] ),

[18]

[19] mainPanel(

[20]

[21] h4("Results (maximum 10 identifiers)"),

[22] tableOutput("view")

[23]

[24] )

[25]

[26] ))

server.R defines the computations that are performed in response to user selections. global.R defines global variables
needed for both the user interface and server.

Exercise 19
(For technical reasons, this cannot easily be done on the AMI). Start R on your local computer, and install shiny

> source("http://bioconductor.org/biocLite.R")

> biocLite("shiny")

Download the ui.R, server.R, and global.R files from the AMI to a directory on your local computer, and run the
app using runApp as above.

Now try making a simple change to the ui.R file, e.g., changing the name of the headerPanel from Annotation to
My Annotations. Return to the browser and, without restarting the shiny appilcation, reload the page. Note that your
change is incorporated!

Try introducing an error, e.g,. ‘forgetting’ to include the comma after the headerPanel function. Reload the app to
see how shiny responds.

Implement a feature of your choice in the ui or server.
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