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1980 cohorts, and age is not a significant deter-
minant within pre- and post-OCP periods. The re-
sults for neuroticism are less robust to checks for
age effects (table S16).

Previous research has shown that noncog-
nitive attributes such as conscientiousness, neu-
roticism, and optimism are important determinants
of educational attainment, labormarket outcomes,
health, and marriage and divorce (38–40). Pro-
social behavior is consistently seen to be an im-
portant determinant of social capital and plays a
role in institutional development (41). Awilling-
ness to take risks is an important component of
entrepreneurship (17). Our data show that being
an only child as a result of the OCP is associ-
ated with taking less risk in the labor market
(table S19).

Although our findings were obtained from a
comparison of cohorts in Beijing born directly
around the time of the policy’s introduction, our
results are generalizable to other urban areas of
China where the OCP was strictly implemented.
Previous work suggests that differences between
only children and others in Beijing are similar to
those in other urban areas (26). The effect of the
policy on the behavior of people born long after
the policy’s introduction may, however, differ
from what we found here, because later cohorts
will have grown up with very limited extended
family and in a society dominated by only chil-
dren. Under such circumstances, we would ex-
pect that the policy’s effect would, if anything, be
magnified.
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Highly Recurrent TERT Promoter
Mutations in Human Melanoma
Franklin W. Huang,1,2,3* Eran Hodis,1,3,4* Mary Jue Xu,1,3,4 Gregory V. Kryukov,1
Lynda Chin,5,6 Levi A. Garraway1,2,3†
Systematic sequencing of human cancer genomes has identified many recurrent mutations
in the protein-coding regions of genes but rarely in gene regulatory regions. Here, we describe
two independent mutations within the core promoter of telomerase reverse transcriptase (TERT),
the gene coding for the catalytic subunit of telomerase, which collectively occur in 50 of 70
(71%) melanomas examined. These mutations generate de novo consensus binding motifs
for E-twenty-six (ETS) transcription factors, and in reporter assays, the mutations increased
transcriptional activity from the TERT promoter by two- to fourfold. Examination of 150 cancer
cell lines derived from diverse tumor types revealed the same mutations in 24 cases (16%),
with preliminary evidence of elevated frequency in bladder and hepatocellular cancer cells.
Thus, somatic mutations in regulatory regions of the genome may represent an important
tumorigenic mechanism.

Systematic characterization of human can-
cer genomes has led to the discovery of a
wide range of mutated genes that contribute

to tumor development and progression. Most of
the somatic mutations in tumors reside within the
protein-coding regions of genes or at splice junc-

tions. To determine whether tumor genomes har-
bor recurrent mutations outside of protein-coding
regions, we systematically queried noncoding so-
matic mutations using published whole-genome
sequencing data.

Analysis of whole-genome sequencing data
from malignant melanomas (1, 2) revealed two
somatic telomerase reverse transcriptase (TERT )
gene promoter mutations in 17 of 19 (89%) cases
examined. The average sequence coverage at the
TERT promoter locus was 30-fold in normal
samples and 60-fold in tumor samples (fig. S1A).
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Each of these promoter mutations resulted in a
cytidine-to-thymidine transition at a dipyrimidine
motif indicative of ultraviolet (UV) light–induced
damage (chr5, 1,295,228 C>T and 1,295,250
C>T; hereafter termed C228T and C250T, re-
spectively), and both mutations localized within
100 base pairs (bp) of the TERT transcriptional
start site (TSS) (mean allelic fraction, 0.32; range,
0.07 to 0.55) (table S1). We validated these mu-
tations by means of polymerase chain reaction
and Sanger sequencing tumor/normal sample pairs
from both the discovery set (Fig. 1A and fig. S1,
B and C) and an extension set of 51 additional
melanoma tumor/normal sample pairs. Within
this extension set, 33 tumors (65%) harbored one
of the mutations. Moreover, the mutations were
mutually exclusive in both the discovery and ex-
tension sets (P = 5.4 × 10−7, Fisher’s one-sided
exact test). Two tumors with a C228T transition
also contained an adjacent C>T transition (at po-
sition chr5, 1,295,229), which is indicative of a
dinucleotide CC>TT transition. Together, these
TERT promoter mutations were observed in 50
of 70 (71%; 95% confidence interval: 59 to 82%,
Clopper-Pearson method) melanomas examined
(Fig. 1B and table S1).

Both C228T and C250T generated an identical
11-bp nucleotide stretch (5′-CCCCTTCCGGG-3′)
containing a consensus binding site for E-twenty-
six (ETS) transcription factors (GGAA, reverse com-
plement) within the TERT promoter region. Because
ETS transcription factors may become activated
through dysregulation of mitogen-activated pro-
tein kinase (MAP kinase) signaling, we hypothe-
sized that these promoter mutations might augment
gene expression. To test this hypothesis, we used
a reporter assay system in which the relevant por-
tion of the mutant or wild-type TERT core pro-

moter was cloned upstream of the firefly luciferase
gene (2). Here, we tested both a core promoter
fragment (–132 to +5 relative to the TSS) and the
full core promoter (–200 to +73). In comparison
to the wild-type TERT promoter, both mutations
conferred approximately two- to fourfold increased
transcriptional activity in five distinct cell line con-
texts (Fig. 1C and fig. S1D). Thus, each mutation
was capable of augmenting transcriptional activ-
ity from the TERT promoter.

To investigate whether similar TERT promot-
er mutations occur in other cancer types, we
examined sequencing data from this locus in 150
cell lines from the Cancer Cell Line Encyclopedia
(CCLE) (3). Overall, 24 CCLE lines (16%) con-
tained either C228T or C250T (mean allelic frac-
tion, 0.61; range, 0.17 to 1.00) (table S1). An
increased frequency in melanoma was again
noted (five of six lines tested), with additional
evidence suggesting possible heightened preva-
lence (>25%; one-sided 95% confidence interval)
in bladder (three of three lines) and hepatocellular
cancer cell lines (four of six lines) (Fig. 1D).

Several lines of evidence support the hypoth-
esis that these promoter mutations may function
as driver events that contribute to oncogenesis
through TERT dysregulation and undergo pos-
itive selection, at least in human melanoma. First,
the TERT promoter mutations showed a com-
bined frequency that exceeded those of BRAF
and NRASmutations, which activate known mela-
noma driver oncogenes (4, 5). In an analysis
restricted to somatic mutations present at an al-
lelic fraction of 0.2 or greater [to reduce artifacts
of mutation calling (1)], the four most recurrent
melanoma nucleotide substitutions included
BRAF [chr7, 140,453,136 A>T (V600E)], NRAS
[chr1, 115,256,529 T>C (Q61R)], and the TERT

core promoter mutations C228T and C250T. Sec-
ond, although highly recurrent, C228T and C250T
occurred in a wholly mutually exclusive fashion.
This suggests the possibility that the mutations
might be functionally redundant. Third, the ab-
sence of other recurrent somatic mutations in the
3 kb upstream of the TERT transcription start site
in the queried melanomas (1) coupled with the
absence of the described TERT promoter muta-
tions in 24 lung adenocarcinomas with compa-
rably high somatic mutation rates (6) reduces the
possibility that these recurrent TERT promoter mu-
tations are solely due to an increased background
mutation rate at this locus.

Although the role of telomerase in tumori-
genesis is well established, details regarding its
dysregulation in cancer cells remain incomplete-
ly understood, particularly in melanoma (7). The
TERT promoter mutations identified here may
link telomerase gene regulation and tumorigenic
activation in this malignancy. The high prevalence
of C228T and C250T suggests that these TERT
promoter mutations may comprise early genetic
events in the genesis of melanoma and other can-
cer types. Although TERT expression alone is not
sufficient to bypass oncogene-induced senescence,
genomic TERT activation may potentiate mech-
anisms by which melanocytes achieve immortal-
ization in the setting of oncogenic mutations (8).
These results therefore suggest that renewed ef-
forts to develop clinically effective telomerase in-
hibitors may be warranted.

At the same time, promoter mutations likely
represent only one potential mechanism of TERT
reactivation in a subset of human cancers. Indeed,
recurrent chromosomal copy gains spanning the
TERT locus have been described previously for
several cancers, including melanoma (9, 10).

Fig. 1. Identification of TERT pro-
moter mutations in melanoma and
cancer cell lines. (A) Sequence chro-
matograms of matched tumor and
normal DNA representing somatic
mutations chr 5 [1,295,228 C>T
(C228T)] and chr 5 [1,295,250C>T
(C250T)] in the TERT promoter
locus. (B) Pie chart of C228T and
C250T somatic mutation status in
70 surveyed melanoma tumors
and short-term cultures. Sum of
percentages is greater than 100%
because of rounding. (C) Lucifer-
ase reporter assays for transcrip-
tional activity from the TERT core
promoter (–200 to+73)with either
the C228T or C250Tmutation com-
pared with wild-type promoter in
A375, RPMI-7951, UACC-62, T24,
or HepG2 cell lines. The results de-
picted are the average of at least
three independent experiments.

Normal
ME001

C228T C250T

Tumor
ME001

Normal
ME011

0

2

4

6

8

68
20

M
ela

no
m

a

Blad
de

r
Liv

er
CNS

UAT
Lu

ng

Colo
n

Hem
at

op
oie

tic
/L

ym
ph

oid

Ova
ria

n

End
om

et
riu

m

Pro
sta

te

Sof
t T

iss
ue
Bon

e

Sto
m

ac
h

Thy
ro

id

Kidn
ey

Eso
ph

ag
us

M
es

ot
he

lio
m

a

Tumor
ME011

Melanoma Tumors and STCs
(n = 70)

Cell Lines
(n = 150)

A B

DC

R
el

at
iv

e 
L

u
ci

fe
ra

se
 A

ct
iv

it
y

A375

0 0

100

500

1000

1500

200

300

400

500

T24 UACC-62HepG2RPMI-7951

* *

*
*

*
*

*

*

*

C250T
(n = 23)

C228T
(n = 27)

WT
(n = 20)

39%

33%

29%

C228T

C250T

WTWT

C228T

C250T *

Values are mean T SD; *P < 0.05. (D) Bar plot of 150 cancer cell lines of CCLE (3) depicting TERT promoter
mutation status. Individual bars represent the total number of cell lines of a given tumor type (table S1)
interrogated for C228T and C250T mutations, with mutation status indicated by colors defined in the legend.

22 FEBRUARY 2013 VOL 339 SCIENCE www.sciencemag.org958

REPORTS

 o
n 

Ju
ne

 2
0,

 2
01

3
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


Highly recurrent somatic mutations within a
cancer gene promoter region have not previous-
ly been described. Similarly, the de novo muta-
tional generation of transcription factor binding
motifs in tumor genomes was heretofore un-
known, although an ETS transcription factor
binding motif was previously associated with a
single-nucleotide polymorphism insertion at the
MMP-1 locus (11). Together, these findings raise
the possibility that recurrent somatic mutations
involving regulatory regions, in addition to coding
sequences, may represent important driver events
in cancer.
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TERT Promoter Mutations in Familial
and Sporadic Melanoma
Susanne Horn,1,2 Adina Figl,1,2 P. Sivaramakrishna Rachakonda,1 Christine Fischer,3
Antje Sucker,2 Andreas Gast,1,2 Stephanie Kadel,1,2 Iris Moll,2 Eduardo Nagore,4
Kari Hemminki,1,5 Dirk Schadendorf,2*† Rajiv Kumar1*†

Cutaneous melanoma occurs in both familial and sporadic forms. We investigated a
melanoma-prone family through linkage analysis and high-throughput sequencing and identified a
disease-segregating germline mutation in the promoter of the telomerase reverse transcriptase
(TERT) gene, which encodes the catalytic subunit of telomerase. The mutation creates a new
binding motif for Ets transcription factors and ternary complex factors (TCFs) near the transcription
start and, in reporter gene assays, caused up to twofold increase in transcription. We then
screened the TERT promoter in sporadic melanoma and observed recurrent ultraviolet signature
somatic mutations in 125 of 168 (74%) of human cell lines derived from metastatic
melanomas, 45 of 53 corresponding metastatic tumor tissues (85%), and 25 of 77 (33%)
primary melanomas. The majority of those mutations occurred at two positions in the
TERT promoter and also generated binding motifs for Ets/TCF transcription factors.

The identification of germline mutations
that cosegregate with disease in cancer-
prone families often provides genetic and

mechanistic insights into the more common, spo-
radically arising cancers. In a study of cutaneous
melanoma, the most malignant skin cancer, we
investigated a large pedigree with 14 related mel-
anoma patients whowere not carriers of germline
mutations in CDKN2A or CDK4, two known
melanoma genes (Fig. 1). Multipoint linkage
analysis showed a possible 2.2-Mb linkage re-
gion on chromosome 5p with maximal logarithm
of the odds ratio for linkage scores of 2.35 at

rs1379917 and 2.45 at rs1968011. Target-enriched
high-throughput sequencing (HTS) of the region
was carried out on constitutional DNA from the
four affected and four unaffected members of the
family with an average coverage between 55-
and 108-fold (table S1) (1). The HTS data re-
vealed a single promoter variant, three intronic
variants, and three nongene variants previously
unknown and unique to the DNA sequences of
the affected individuals (table S2). The disease
segregating variants, seven in total, were vali-
dated by Sanger sequencing of DNA from the
individuals sequenced by HTS and of DNA from
additional unaffected members of the family. The
new variants were also detected in an unaffected
member (754, table S3), who was 36 years old
and carried multiple nevi. DNA from affected
individuals other than those sequenced by HTS
was not available for testing.

Of the seven unique variants identified, one
variant (T>G), was located in the promoter at –57
base pairs (bp) from ATG translation start site of
the telomerase reverse transcriptase (TERT ) gene.
The TERT gene encodes the catalytic reverse

transcriptase subunit of telomerase, the ribonu-
cleoprotein complex that maintains telomere
length. The nucleotide change in the sequence
CCTGAA>CCGGAA creates a new binding motif
for Ets transcription factors, with a general rec-
ognition motif GGA(A/T). Beyond the general
motif for Ets transcription factors, the familial
mutation also generates a binding motif, CCGGAA,
for the ternary complex factors (TCFs) Elk1 and
Elk4 (2, 3). To exclude the possibility that the
detected promoter mutation in TERT is a common
germline variant, we screened germline DNA from
140 sporadic melanoma cases and 165 healthy
controls, and none carried the variant. Screening
of DNA from index cases from 34 Spanish mel-
anoma families also did not show any mutations.
No carriers were found in dbSNP and the 1000
Genomes databases (data available for 18 indi-
viduals were obtained from Ensembl).

The familial mutation in the TERT promoter
was in complete allelic linkage with a common
polymorphism rs2853669 (G>A) at –246 bp up-
stream from the ATG start site (table S3). In pre-
vious work, this polymorphism was reported to
disrupt an Ets binding site, and it was associated
with low telomerase activity in patients with non–
small cell lung cancer (4). In luciferase reporter
gene assays, we found that the activity of con-
structs containing the mutation at –57 bp of the
TERT promoter was increased 1.5-fold and 1.2-
fold over the wild-type construct in Ma-Mel-86a
and human embryonic kidney (HEK) 293T cells,
respectively. A construct with both the TERT
mutation and the variant allele of the rs2853669
polymorphism showed a 2.2-fold increase in pro-
moter activity in Ma-Mel-86a and and 1.3-fold
increase in HEK293 cells (mean from three mea-
surements; details in supplementary text and fig. S1).

The germline occurrence of the promoter mu-
tation, creating an Ets/TCF motif, can result in
modification of TERT expression in all tissues
expressing Ets/TCF. Highest staining for the TCF
Elk1 protein has been reported in female-specific
tissues, such as ovary and placenta. The increased
expression of TCF Elk1 protein in female-specific
tissues may cause gender-related differences in
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