
Sequences, Reads, Alignments, and Ranges

Marc Carlson, Valerie Obenchain, Hervé Pagès, Paul Shannon, Dan Tenenbaum, Martin
Morgan1

June 23 – 28, 2013

1mtmorgan@fhcrc.org

mailto:mtmorgan@fhcrc.org

Contents

1 Sequencing 2
1.1 Technologies . 2
1.2 Data . 3
1.3 Bioconductor for sequence analysis . 5

2 Strings and Reads 7
2.1 DNA (and other) Strings with the Biostrings package . 7
2.2 Reads and the ShortRead package . 10

3 Ranges and Alignments 14
3.1 Ranges and the GenomicRanges package . 14
3.2 Alignments and the Rsamtools Package . 20

4 Strategies for working with large data 24
4.1 Restriction . 24
4.2 Sampling . 26
4.3 Iteration . 27
4.4 Parallel evaluation . 29
4.5 And. 30

References 31

1

http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html

Chapter 1

Sequencing

Exercise 1
Set up your system to do the exercises in this lab. In addition to the packages you were asked to install
prior to the course, you’ll need to install the Morgan2013 package and BigData directory of sample data
files. Do this following the instructions in the lab. The following line MUST succeed

> SYSTEM_OK <- getRversion() > "3.0" && require(Morgan2013, quietly=TRUE)

> stopifnot(SYSTEM_OK)

In addition, some of the exercises require access to data files. These should be installed at a convenient
place; the exercises assume that the files are at the location returned by

> path.expand("~/BigData")

There should be a total of 39 files

> stopifnot(length(dir("~/BigData", recursive=TRUE)) == 39)

Recent technological developments introduce high-throughput sequencing approaches. A variety of
experimental protocols and analysis work flows address gene expression, regulation, and encoding of
genetic variants. Experimental protocols produce a large number (tens to hundreds of millions per
sample) of short (e.g., 35-100’s, single or paired-end) nucleotide sequences. These are aligned to a
reference or other genome. Analysis work flows use the alignments to infer levels of gene expression
(RNA-seq), binding of regulatory elements to genomic locations (ChIP-seq), or prevalence of structural
variants (e.g., SNPs, short indels, large-scale genomic rearrangements). Sample sizes range from minimal
replication (e.g,. 2 samples per treatment group) to thousands of individuals.

1.1 Technologies

The most common ‘second generation’ technologies readily available to labs are

� Illumina single- and paired-end reads. Short (∼ 100 per end) and very numerous. Flow cell, lane,
bar-code.

� Roche 454. 100’s of nucleotides, 100,000’s of reads.

� Life Technologies SOLiD. Unique ‘color space’ model.

� Complete Genomics. Whole genome sequence / variants / etc as a service; end user gets derived
results.

Figure 1.1 illustrates Illumina and 454 sequencing. Bioconductor has good support for Illumina and
Roche 454 sequencing products, and for derived data such as aligned reads or called variants; use of
SOLiD color space reads typically requires conversion to FASTQ files that undermine the benefit of the
color space model.

All second-generation technologies rely on PCR and other techniques to generate reads from samples
that represent aggregations of many DNA molecules. ‘Third-generation’ technologies shift to single-
molecule sequencing, with relevant players including Pacific Biosciences and IonTorent. This data is not
widely available, and will not be discussed further.

2

Figure 1.1: High-throughput sequencing. Left: Illumina bridge PCR [1]; mis-call errors. Right: Roche
454 [8]; homopolymer errors.

The most common data in Bioconductor work flows is from Illumina sequencers. Reads are either
single-end or paired-end. Single-end reads represent 30− ∼ 100 nucleotides sequenced from DNA that
has been sheared into ∼ 300 nucleotide fragments. Paired-end reads represent 30− ∼ 100 nucleotide
reads that are paired, and from both ends of the ∼ 300 fragment.

Sequence data can be derived from a tremendous diversity of experiments. Some of the most common
include:

RNA-seq Sequencing of reverse-complemented mRNA from the entire expressed transcriptome, typi-
cally. Used for differential expression studies like micro-arrays, or for novel transcript discovery.

DNA-seq Sequencing of whole or targeted (e.g., exome) genomic DNA. Common goals include SNP
detection, indel and other structural polymorphisms, and CNV (copy number variation). DNA-
seq is also used for de novo assembly, but de novo assembly is not an area where Bioconductor
contributes.

ChIP-seq ChIP (chromatin immuno-precipitation) is used to enrich genomic DNA for regulatory el-
ements, followed by sequencing and mapping of the enriched DNA to a reference genome. The
initial statistical challenge is to identify regions where the mapped reads are enriched relative to a
sample that did not undergo ChIP[5]; a subsequent task is to identify differential binding across a
designed experiment, e.g., [7].

Metagenomics Sequencing generates sequences from samples containing multiple species, typically
microbial communities sampled from niches such as the human oral cavity. Goals include inference
of species composition (when sequencing typically targets phylogenetically informative genes such
as 16S) or metabolic contribution.

1.2 Data

As a running example, we use the pasilla data set, derived from [2]. The authors investigate conservation
of RNA regulation between D. melanogaster and mammals. Part of their study used RNAi and RNA-
seq to identify exons regulated by Pasilla (ps), the D. melanogaster ortholog of mammalian NOVA1 and
NOVA2. Briefly, their experiment compared gene expression as measured by RNAseq in S2-DRSC cells
cultured with, or without, a 444bp dsRNA fragment corresponding to the ps mRNA sequence. Their
assessment investigated differential exon use, but our worked example will focus on gene-level differences.
For several examples we look at a subset of the ps data, corresponding to reads obtained from lanes of
their RNA-seq experiment, and to the same reads aligned to a D. melanogaster reference genome. Reads
were obtained from GEO and the Short Read Archive (SRA), and were aligned to the D. melanogaster
reference genome dm3 as described in the pasilla experiment data package.

At a very high level, one can envision a work flow that starts with a challenging biological question
(how does ps influence gene and transcript regulation?). The biological question is framed in terms of

3

Table 1.1: Common file types (e.g., http://genome.ucsc.edu/FAQ/FAQformat.html) and Bioconductor
packages used for input.

File Description Package
FASTQ Unaligned sequences: identifier, sequence, and encoded quality

score tuples
ShortRead

BAM Aligned sequences: identifier, sequence, reference sequence
name, strand position, cigar and additional tags

Rsamtools

GFF, GTF Gene annotations: reference sequence name, data source, fea-
ture type, start and end positions, strand, etc.

rtracklayer

BED Range-based annotation: reference sequence name, start, end
coordinates.

rtracklayer

WIG, bigWig ‘Continuous’ single-nucleotide annotation. rtracklayer
VCF Called single nucleotide, indel, copy number, and structural

variants, often compressed and indexed (with Rsamtools bgzip,
indexTabix)

VariantAnnotation

wet-lab protocols coupled with an appropriate and all-important experimental design. There are several
well-known statistical issues at this stage, common to any experimental data. What treatments are going
to be applied? How many replicates will there be of each? Is there likely to be sufficient power to answer
the biologically relevant question? Reality is also important at this stage, as evidenced in the pasilla data
where, as we will see, samples were collected using different methods (single versus paired end reads) over
a time when there were rapid technological changes. Such reality often introduces confounding factors
that require appropriate statistical treatment in subsequent analysis.

The work flow proceeds with data generation, involving both a wet-lab (sample preparation) compo-
nent and actual sequencing. It is essential to acknowledge the biases and artifacts that are introduced at
each of these stages. Sample preparation involves non-trivial amounts of time and effort. Large studies
are likely to have batch effects (e.g., because work was done by different lab members, or different batches
of reagent). Samples might have been prepared in ways that are likely to influence down-stream analysis,
e.g., using a protocol involving PCR and hence introducing opportunities for sample-specific bias. DNA
isolation protocols may introduce many artifacts, e.g., non-uniform representation of reads across the
length of expressed genes in RNA-seq. The sequencing reaction itself is far from bias-free, with known
artifacts of called base frequency, cycle-dependent accuracy and bias, non-uniform coverage, etc. At a
minimum, the researcher needs to be aware of the opportunities for bias that can be introduced during
sample preparation and sequencing.

The informatics component of work flows becomes increasing important during and after sequence
generation. The sequencer is often treated as a ‘black box’, producing short reads consisting of 10’s
to 100’s of nucleotides and with associated quality scores. Usually, the chemistry and informatics pro-
cessing pipeline are sufficiently well documented that one can arrive at an understanding of biases and
quality issues that might be involved; such an understanding is likely to be particularly important when
embarking on questions or using protocols that are at the fringe of standard practice (where, after all,
the excitement is).

The first real data seen by users are fastq files (Table 1.1). These files are often simple text files
consisting of many millions of records, and are described in greater detail in Section 2.2. The center
performing the sequencing typically vets results for quality, but these quality measures are really about
the performance of their machines. It is very important to assess quality with respect to the experiment
being undertaken – Are the numbers of reads consistent across samples? Are GC content and other
observable aspects of the reads consistent with expectation? Are there anomalies in the sequence results
that reflect primers or other reagents used during sample preparation? Are well-known artifacts of the
experimental protocol evident in the reads in hand?

The next step in many work flows involves alignment of reads to a reference genome. There are many
aligners available, including BWA [4], Bowtie / Bowtie2 [3], and GSNAP; merits of these are discussed
in the literature. Bioconductor packages ‘wrapping’ these tools are increasingly common (e.g., Rbowtie,
gmapR; cummeRbund for parsing output of the cufflinks transcript discovery pathway). There are also
alignment algorithms implemented in Bioconductor (e.g., matchPDict in the Biostrings package, and the

4

http://genome.ucsc.edu/FAQ/FAQformat.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/
http://research-pub.gene.com/gmap/
http://bioconductor.org/packages/devel/bioc/html/Rbowtie.html
http://bioconductor.org/packages/devel/bioc/html/gmapR.html
http://bioconductor.org/packages/devel/bioc/html/cummeRbund.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html

Rsubread package); matchPDict is particularly useful for flexible alignment of moderately sized subsets of
data. Most main-stream aligners produce output in ‘SAM’ or ‘BAM’ (binary alignment) format. BAM
files are the primary starting point for many analyses, and their manipulation and use in Bioconductor
is introduced in Section 3.2.

Common analyses often use well-established third-party tools for initial stages of the analysis; some of
these have Bioconductor counterparts that are particularly useful when the question under investigation
does not meet the assumptions of other facilities. Some common work flows (a more comprehensive list
is available on the SeqAnswers wiki1) include:

ChIP-seq ChIP-seq experiments typically use DNA sequencing to identify regions of genomic DNA
enriched in prepared samples relative to controls. A central task is thus to identify peaks, with
common tools including MACS and PeakRanger.

RNA-seq In addition to the aligners mentioned above, RNA-seq for differential expression might use the
HTSeq2 python tools for counting reads within regions of interest (e.g., known genes) or a pipeline
such as the bowtie (basic alignment) / tophat (splice junction mapper) / cufflinks (esimated isoform
abundance) (e.g., 3) or RSEM4 suite of tools for estimating transcript abundance.

DNA-seq especially variant calling can be facilitated by software such as the GATK5 toolkit.

There are many R packages that replace or augment the analyses outlined above.
Programs such as those outlined the previous paragraph often rely on information about gene or

other structure as input, or produce information about chromosomal locations of interesting features.
The GTF and BED file formats are common representations of this information. Representing these files
as R data structures is often facilitated by the rtracklayer package. We explore these files in the lab on
gene and genome annotation. Variants are very commonly represented in VCF (Variant Call Format)
files; these are explored in the lab on variants.

1.3 Bioconductor for sequence analysis

Table 1.2 enumerates some of the packages available for sequence analysis. The table includes packages
for representing sequence-related data (e.g., GenomicRanges, Biostrings), as well as domain-specific
analysis such as RNA-seq (e.g., edgeR, DESeq2), ChIP-seq (e.g,. ChIPpeakAnno, DiffBind), variants
(e.g., VariantAnnotation, VariantTools, and SNPs and copy number variation (e.g., genoset, ggtools).

1http://seqanswers.com/wiki/RNA-Seq
2http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
3http://bowtie-bio.sourceforge.net/index.shtml
4http://deweylab.biostat.wisc.edu/rsem/
5http://www.broadinstitute.org/gatk/

5

http://bioconductor.org/packages/devel/bioc/html/Rsubread.html
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/edgeR.html
http://bioconductor.org/packages/devel/bioc/html/DESeq2.html
http://bioconductor.org/packages/devel/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/devel/bioc/html/DiffBind.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/genoset.html
http://bioconductor.org/packages/devel/bioc/html/ggtools.html
http://seqanswers.com/wiki/RNA-Seq
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://bowtie-bio.sourceforge.net/index.shtml
http://deweylab.biostat.wisc.edu/rsem/
http://www.broadinstitute.org/gatk/

Table 1.2: Selected Bioconductor packages for high-throughput sequence analysis.

Concept Packages
Data representation IRanges, GenomicRanges, GenomicFeatures, Biostrings,

BSgenome, girafe.
Input / output ShortRead (fastq), Rsamtools (bam), rtracklayer (gff, wig, bed),

VariantAnnotation (vcf), R453Plus1Toolbox (454).
Annotation GenomicFeatures, ChIPpeakAnno, VariantAnnotation.
Alignment gmapR, Rsubread, Biostrings.
Visualization ggbio, Gviz.
Quality assessment qrqc, seqbias, ReQON , htSeqTools, TEQC , Rolexa, ShortRead.
RNA-seq BitSeq, cqn, cummeRbund, DESeq2, DEXSeq, EDASeq, edgeR,

gage, goseq, iASeq, tweeDEseq.
ChIP-seq, etc. BayesPeak, baySeq, ChIPpeakAnno, chipseq, ChIPseqR, ChIPsim,

CSAR, DiffBind, MEDIPS, mosaics, NarrowPeaks, nucleR, PICS,
PING, REDseq, Repitools, TSSi.

Variants VariantAnnotation, VariantTools, gmapR
SNPs snpStats, GWASTools, hapFabia, GGtools
Copy number cn.mops, genoset, CNAnorm, exomeCopy , seqmentSeq.
Motifs MotifDb, BCRANK , cosmo, cosmoGUI , MotIV , seqLogo, rGA-

DEM .
3C, etc. HiTC , r3Cseq.
Microbiome phyloseq, DirichletMultinomial, clstutils, manta, mcaGUI .
Work flows QuasR, easyRNASeq, ArrayExpressHTS, Genominator, oneChan-

nelGUI , rnaSeqMap.
Database SRAdb.

6

http://bioconductor.org/packages/devel/bioc/html/IRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/BSgenome.html
http://bioconductor.org/packages/devel/bioc/html/girafe.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/R453Plus1Toolbox.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/gmapR.html
http://bioconductor.org/packages/devel/bioc/html/Rsubread.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/ggbio.html
http://bioconductor.org/packages/devel/bioc/html/Gviz.html
http://bioconductor.org/packages/devel/bioc/html/qrqc.html
http://bioconductor.org/packages/devel/bioc/html/seqbias.html
http://bioconductor.org/packages/devel/bioc/html/ReQON.html
http://bioconductor.org/packages/devel/bioc/html/htSeqTools.html
http://bioconductor.org/packages/devel/bioc/html/TEQC.html
http://bioconductor.org/packages/devel/bioc/html/Rolexa.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/BitSeq.html
http://bioconductor.org/packages/devel/bioc/html/cqn.html
http://bioconductor.org/packages/devel/bioc/html/cummeRbund.html
http://bioconductor.org/packages/devel/bioc/html/DESeq2.html
http://bioconductor.org/packages/devel/bioc/html/DEXSeq.html
http://bioconductor.org/packages/devel/bioc/html/EDASeq.html
http://bioconductor.org/packages/devel/bioc/html/edgeR.html
http://bioconductor.org/packages/devel/bioc/html/gage.html
http://bioconductor.org/packages/devel/bioc/html/goseq.html
http://bioconductor.org/packages/devel/bioc/html/iASeq.html
http://bioconductor.org/packages/devel/bioc/html/tweeDEseq.html
http://bioconductor.org/packages/devel/bioc/html/BayesPeak.html
http://bioconductor.org/packages/devel/bioc/html/baySeq.html
http://bioconductor.org/packages/devel/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/devel/bioc/html/chipseq.html
http://bioconductor.org/packages/devel/bioc/html/ChIPseqR.html
http://bioconductor.org/packages/devel/bioc/html/ChIPsim.html
http://bioconductor.org/packages/devel/bioc/html/CSAR.html
http://bioconductor.org/packages/devel/bioc/html/DiffBind.html
http://bioconductor.org/packages/devel/bioc/html/MEDIPS.html
http://bioconductor.org/packages/devel/bioc/html/mosaics.html
http://bioconductor.org/packages/devel/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/devel/bioc/html/nucleR.html
http://bioconductor.org/packages/devel/bioc/html/PICS.html
http://bioconductor.org/packages/devel/bioc/html/PING.html
http://bioconductor.org/packages/devel/bioc/html/REDseq.html
http://bioconductor.org/packages/devel/bioc/html/Repitools.html
http://bioconductor.org/packages/devel/bioc/html/TSSi.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/gmapR.html
http://bioconductor.org/packages/devel/bioc/html/snpStats.html
http://bioconductor.org/packages/devel/bioc/html/GWASTools.html
http://bioconductor.org/packages/devel/bioc/html/hapFabia.html
http://bioconductor.org/packages/devel/bioc/html/GGtools.html
http://bioconductor.org/packages/devel/bioc/html/cn.mops.html
http://bioconductor.org/packages/devel/bioc/html/genoset.html
http://bioconductor.org/packages/devel/bioc/html/CNAnorm.html
http://bioconductor.org/packages/devel/bioc/html/exomeCopy.html
http://bioconductor.org/packages/devel/bioc/html/seqmentSeq.html
http://bioconductor.org/packages/devel/bioc/html/MotifDb.html
http://bioconductor.org/packages/devel/bioc/html/BCRANK.html
http://bioconductor.org/packages/devel/bioc/html/cosmo.html
http://bioconductor.org/packages/devel/bioc/html/cosmoGUI.html
http://bioconductor.org/packages/devel/bioc/html/MotIV.html
http://bioconductor.org/packages/devel/bioc/html/seqLogo.html
http://bioconductor.org/packages/devel/bioc/html/rGADEM.html
http://bioconductor.org/packages/devel/bioc/html/rGADEM.html
http://bioconductor.org/packages/devel/bioc/html/HiTC.html
http://bioconductor.org/packages/devel/bioc/html/r3Cseq.html
http://bioconductor.org/packages/devel/bioc/html/phyloseq.html
http://bioconductor.org/packages/devel/bioc/html/DirichletMultinomial.html
http://bioconductor.org/packages/devel/bioc/html/clstutils.html
http://bioconductor.org/packages/devel/bioc/html/manta.html
http://bioconductor.org/packages/devel/bioc/html/mcaGUI.html
http://bioconductor.org/packages/devel/bioc/html/QuasR.html
http://bioconductor.org/packages/devel/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/devel/bioc/html/ArrayExpressHTS.html
http://bioconductor.org/packages/devel/bioc/html/Genominator.html
http://bioconductor.org/packages/devel/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/devel/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/devel/bioc/html/rnaSeqMap.html
http://bioconductor.org/packages/devel/bioc/html/SRAdb.html

Chapter 2

Strings and Reads

2.1 DNA (and other) Strings with the Biostrings package

Table 2.1 lists select Bioconductor packages for representing strings and reads. The Biostrings package
provides tools for working with sequences. The essential data structures are DNAString and DNAS-
tringSet , for working with one or multiple DNA sequences. The Biostrings package contains additional
classes for representing amino acid and general biological strings. The BSgenome and related packages
(e.g., BSgenome.Dmelanogaster.UCSC.dm3) are used to represent whole-genome sequences. Table 2.2
summarizes common operations; The following exercise explores these packages.

Exercise 2
The objective of this exercise is to calculate the GC content of the exons of a single gene. We jump
into the middle of some of the data structures common in Bioconductor; these are introduced more
thoroughly in later exercises..

Load the BSgenome.Dmelanogaster.UCSC.dm3 data package, containing the UCSC representation of
D. melanogaster genome assembly dm3. Discover the content of the package by evaluating Dmelanogaster.

Load the Morgan2013 package, and evaluate the command data(ex) to load an example of a GRanges-
List object. the GRangesList represents coordinates of exons in the D. melanogaster genome, grouped
by gene.

Look at ex[1]. These are the genomic coordinates of the first gene in the ex object. Load the D.
melanogaster chromosome that this gene is on by subsetting the Dmelanogaster object.

Use Views to create views on to the chromosome that span the start and end coordinates of all exons
in the first gene; the start and end coordinates are accessed with start(ex[[1]]) and similar.

Develop a function gcFunction to calculate GC content. Use this to calculate the GC content in each
of the exons.

Solution: Here we load the D. melanogaster genome, select a single chromosome, and create Views that
reflect the ranges of the FBgn0002183.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> Dmelanogaster

Fly genome

|

Table 2.1: Selected Bioconductor packages for representing strings and reads.

Package Description
Biostrings Classes (e.g., DNAStringSet) and methods (e.g., alphabetFrequency,

pairwiseAlignment) for representing and manipulating DNA and other
biological sequences.

BSgenome Representation and manipulation of large (e.g., whole-genome) sequences.
ShortRead I/O and manipulation of FASTQ files.

7

http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/BSgenome.html
http://bioconductor.org/packages/devel/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
http://bioconductor.org/packages/devel/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/BSgenome.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html

Table 2.2: Operations on strings in the Biostrings package.

Function Description
Access length, names Number and names of sequences

[, head, tail, rev Subset, first, last, or reverse sequences
c Concatenate two or more objects
width, nchar Number of letters of each sequence
Views Light-weight sub-sequences of a sequence

Compare ==, !=, match, %in% Element-wise comparison
duplicated, unique Analog to duplicated and unique on character vectors
sort, order Locale-independent sort, order
split, relist Split or relist objects to, e.g., DNAStringSetList

Edit subseq, subseq<- Extract or replace sub-sequences in a set of sequences
reverse, complement Reverse, complement, or reverse-complement DNA
reverseComplement

translate Translate DNA to Amino Acid sequences
chartr Translate between letters
replaceLetterAt Replace letters at a set of positions by new letters
trimLRPatterns Trim or find flanking patterns

Count alphabetFrequency Tabulate letter occurrence
letterFrequency

letterFrequencyInSlidingView

consensusMatrix Nucleotide × position summary of letter counts
dinucleotideFrequency 2-mer, 3-mer, and k-mer counting
trinucleotideFrequency

oligonucleotideFrequency

nucleotideFrequencyAt Nucleotide counts at fixed sequence positions
Match matchPattern, countPattern Short patterns in one or many (v*) sequences

vmatchPattern, vcountPattern
matchPDict, countPDict Short patterns in one or many (v*) sequences (mismatch only)
whichPDict, vcountPDict
vwhichPDict

pairwiseAlignment Needleman-Wunsch, Smith-Waterman, etc. pairwise alignment
matchPWM, countPWM Occurrences of a position weight matrix
matchProbePair Find left or right flanking patterns
findPalindromes Palindromic regions in a sequence. Also

findComplementedPalindromes

stringDist Levenshtein, Hamming, or pairwise alignment scores
I/0 readDNAStringSet FASTA (or sequence only from FASTQ). Also

readBStringSet, readRNAStringSet, readAAStringSet
writeXStringSet

writePairwiseAlignments Write pairwiseAlignment as “pair” format
readDNAMultipleAlignment Multiple alignments (FASTA, “stockholm”, or “clustal”). Also

readRNAMultipleAlignment, readAAMultipleAlignment
write.phylip

8

http://bioconductor.org/packages/devel/bioc/html/Biostrings.html

| organism: Drosophila melanogaster (Fly)

| provider: UCSC

| provider version: dm3

| release date: Apr. 2006

| release name: BDGP Release 5

|

| single sequences (see '?seqnames'):

| chr2L chr2R chr3L chr3R chr4 chrX chrU

| chrM chr2LHet chr2RHet chr3LHet chr3RHet chrXHet chrYHet

| chrUextra

|

| multiple sequences (see '?mseqnames'):

| upstream1000 upstream2000 upstream5000

|

| (use the '$' or '[[' operator to access a given sequence)

> library(Morgan2013)

> data(ex)

> ex[1]

GRangesList of length 1:

$FBgn0002183

GRanges with 9 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr3L [1871574, 1871917] -

[2] chr3L [1872354, 1872470] -

[3] chr3L [1872582, 1872735] -

[4] chr3L [1872800, 1873062] -

[5] chr3L [1873117, 1873983] -

[6] chr3L [1874041, 1875218] -

[7] chr3L [1875287, 1875586] -

[8] chr3L [1875652, 1875915] -

[9] chr3L [1876110, 1876336] -

seqlengths:

chr2L chr2LHet chr2R chr2RHet ... chrXHet chrYHet chrM

23011544 368872 21146708 3288761 ... 204112 347038 19517

> nm <- "chr3L"

> chr <- Dmelanogaster[[nm]]

> v <- Views(chr, start=start(ex[[1]]), end=end(ex[[1]]))

Here is the gcFunction helper function to calculate GC content:

> gcFunction

function (x)

{

alf <- alphabetFrequency(x, as.prob = TRUE)

rowSums(alf[, c("G", "C")])

}

<environment: namespace:Morgan2013>

The gcFunction is really straight-forward: it invokes the function alphabetFrequency from the Biostrings
package. This returns a simple matrix of exon × nucleotide probabilities. The row sums of the G and C

columns of this matrix are the GC contents of each exon.
The subject GC content is

9

http://bioconductor.org/packages/devel/bioc/html/Biostrings.html

> subjectGC <- gcFunction(v)

2.2 Reads and the ShortRead package

Short read formats Illumina technologies generate sequences by measuring incorporation of florescent
nucleotides over successive PCR cycles. These sequencers produce output in a variety of formats, but
FASTQ is ubiquitous. Each read is represented by a record of four components:

@SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

+SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

The first and third lines (beginning with @ and + respectively) are unique identifiers. The identifier
produced by the sequencer typically includes a machine id followed by colon-separated information on
the lane, tile, x, and y coordinate of the read. The example illustrated here also includes the SRA
accession number, added when the data was submitted to the archive. The machine identifier could
potentially be used to extract information about batch effects. The spatial coordinates (lane, tile, x,
y) are often used to identify optical duplicates; spatial coordinates can also be used during quality
assessment to identify artifacts of sequencing, e.g., uneven amplification across the flow cell, though
these spatial effects are rarely pursued.

The second and fourth lines of the FASTQ record are the nucleotides and qualities of each cycle in the
read. This information is given in 5’ to 3’ orientation as seen by the sequencer. A letter N in the sequence
is used to signify bases that the sequencer was not able to call. The fourth line of the FASTQ record
encodes the quality (confidence) of the corresponding base call. The quality score is encoded following
one of several conventions, with the general notion being that letters later in the visible ASCII alphabet

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijk

lmnopqrstuvwxyz{|}~

are of higher quality; this is developed further below. Both the sequence and quality scores may span
multiple lines.

Technologies other than Illumina use different formats to represent sequences. Roche 454 sequence
data is generated by ‘flowing’ labeled nucleotides over samples, with greater intensity corresponding to
longer runs of A, C, G, or T. This data is represented as a series of ‘flow grams’ (a kind of run-length en-
coding of the read) in Standard Flowgram Format (SFF). The Bioconductor package R453Plus1Toolbox
has facilities for parsing SFF files, but after quality control steps the data are frequently represented
(with some loss of information) as FASTQ.

Short reads in R FASTQ files can be read in to R using the readFastq function from the ShortRead
package. Use this function by providing the path to a FASTQ file. There are sample data files available
in the /BigData directory, each consisting of 1 million reads from a lane of the Pasilla data set.

> library(ShortRead)

> bigdata <- "~/BigData" ## e.g., "C:/Users/mtmorgan/"

> fastqDir <- file.path(bigdata, "fastq")

> fastqFiles <- dir(fastqDir, full=TRUE)

> fq <- readFastq(fastqFiles[1])

> fq

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

The data are represented as an object of class ShortReadQ .

> head(sread(fq), 3)

10

http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/R453Plus1Toolbox.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html

A DNAStringSet instance of length 3

width seq

[1] 37 GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

[2] 37 GTTGTCGCATTCCTTACTCTCATTCGGGAATTCTGTT

[3] 37 GAATTTTTTGAGAGCGAAATGATAGCCGATGCCCTGA

> head(quality(fq), 3)

class: FastqQuality

quality:

A BStringSet instance of length 3

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+

> head(id(fq), 3)

A BStringSet instance of length 3

width seq

[1] 58 SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

[2] 57 SRR031724.2 HWI-EAS299_4_30M2BAAXX:5:1:937:1157 length=37

[3] 58 SRR031724.4 HWI-EAS299_4_30M2BAAXX:5:1:1443:1122 length=37

The ShortReadQ class illustrates class inheritance. It extends the ShortRead class

> getClass("ShortReadQ")

Class "ShortReadQ" [package "ShortRead"]

Slots:

Name: quality sread id

Class: QualityScore DNAStringSet BStringSet

Extends:

Class "ShortRead", directly

Class ".ShortReadBase", by class "ShortRead", distance 2

Known Subclasses: "AlignedRead"

Methods defined on ShortRead are available for ShortReadQ .

> showMethods(class="ShortRead", where=search())

For instance, the width can be used to demonstrate that all reads consist of 37 nucleotides.

> table(width(fq))

37

1000000

The alphabetByCycle function summarizes use of nucleotides at each cycle in a (equal width) ShortReadQ
or DNAStringSet instance.

> abc <- alphabetByCycle(sread(fq))

> abc[1:4, 1:8]

11

cycle

alphabet [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

A 78194 153156 200468 230120 283083 322913 162766 220205

C 439302 265338 362839 251434 203787 220855 253245 287010

G 397671 270342 258739 356003 301640 247090 227811 246684

T 84833 311164 177954 162443 211490 209142 356178 246101

FASTQ files are getting larger. A very common reason for looking at data at this early stage in the
processing pipeline is to explore sequence quality. In these circumstances it is often not necessary to
parse the entire FASTQ file. Instead create a representative sample

> sampler <- FastqSampler(fastqFiles[1], 1000000)

> yield(sampler) # sample of 1000000 reads

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

A second common scenario is to pre-process reads, e.g., trimming low-quality tails, adapter sequences,
or artifacts of sample preparation. The FastqStreamer class can be used to ‘stream’ over the fastq files
in chunks, processing each chunk independently.

ShortRead contains facilities for quality assessment of FASTQ files. Here we generate a report from
a sample of 1 million reads from each of our files and display it in a web browser

> qas0 <- Map(function(fl, nm) {

+ fq <- FastqSampler(fl)

+ qa(yield(fq), nm)

+ }, fastqFiles,

+ sub("_subset.fastq", "", basename(fastqFiles)))

> qas <- do.call(rbind, qas0)

> rpt <- report(qas, dest=tempfile())

> browseURL(rpt)

A report from a larger subset of the experiment is available

> rpt <- system.file("GSM461176_81_qa_report", "index.html",

+ package="Morgan2013")

> browseURL(rpt)

Exercise 3
Use the file path bigdata and the file.path and dir functions to locate the fastq file from [2] (the file
was obtained as described in the pasilla experiment data package).

Input the fastq files using readFastq from the ShortRead package.
Use alphabetFrequency to summarize the GC content of all reads (hint: use the sread accessor to

extract the reads, and the collapse=TRUE argument to the alphabetFrequency function). Using the helper
function gcFunction defined in the Morgan2013 package, draw a histogram of the distribution of GC
frequencies across reads.

Use alphabetByCycle to summarize the frequency of each nucleotide, at each cycle. Plot the results
using matplot, from the graphics package.

As an advanced exercise, and if on Mac or Linux, use the parallel package and mclapply to read and
summarize the GC content of reads in two files in parallel.

Solution: Discovery:

> dir(bigdata)

[1] "CompleteGenomics" "TERT" "bam" "fastq"

> fls <- dir(file.path(bigdata, "fastq"), full=TRUE)

Input:

12

http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html

> fq <- readFastq(fls[1])

GC content:

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE, collapse=TRUE)

> sum(alf0[c("G", "C")])

[1] 0.5457237

A histogram of the GC content of individual reads is obtained with

> gc <- gcFunction(sread(fq))

> hist(gc)

Alphabet by cycle:

> abc <- alphabetByCycle(sread(fq))

> matplot(t(abc[c("A", "C", "G", "T"),]), type="l")

Advanced (Mac, Linux only): processing on multiple cores.

> library(parallel)

> gc0 <- mclapply(fls, function(fl) {

+ fq <- readFastq(fl)

+ gc <- gcFunction(sread(fq))

+ table(cut(gc, seq(0, 1, .05)))

+ })

> ## simplify list of length 2 to 2-D array

> gc <- simplify2array(gc0)

> matplot(gc, type="s")

Exercise 4
Use quality to extract the quality scores of the short reads. Interpret the encoding qualitatively.

Convert the quality scores to a numeric matrix, using as(). Inspect the numeric matrix (e.g., using
dim) and understand what it represents.

Use colMeans to summarize the average quality score by cycle. Use plot to visualize this.

Solution:

> head(quality(fq))

class: FastqQuality

quality:

A BStringSet instance of length 6

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+

[4] 37 IIIIIIIIIIIIIIIIIIIIIIII,II*E,&4HI++B

[5] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII&.$

[6] 37 III.IIIIIIIIIIIIIIIIIII%IIE(-EIH<IIII

> qual <- as(quality(fq), "matrix")

> dim(qual)

[1] 1000000 37

> plot(colMeans(qual), type="b")

Exercise 5
As an independent exercise when an internet connection is available, visit the qrqc landing page and
explore the package vignette. Use the qrqc package (you may need to install this) to generate base and
average quality plots for the data, like those in the report generated by ShortRead.

13

http://bioconductor.org/packages/devel/bioc/html/qrqc.html
http://bioconductor.org/packages/devel/bioc/html/qrqc.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html

Chapter 3

Ranges and Alignments

Ranges describe both features of interest (e.g., genes, exons, promoters) and reads aligned to the genome.
Bioconductor has very powerful facilities for working with ranges, some of which are summarized in
Table 3.1.

3.1 Ranges and the GenomicRanges package

Next-generation sequencing data consists of a large number of short reads. These are, typically, aligned
to a reference genome. Basic operations are performed on the alignment, asking e.g., how many reads
are aligned in a genomic range defined by nucleotide coordinates (e.g., in the exons of a gene), or how
many nucleotides from all the aligned reads cover a set of genomic coordinates. How is this type of data,
the aligned reads and the reference genome, to be represented in R in a way that allows for effective
computation?

The IRanges, GenomicRanges, and GenomicFeatures Bioconductor packages (Table 3.1) provide the
essential infrastructure for these operations; we start with the GRanges class, defined in GenomicRanges.

GRanges Instances of GRanges are used to specify genomic coordinates. Suppose we wish to represent
two D. melanogaster genes. The first is located on the positive strand of chromosome 3R, from position
19967117 to 19973212. The second is on the minus strand of the X chromosome, with ‘left-most’ base at
18962306, and right-most base at 18962925. The coordinates are 1-based (i.e., the first nucleotide on a
chromosome is numbered 1, rather than 0), left-most (i.e., reads on the minus strand are defined to ‘start’
at the left-most coordinate, rather than the 5’ coordinate), and closed (the start and end coordinates are
included in the range; a range with identical start and end coordinates has width 1, a 0-width range is
represented by the special construct where the end coordinate is one less than the start coordinate).

A complete definition of these genes as GRanges is:

Table 3.1: Selected Bioconductor packages for representing and manipulating ranges.

Package Description
IRanges Defines important classes (e.g., IRanges, Rle) and methods (e.g., find-

Overlaps, countOverlaps) for representing and manipulating ranges of con-
secutive values. Also introduces DataFrame, SimpleList and other classes
tailored to representing very large data.

GenomicRanges Range-based classes tailored to sequence representation (e.g., GRanges,
GRangesList), with information about strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic ranges, e.g., repre-
senting coordinates and organization of exons and transcripts of known
genes.

AnnotationHub Access many common large-data resources (e.g., Encode tracks; Ensembl
GTF files) as GRanges instances.

14

http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/IRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/IRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/AnnotationHub.html

> genes <- GRanges(seqnames=c("3R", "X"),

+ ranges=IRanges(

+ start=c(19967117, 18962306),

+ end=c(19973212, 18962925)),

+ strand=c("+", "-"),

+ seqlengths=c(`3R`=27905053L, `X`=22422827L))

The components of a GRanges object are defined as vectors, e.g., of seqnames, much as one would
define a data.frame. The start and end coordinates are grouped into an IRanges instance. The optional
seqlengths argument specifies the maximum size of each sequence, in this case the lengths of chromosomes
3R and X in the ‘dm2’ build of the D. melanogaster genome. This data is displayed as

> genes

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 3R [19967117, 19973212] +

[2] X [18962306, 18962925] -

seqlengths:

3R X

27905053 22422827

For the curious, the gene coordinates and sequence lengths are derived from the org.Dm.eg.db package for
genes with Flybase identifiers FBgn0039155 and FBgn0085359, using the annotation facilities described
in the lab on gene and genome annotation.

The GRanges class has many useful methods defined on it. Consult the help page

> ?GRanges

and package vignettes (especially ‘An Introduction to GenomicRanges’)

> vignette(package="GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with accessors for getting and
updating information.

> genes[2]

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] X [18962306, 18962925] -

seqlengths:

3R X

27905053 22422827

> strand(genes)

factor-Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

> width(genes)

[1] 6096 620

15

http://bioconductor.org/packages/devel/data/annotation/html/org.Dm.eg.db.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html

Figure 3.1: Ranges

> length(genes)

[1] 2

> names(genes) <- c("FBgn0039155", "FBgn0085359")

> genes # now with names

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

FBgn0039155 3R [19967117, 19973212] +

FBgn0085359 X [18962306, 18962925] -

seqlengths:

3R X

27905053 22422827

strand returns the strand information in a compact representation called a run-length encoding, this
is introduced in greater detail below. The ‘names’ could have been specified when the instance was
constructed; once named, the GRanges instance can be subset by name like a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges class by adding information
about seqnames, strand, and other information particularly relevant to representing ranges that are on
genomes. The IRanges class and related data structures (e.g., RangedData) are meant as a more general
description of ranges defined in an arbitrary space. Many methods implemented on the GRanges class
are ‘aware’ of the consequences of genomic location, for instance treating ranges on the minus strand
differently (reflecting the 5’ orientation imposed by DNA) from ranges on the plus strand.

Operations on ranges The GRanges class has many useful methods from the IRanges class; some of
these methods are illustrated here. We use IRanges to illustrate these operations to avoid complexities
associated with strand and seqnames, but the operations are comparable on GRanges. We begin with a
simple set of ranges:

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

+ end=c(15, 11, 12, 18, 26, 27, 28))

These and some common operations are illustrated in the upper panel of Figure 3.1 and summarized in
Table 3.2.

Methods on ranges can be grouped as follows:

Intra-range methods act on each range independently. These include flank, narrow, reflect, resize,
restrict, and shift, among others. An illustration is shift, which translates each range by the
amount specified by the shift argument. Positive values shift to the right, negative to the left;

16

shift can be a vector, with each element of the vector shifting the corresponding element of the
IRanges instance. Here we shift all ranges to the right by 5, with the result illustrated in the middle
panel of Figure 3.1.

> shift(ir, 5)

IRanges of length 7

start end width

[1] 12 20 9

[2] 14 16 3

[3] 17 17 1

[4] 19 23 5

[5] 27 31 5

[6] 28 32 5

[7] 29 33 5

Inter-range methods act on the collection of ranges as a whole. These include disjoin, reduce, gaps,
and range. An illustration is reduce, which reduces overlapping ranges into a single range, as
illustrated in the lower panel of Figure 3.1.

> reduce(ir)

IRanges of length 2

start end width

[1] 7 18 12

[2] 22 28 7

coverage is an inter-range operation that calculates how many ranges overlap individual positions.
Rather than returning ranges, coverage returns a compressed representation (run-length encoding)

> coverage(ir)

integer-Rle of length 28 with 12 runs

Lengths: 6 2 4 1 2 3 3 1 1 3 1 1

Values : 0 1 2 1 2 1 0 1 2 3 2 1

The run-length encoding can be interpreted as ‘a run of length 6 of nucleotides covered by 0 ranges,
followed by a run of length 2 of nucleotides covered by 1 range.

Between methods act on two (or sometimes more) IRanges instances. These include intersect, setdiff,
union, pintersect, psetdiff, and punion. The countOverlaps and findOverlaps functions operate
on two sets of ranges. countOverlaps takes its first argument (the query) and determines how many
of the ranges in the second argument (the subject) each overlaps. The result is an integer vector
with one element for each member of query. findOverlaps performs a similar operation but returns
a more general matrix-like structure that identifies each pair of query / subject overlaps. Both
arguments allow some flexibility in the definition of ‘overlap’.

Common operations on ranges are summarized in Table 3.2.

mcols and metadata The GRanges class (actually, most of the data structures defined or extending
those in the IRanges package) has two additional very useful data components. The mcols function allows
information on each range to be stored and manipulated (e.g., subset) along with the GRanges instance.
The element metadata is represented as a DataFrame, defined in IRanges and acting like a standard R
data.frame but with the ability to hold more complicated data structures as columns (and with element
metadata of its own, providing an enhanced alternative to the Biobase class AnnotatedDataFrame).

> mcols(genes) <- DataFrame(EntrezId=c("42865", "2768869"),

+ Symbol=c("kal-1", "CG34330"))

metadata allows addition of information to the entire object. The information is in the form of a list; any
data can be provided.

> metadata(genes) <-

+ list(CreatedBy="A. User", Date=date())

17

http://bioconductor.org/packages/devel/bioc/html/IRanges.html
http://bioconductor.org/packages/devel/bioc/html/IRanges.html
http://bioconductor.org/packages/devel/bioc/html/Biobase.html

Table 3.2: Common operations on IRanges, GRanges and GRangesList .

Category Function Description
Accessors start, end, width Get or set the starts, ends and widths

names Get or set the names
mcols, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end

Ordering <, <=, >, >=, ==, != Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates

Arithmetic r + x, r - x, r * x Shrink or expand ranges r by number x

shift Move the ranges by specified amount
resize Change width, anchoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end

Set operations reduce Merge overlapping and adjacent ranges
intersect, union, setdiff Set operations on reduced ranges
pintersect, punion, psetdiff Parallel set operations, on each x[i], y[i]
gaps, pgap Find regions not covered by reduced ranges
disjoin Ranges formed from union of endpoints

Overlaps findOverlaps Find all overlaps for each x in y

countOverlaps Count overlaps of each x range in y

nearest Find nearest neighbors (closest endpoints)
precede, follow Find nearest y that x precedes or follows
x %in% y Find ranges in x that overlap range in y

Coverage coverage Count ranges covering each position
Extraction r[i] Get or set by logical or numeric index

r[[i]] Get integer sequence from start[i] to end[i]

subsetByOverlaps Subset x for those that overlap in y

head, tail, rev, rep Conventional R semantics
Split, combine split Split ranges by a factor into a RangesList

c Concatenate two or more range objects

18

GRangesList The GRanges class is extremely useful for representing simple ranges. Some next-
generation sequence data and genomic features are more hierarchically structured. A gene may be
represented by several exons within it. An aligned read may be represented by discontinuous ranges of
alignment to a reference. The GRangesList class represents this type of information. It is a list-like data
structure, which each element of the list itself a GRanges instance. The gene FBgn0039155 contains sev-
eral exons, and can be represented as a list of length 1, where the element of the list contains a GRanges
object with 7 elements (the GRangesList instance shown here is from a ‘TranscriptDb’ instance, covered
in a later lab).

GRangesList of length 1:

$FBgn0039155

GRanges with 7 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr3R [19967117, 19967382] + | 45515 <NA>

[2] chr3R [19970915, 19971592] + | 45516 <NA>

[3] chr3R [19971652, 19971770] + | 45517 <NA>

[4] chr3R [19971831, 19972024] + | 45518 <NA>

[5] chr3R [19972088, 19972461] + | 45519 <NA>

[6] chr3R [19972523, 19972589] + | 45520 <NA>

[7] chr3R [19972918, 19973212] + | 45521 <NA>

seqlengths:

chr3R

27905053

The GRangesList object has methods one would expect for lists (e.g., length, sub-setting). Many of
the methods introduced for working with IRanges are also available, with the method applied element-
wise.

The GenomicFeatures packages Many public resources provide annotations about genomic fea-
tures. For instance, the UCSC genome browser maintains the ‘knownGene’ track of established exons,
transcripts, and coding sequences of many model organisms. The GenomicFeatures package provides a
way to retrieve, save, and query these resources. The underlying representation is as sqlite data bases, but
the data are available in R as GRangesList objects. The following exercise explores the GenomicFeatures
package and some of the functionality for the IRanges family introduced above.

Exercise 6
Load the TxDb.Dmelanogaster.UCSC.dm3.ensGene annotation package, and create an alias txdb point-
ing to the TranscriptDb object this class defines.

Extract all exon coordinates, organized by gene, using exonsBy. What is the class of this object? How
many elements are in the object? What does each element correspond to? And the elements of each
element? Use elementLengths and table to summarize the number of exons in each gene, for instance,
how many single-exon genes are there?

Select just those elements corresponding to flybase gene ids FBgn0002183, FBgn0003360, FBgn0025111,
and FBgn0036449. Use reduce to simplify gene models, so that exons that overlap are considered ‘the
same’.

Solution:

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene # alias

> ex0 <- exonsBy(txdb, "gene")

> head(table(elementLengths(ex0)))

1 2 3 4 5 6

3182 2608 2070 1628 1133 886

19

http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/data/annotation/html/TxDb.Dmelanogaster.UCSC.dm3.ensGene.html

Table 3.3: Fields in a SAM record. From http://samtools.sourceforge.net/samtools.shtml

Field Name Value
1 QNAME Query (read) NAME
2 FLAG Bitwise FLAG, e.g., strand of alignment
3 RNAME Reference sequence NAME
4 POS 1-based leftmost POSition of sequence
5 MAPQ MAPping Quality (Phred-scaled)
6 CIGAR Extended CIGAR string
7 MRNM Mate Reference sequence NaMe
8 MPOS 1-based Mate POSition
9 ISIZE Inferred insert SIZE
10 SEQ Query SEQuence on the reference strand
11 QUAL Query QUALity
12+ OPT OPTional fields, format TAG:VTYPE:VALUE

> ids <- c("FBgn0002183", "FBgn0003360", "FBgn0025111", "FBgn0036449")

> ex <- reduce(ex0[ids])

3.2 Alignments and the Rsamtools Package

Most down-stream analysis of short read sequences is based on reads aligned to reference genomes.

Alignment formats Most main-stream aligners produce output in SAM (text-based) or BAM format.
A SAM file is a text file, with one line per aligned read, and fields separated by tabs. Here is an example
of a single SAM line, split into fields.

> fl <- system.file("extdata", "ex1.sam", package="Rsamtools")

> strsplit(readLines(fl, 1), "\t")[[1]]

[1] "B7_591:4:96:693:509"

[2] "73"

[3] "seq1"

[4] "1"

[5] "99"

[6] "36M"

[7] "*"

[8] "0"

[9] "0"

[10] "CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG"

[11] "<<<<<<<<<<<<<<<;<<<<<<<<<5<<<<<;:<;7"

[12] "MF:i:18"

[13] "Aq:i:73"

[14] "NM:i:0"

[15] "UQ:i:0"

[16] "H0:i:1"

[17] "H1:i:0"

Fields in a SAM file are summarized in Table 3.3. We recognize from the FASTQ file the identifier
string, read sequence and quality. The alignment is to a chromosome ‘seq1’ starting at position 1. The
strand of alignment is encoded in the ‘flag’ field. The alignment record also includes a measure of
mapping quality, and a CIGAR string describing the nature of the alignment. In this case, the CIGAR is
36M, indicating that the alignment consisted of 36 Matches or mismatches, with no indels or gaps; indels

20

http://samtools.sourceforge.net/samtools.shtml
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html

(relative to the reference) are represented by I and D; gaps (e.g., from alignments spanning introns) by
N.

BAM files encode the same information as SAM files, but in a format that is more efficiently parsed
by software; BAM files are the primary way in which aligned reads are imported in to R.

Aligned reads in R The readGappedAlignments function (this is renamed readGalignments in the
‘devel’ version of Bioconductor) from the GenomicRanges package reads essential information from a
BAM file in to R. The result is an instance of the GappedAlignments class. The GappedAlignments class
has been designed to allow useful manipulation of many reads (e.g., 20 million) under moderate memory
requirements (e.g., 4 GB); strategies for dealing with large data are discussed in Chaptar 4.

> alnFile <- system.file("extdata", "ex1.bam", package="Rsamtools")

> aln <- readGappedAlignments(alnFile)

> head(aln, 3)

GappedAlignments with 3 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] seq1 + 36M 36 1 36 36

[2] seq1 + 35M 35 3 37 35

[3] seq1 + 35M 35 5 39 35

ngap

<integer>

[1] 0

[2] 0

[3] 0

seqlengths:

seq1 seq2

1575 1584

The readGappedAlignments function takes an additional argument, param, allowing the user to specify
regions of the BAM file (e.g., known gene coordinates) and characteristics of the alignments (e.g., ‘proper’
pairs, as identified by the aligner) from which to extract alignments.

A GappedAlignments instance is like a data frame, but with accessors as suggested by the column
names. It is easy to query, e.g., the distribution of reads aligning to each strand, the width of reads, or
the cigar strings

> table(strand(aln))

+ - *

1647 1624 0

> table(width(aln))

30 31 32 33 34 35 36 38 40

2 21 1 8 37 2804 285 1 112

> head(sort(table(cigar(aln)), decreasing=TRUE))

35M 36M 40M 34M 33M 14M4I17M

2804 283 112 37 6 4

Exercise 7
Use bigdata, file.path and dir to obtain file paths to the BAM files. These are a subset of the aligned
reads, overlapping just four genes.

Input the aligned reads from one file using readGappedAlignments. Explore the reads, e.g., using table

or xtabs, to summarize which chromosome and strand the subset of reads is from.

21

http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html

The object ex is created in a later exercises, but we will use it now. It contains coordinates of
four genes. Use countOverlaps to first determine the number of genes an individual read aligns to, and
then the number of uniquely aligning reads overlapping each gene. Since the RNAseq protocol was not
strand-sensitive, set the strand of aln to *.

Write the sequence of steps required to calculate counts as a simple function, and calculate counts
on each file. On Mac or Linux, can you easily parallelize this operation?

Solution: We discover the location of files using standard R commands:

> bigdata <- "~/BigData"

> fls <- dir(file.path(bigdata, "bam"), ".bam$", full=TRUE) #$

> names(fls) <- sub("_subset.bam", "", basename(fls))

Use readGappedAlignments to input data from one of the files, and standard R commands to explore the
data.

> ## input

> aln <- readGappedAlignments(fls[1])

> xtabs(~ seqnames + strand, as.data.frame(aln))

strand

seqnames + -

chr3L 5402 5974

chrX 2278 2283

To count overlaps in regions defined in a previous exercise, load the regions.

> data(ex) # from a later exercise

Many RNA-seq protocols are not strand aware, i.e., reads align to the plus or minus strand regardless
of the strand on which the corresponding gene is encoded. Adjust the strand of the aligned reads to
indicate that the strand is not known.

> strand(aln) <- "*" # protocol not strand-aware

One important issue when counting reads is to make sure that the reference names in both the
annotation and the read files are identical.

Exercise 8
Check the reference name in both the ex and aln. If they are not similar, how could you correct them?

For simplicity, we are interested in reads that align to only a single gene. Count the number of genes
a read aligns to. . .

> hits <- countOverlaps(aln, ex)

> table(hits)

hits

0 1 2

772 15026 139

Subset the aligned reads to contain just those aligning once, aln[hits == 1]. Finally, reverse the counting
operation to count the number of times each region of interest aligns to a uniquely overlapping alignment.

> cnt <- countOverlaps(ex, aln[hits==1])

A simple function for counting reads (see GenomicRangese::summarizeOverlaps for more realistic counting
schemes) is

22

> counter <-

+ function(filePath, range)

+ {

+ aln <- readGappedAlignments(filePath)

+ strand(aln) <- "*"

+ hits <- countOverlaps(aln, range)

+ countOverlaps(range, aln[hits==1])

+ }

This can be applied to all files using sapply

> counts <- sapply(fls, counter, ex)

The counts in one BAM file are independent of counts in another BAM file. This encourages us to count
reads in each BAM file in parallel, decreasing the length of time required to execute our program. On
Linux and Mac OS, a straight-forward way to parallelize this operation is:

> if (require(parallel))

+ simplify2array(mclapply(fls, counter, ex))

23

Chapter 4

Strategies for working with large
data

Bioinformatics data is now very large; it is not reasonable to expect all of a fastq or bam file, for
instance, to fit into memory. How is this data to be processed? This challenge confronts us in whatever
language or tool we are using. In R and Bioconductor, main approaches are to: (1) restrict data
input to the interesting subset of the larger data set; (2) sample from the large data, knowing that an
appropriately sized sample will accurately estimate statistics we are interested in; (3) iterate through
large data in chunks; and (4) use parallel evaluation on one or several computers. Let’s look at each of
these approaches.

4.1 Restriction

Just because a file contains a lot of data does not mean that we are interested in all of it. In base R,
one might use the colClasses argument to read.delim or similar function (e.g., setting some elements
to NULL) to read only some columns of a large comma-separated value file. In addition to the obvious
benefit of using less memory than if all of the file had been read in, input will be substantially faster
because less computation needs to be done to coerce values from their representation in the file to their
representation in R’s memory.

A variation on the idea of restricting data input is to organize the data on disk into a representation
that facilitates restriction. In base R, large data might be stored in a relational data base like the sqlite
data bases that are built in to R and used in the AnnotationDbi Bioconductor packages. In addition to
facilitating restriction, these approaches are typically faster than parsing a plain text file, because the
data base software has stored data in a way that efficiently transforms data from its on-disk to in-memory
representation.

Let’s use BAM files and the Rsamtools package to illustrate restriction. Rather than using simple
text files (“sam” format), we use “bam” (binary alignment) files that have been indexed. Use of a binary
format enhances data input speed, while the index facilitates restrictions that take into account genomic
coordinates. The basic approach will use the ScanBamParam function to specify a restriction.

A BAM record can contain a lot of information, including the relatively large sequence, quality, and
query name strings. Not all information in the BAM file is needed for some calculations. For instance,
one could calculate coverage (number of nucleotides overlapping each reference position) using only the
rname (reference sequence name), pos, and cigar fields. We could arrange to input just this information
with

> param <- ScanBamParam(what=c("rname", "pos", "cigar"))

Another common restriction is to particular genomic regions of interest. Regions of interest might
be known genes in an RNAseq differential expression study, or promoter regions in a ChIP-seq study.
Restrictions in genome space are specified using GRanges objects (typically computed from some reference
source, rather than entered by hand) provided as the which argument to ScanBamParam. Here we create a

24

http://bioconductor.org/packages/devel/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html

GRanges instance representing all exons on D. melanogaster chromosome 3L, and use that as a restriction
to ScanBamParam’s which argument:

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> exByGn <- exonsBy(TxDb.Dmelanogaster.UCSC.dm3.ensGene, "gene")

> seqlevels(exByGn, force=TRUE) <- "chr3L"

> gns <- unlist(range(exByGn))

> param <- ScanBamParam(which=gns)

The what and which restrictions can be combined with other restrictions into a single ScanBamParam object

> param <- ScanBamParam(what=c("rname", "pos", "cigar"), which=gns)

We can also restrict input to, e.g., paired-end reads that represent the primary (best) alignment; see the
help page ?ScanBamParam for a more complete description.

Here are some BAM files from an experiment in D. melanogaster ; the BAM files contain a subset of
aligned reads

> bigdata <- "~/BigData"

> bamfls <- dir(file.path(bigdata, "bam"), ".bam$", full=TRUE) #$

> names(bamfls) <- sub("_subset.bam", "", basename(bamfls))

We’ll read in the first BAM file, but restrict input to “rname” to find how many reads map to each
chromosome. We use the “low-level” function scanBam to input the data

> param <- ScanBamParam(what="rname")

> bam <- scanBam(bamfls[1], param=param)[[1]]

> table(bam$rname)

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

0 0 11376 0 0 0 4561 0

Restriction is such a useful concept that many Bioconductor high throughput sequence analysis
functions enable doing the right thing. Functions such as coverage,BamFile-method use restrictions
to read in the specific data required for them to compute the statistic of interest. Most “higher level”
functions have a param=ScanBamParam() argument. For instance, the primary user-friendly function for
reading BAM files is readGappedAlignments (this is renammed to readGAlignments in Bioconductor version
2.13) reads the most useful information, allowing the user to specify additional fields if desired.

> gal <- readGappedAlignments(bamfls[1])

> head(gal, 3)

GappedAlignments with 3 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] chr3L - 20M498300N25M 45 1613818 2112162 498345

[2] chr3L - 8M498300N37M 45 1613830 2112174 498345

[3] chr3L - 8M498300N37M 45 1613830 2112174 498345

ngap

<integer>

[1] 1

[2] 1

[3] 1

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> param <- ScanBamParam(what="seq") ## also input sequence

> gal <- readGappedAlignments(bamfls[1], param=param)

> head(mcols(gal)$seq)

25

A DNAStringSet instance of length 6

width seq

[1] 45 ATGTGTAGCGGGGGCACTAGCACCAGAAGCAAGGACAAACCCGCA

[2] 45 CGAACTAGCACCAGAATCAAGGACAAACCCGCAGTTGTCCATCAC

[3] 45 AGCTCTAGCACCAGAATCAAGGACAAACCCGCAGTTGTCCATCAC

[4] 45 GCGCGCAGGTGTGTGAGGAAGACCAGGGTGTTGTTGTCCTCGGGA

[5] 45 GCGCGCAGGTGTGTGAGGAAGACCAGGGTGTTGTTGTCCTCGTGT

[6] 45 CGCAGGTGTGTGAGGAAGACCAGGGTGTTGTTGTCCTCGAGATCG

4.2 Sampling

R is after all a statistical language, and it sometimes makes sense to draw inferences from a sample
of large data. For instance, many quality assessment statistics summarize overall properties (e.g., GC
content or per-nucleotide base quality of FASTQ reads) that do not require processing of the entire data.
For these statistics to be valid, the sample from the file needs to be a random sample, rather than a
sample of convenience.

There are two advantages to sampling from a FASTQ (or BAM) file. The sample uses less memory
than the full data. And because less data needs to be parsed from the on-disk to in-memory representation
the input is faster.

The ShortRead package FastqSampler function (see also Rsamtools::BamSampler visits a FASTQ file
but retains only a random sample from the file. Here is our function to calculate GC content from a
DNAStringSet:

> library(Morgan2013)

> gcFunction

function (x)

{

alf <- alphabetFrequency(x, as.prob = TRUE)

rowSums(alf[, c("G", "C")])

}

<environment: namespace:Morgan2013>

and a subset of a FASTQ file with 1 million reads:

> bigdata <- "~/BigData"

> fqfl <- dir(file.path(bigdata, "fastq"), ".fastq$", full=TRUE) #$

FastqSampler works by specifying the file name and desired sample size, e.g., 100,000 reads. This creates
an object from which an independent sample can be drawn using the yield function.

> sampler <- FastqSampler(fqfl, 100000)

> fq <- yield(sampler) # 100,000 reads

> lattice::densityplot(gcFunction(sread(fq)), plot.points=FALSE)

> fq <- yield(sampler) # a different 100,000 reads

Generally, one would choose a sample size large enough to adequately characterize the data but not so
large as to consume all (or a fraction, see section 4.4 below) of the memory. The default (1 million) is a
reasonable starting point.

FastqSampler relies on the R random number generator, so the same sequence of reads can be sampled
by using the same random number seed. This is a convenient way to sample the same read pairs from
the FASTQ files typically used to represent paired-end reads

> ## NOT RUN

> set.seed(123)

> end1 <- yield(FastqSampler("end_1.fastq"))

> set.seed(123)

> end2 <- yield(FastqSampler("end_2.fastq"))

26

http://bioconductor.org/packages/devel/bioc/html/ShortRead.html

4.3 Iteration

Restriction may not be enough to wrestle large data down to size, and sampling may be inappropriate
for the task at hand. A solution is then to iterate through the file. An example in base R is to open a file
connection, and then read and process successive chunks of the file, e.g., reading chunks of 10000 lines

> ## NOT RUN

> con <- file("<hypothetical-file>.txt")

> open(f)

> while (length(x <- readLines(f, n=10000))) {

+ ## work on character vector 'x'

+ }

> close(f)

The pattern length(x <- readLines(f, n=10000)) is a convenient short-hand pattern that reads the next
10000 lines into a variable x and then asks x it’s length. x is created in the calling environment (so it is
available for processing in the while loop) When there are no lines left to read, length(x) will evaluate
to zero and the while loop will end.

Iteration really involves three steps: input of a ‘chunk’ of the data; calculation of a desired summary;
and aggregation of summaries across chunks. We illustrate this with BAM files in the Rsamtools package;
see also FastqStreamer in the ShortRead package and TabixFile for iterating through large VCF files (via
readVCF in the VariantAnnotation package).

The first stage in iteration is to arrange for input of a chunk of data. In many programming languages
one would iterate ‘record-at-a-time’, reading in one record, processing it, and moving to the next. R is
not efficient when used in this fashion. Instead, we want to read in a larger chunk of data, typically as
much as can comfortably fit in available memory. In Rsamtools for reading BAM files we arrange for this
by creating a BamFile (or TabixFile for VCF) object where we specify an appropriate yieldSize. Here
we go for a bigger BAM file

> library(RNAseqData.HNRNPC.bam.chr14)

> bamfl <- RNAseqData.HNRNPC.bam.chr14_BAMFILES[1]

> countBam(bamfl)

space start end width file records nucleotides

1 NA NA NA NA ERR127306_chr14.bam 800484 57634848

> bf <- BamFile(bamfl, yieldSize=200000) # could be larger, e.g., 2-10 million

A BamFile object can be used to read data from a BAM file, e.g., using readGappedAlignments. Instead
of reading all the data, the reading function will read just yieldSize records. The idea then is to open
the BAM file and iterate through until no records are input. The pattern is

> ## initialize, e.g., for step 3 ...

> open(bf)

> while (length(gal <- readGappedAlignments(bf))) {

+ ## step 2: do work...

+ ## step 3: aggregate results...

+ }

> close(bf)

The second step is to perform a useful calculation on the chunk of data. This is particularly easy to
do if chunks are independent of one another. For instance, a common operation is to count the number of
times reads overlap regions of interest. There are functions that implement a variety of counting modes
(see, e.g., summarizeOverlaps in the GenomicRanges package); here we’ll go for a simple counter that
arranges to tally one ‘hit’ each time a read overlaps (in any way) at most one range. Here is our counter
function, taking as arguments a GRanges or GRangesList object representing the regions for which counts
are desired, and a GappedAlignments object representing reads to be counted:

27

http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html

> counter <-

+ function(query, subject, ..., ignore.strand=TRUE)

+ ## query: GRanges or GRangesList

+ ## subject: GappedAlignments

+ {

+ if (ignore.strand)

+ strand(subject) <- "*"

+ hits <- countOverlaps(subject, query)

+ countOverlaps(query, subject[hits==1])

+ }

To set this step up a little more completely, we need to know the regions over which counting is to occur.
Here we retrieve exons grouped by gene for the genome to which the BAM files were aligned:

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> query <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")

Thus we’ll add the following lines to our loop:

> ## initialize, e.g., for step 3 ...

> open(bf)

> while (length(gal <- readGappedAlignments(bf))) {

+ ## step 2: do work...

+ count0 <- counter(query, gal, ignore.strand=TRUE)

+ ## step 3: aggregate results...

+ }

> close(bf)

It is worth asking whether the ‘do work’ step will always be as straight-forward. The current example
is easy because counting overlaps of one read does not depend on other reads, so the chunks can be
processed independently of one another. FIXME: These are paired-end reads, so counting is not this
easy! See the lab on RNA-seq.

The final step in iteration is to aggregate results across chunks. In our present case, counter always
returns an integer vector with length(query) elements. We want to add these over chunks, and we can
arrange to do this by starting with an initial vector of counts counts <- integer(length(query)) and
simply adding count0 at each iteration. The complete iteration, packaged as a function to facilitate
re-use is

> counter1 <-

+ function(bf, query, ...)

+ {

+ ## initialize, e.g., for step 3 ...

+ counts <- integer(length(query))

+ open(bf)

+ while (length(gal <- readGappedAlignments(bf, ...))) {

+ ## step 2: do work...

+ count0 <- counter(query, gal, ignore.strand=TRUE)

+ ## step 3: aggregate results...

+ counts <- counts + count0

+ }

+ close(bf)

+ counts

+ }

In action, this is invoked as

> bf <- BamFile(bamfl, yieldSize=500000)

> counts <- counter1(bf, query)

28

Counting is a particularly simple operation; one will often need to think carefully about how to
aggregate statistics derived from individual chunks. A useful general approach is to identify sufficient
statistics that represent a description of the data and can be easily aggregated across chunks. This is
the approach taken by, for instance, the biglm package for fitting linear models to large data sets – the
linear model is fit to successive chunks and the fit reduced to sufficient statistics, the sufficient statistics
are then aggregated across chunks to arrive at an overall fit.

4.4 Parallel evaluation

Each of the preceding sections addressed memory management; what about overall performance?
The starting point is really writing efficient, vectorized code, with common strategies outlined else-

where. Performance differences between poorly written versus well written R code can easily span two
orders of magnitude, whereas parallel processing can only increase throughput by an amount inversely
proportional to the number of processing units (e.g., CPUs) available.

The memory management techniques outlined earlier in this chapter are important in a parallel
evaluation context. This is because we will typically be trying to exploit multiple processing cores on a
single computer, and the cores will be competing for the same pool of shared memory. We thus want
to arrange for the collection of processors to cooperate in dividing available memory between them, i.e.,
each processor needs to use only a fraction of total memory.

There are a number of ways in which R code can be made to run in parallel. The least painful and
most effective will use ‘multicore’ functionality provided by the parallel package; the parallel package is
installed by default with base R, and has a useful vignette [6]. Unfortunately, multicore facilities are not
available on Windows computers.

Parallel evaluation on several cores of a single Linux or MacOS computer is particularly easy to
achieve when the code is already vectorized. The solution on these operating systems is to use the
functions mclapply or pvec. These functions allow the ‘master’ process to ‘fork’ processes for parallel
evaluation on each of the cores of a single machine. The forked processes initially share memory with
the master process, and only make copies of data when the forked process modifies a memory location
(‘copy on write’ semantics). On Linux and MacOS, the mclapply function is meant to be a ‘drop-in’
replacement for lapply, but with iterations being evaluated on different cores. The following illustrates
the use of mclapply for a toy vectorized function f:

> library(parallel)

> f <- function(i) {

+ cat("'f' called, length(i) = ", length(i), "\n")

+ sqrt(i)

+ }

> res0 <- mclapply(1:5, f, mc.cores=2)

'f' called, length(i) = 1

'f' called, length(i) = 1

'f' called, length(i) = 1

'f' called, length(i) = 1

'f' called, length(i) = 1

pvec is a little more subtle. It takes a vectorized function and distributes computation of different chunks
of the vector across cores.

> res1 <- pvec(1:5, f, mc.cores=2)

'f' called, length(i) = 3

'f' called, length(i) = 2

> identical(unlist(res0), res1)

[1] TRUE

29

Both mclapply and pvec functions allow the user to specify the number of cores used, and how the data
are divided into chunks.

The parallel package does not support fork-like behavior on Windows, where users need to more
explicitly create a cluster of R workers and arrange for each to have the same data loaded into memory;
similarly, parallel evaluation across computers (e.g., in a cluster) require more elaborate efforts to coor-
dinate workers; this is typically done using lapply-like functions provided by the parallel package but
specialized for simple (‘snow’) or more robust (‘MPI’) communication protocols between workers.

Data movement and random numbers are two important additional considerations in parallel evalua-
tion. Moving data to and from cores to the manager can be expensive, so strategies that minimize explicit
movement (e.g., passing file names or data base queries rather than R objects read from files; reducing
data on the worker before transmitting results to the manager) are important. Random numbers need to
be synchronized across cores to avoid generating the same sequences on each ‘independent’ computation.

How might parallel evaluation be used in Bioconductor work flows? One approach when working
with BAM files exploits the fact that data are often organized with one sample per BAM file. Suppose
we are interested in running our iterating counter counter1 over several BAM files. We could do this by
creating a BamFileList with appropriate yieldSize

> fls <- RNAseqData.HNRNPC.bam.chr14_BAMFILES # 8 BAM files

> bamfls <- BamFileList(fls, yieldSize=500000) # use a larger yieldSize

and using an lapply to take each file in turn and performing the count.

> counts <- simplify2array(lapply(bamfls, counter1, query))

The parallel equivalent of this is simply (note the change from lapply to mclapply)

> options(mc.cores=detectCores()) # use all cores

> counts <- simplify2array(mclapply(bamfls, counter1, query))

> head(counts[rowSums(counts) != 0,], 3)

ERR127306 ERR127307 ERR127308 ERR127309 ERR127302 ERR127303 ERR127304

10001 207 277 217 249 303 335 362

100128927 572 629 597 483 379 319 388

100129075 62 70 56 63 34 51 88

ERR127305

10001 300

100128927 435

100129075 79

Note that names(bamfls) and names(query) are returned as row and column names of the data, reducing
chance of mistaken labelling.

4.5 And. . .

The foreach package can be useful for parallel evaluation written using coding styles more like for loops
rather than lapply. The iterator package is an abstraction that simplifies the notion of iterating over
objects. The Rmpi package provides access to MPI, a structured environment for calculation on clusters.
The pbdR formalism1 is especially useful for well-structured distributed matrix computations.

The MatrixEQTL package is an amazing example implementing high performance algorithms on large
data; the corresponding publication [9] is well worth studying.

Bioconductor provides an Amazon machine instance with MPI and Rmpi installed2. This can be an
effective way to gain access to large computing resources.

1https://rdav.nics.tennessee.edu/2012/09/pbdr/
2http://bioconductor.org/help/bioconductor-cloud-ami/

30

https://rdav.nics.tennessee.edu/2012/09/pbdr/
http://bioconductor.org/help/bioconductor-cloud-ami/

References

[1] D. Bentley, S. Balasubramanian, H. Swerdlow, G. Smith, J. Milton, C. Brown, K. Hall, D. Evers,
C. Barnes, H. Bignell, et al. Accurate whole human genome sequencing using reversible terminator
chemistry. Nature, 456(7218):53–59, 2008.

[2] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and B. R.
Graveley. Conservation of an RNA regulatory map between Drosophila and mammals. Genome
Research, pages 193–202, 2011.

[3] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome. Genome Biol., 10:R25, 2009.

[4] H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics, 26:589–595, Mar 2010.

[5] P. J. Park. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10:669–
680, Oct 2009. [PubMed Central:PMC3191340] [DOI:10.1038/nrg2641] [PubMed:19736561].

[6] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statis-
tical Computing, Vienna, Austria, 2013. ISBN 3-900051-07-0.

[7] C. Ross-Innes, R. Stark, A. Teschendorff, K. Holmes, H. Ali, M. Dunning, G. Brown, O. Gojis, I. Ellis,
A. Green, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast
cancer. Nature, 481(7381):389–393, 2012.

[8] J. Rothberg and J. Leamon. The development and impact of 454 sequencing. Nature biotechnology,
26(10):1117–1124, 2008.

[9] A. A. Shabalin. Matrix eqtl: ultra fast eqtl analysis via large matrix operations. Bioinformatics,
28(10):1353–1358, 2012.

31

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191340
http://dx.doi.org/10.1038/nrg2641
http://www.ncbi.nlm.nih.gov/pubmed/19736561

	Sequencing
	Technologies
	Data
	Bioconductor for sequence analysis

	Strings and Reads
	DNA (and other) Strings with the Biostrings package
	Reads and the ShortRead package

	Ranges and Alignments
	Ranges and the GenomicRanges package
	Alignments and the Rsamtools Package

	Strategies for working with large data
	Restriction
	Sampling
	Iteration
	Parallel evaluation
	And…

	References

