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Identification of Biomarker 2
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Identification of Biomarker 3
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How to identify tumor from genomics perspective?

The answer is Data Mining, .
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Introduction
What is Data Mining?

HOW EXACTLY DO THEY DO
DATA MININGT
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Introduction
What is Data Mining?

What is Data Mining?

Pang-Ning Tan, Introduction to Data Mining

Data Mining is the process of automatically discovering
useful information in large data repositories.

| \

Knowledge Discovery in Databases

Data Mining is an integral part of knowledge discovery in
databases(KDD).
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Introduction
What is Data Mining?

Data Mining and KDD

[ Mining ] [Evaluation]

Raw Data Data Transformed Pattern Knowledge
Warehouse Data
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What is Data Mining?

Machine Learning and Bioinformatics

Biological
Experiments
Microarray

Sequencing
Mass Spectrum

Preprocssing
base calling
alignment

variants

—

Data Mining

Classification B|0|Og ical
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What is Data Mining?

Traditional Data Analysis

@ Scalability

@ High Dimensionality

@ Heterogeneous and Complex Data
@ Data Ownership and Distribution
@ Non-traditional analysis
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What is Data Mining?

Data Mining Tasks
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What is Data Mining?

Data Mining and Machine Learning

Machine Learning

Machine learning provides the technical basis of data
mining.

---Data Mining: Practical Machine Learning Tools and
Techniques
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Organization of the course

Schedule

Schedule

@ Introduction

@ Unsupervised Learning: Clustering
@ Supervised Learning: Classifition

@ Feature Learning: Feature Selection
@ Discussion
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Introduction
Organization of the course

Softwares

@ R: Ris an free platform for data analysis and
visuaztion.
@ R packages:
e el071 SVM
o caret Feature selection
@ C50 Decision tree
e curatedOvarianData Data used in this lecture.

@ RIDE: Emacs + ESS, Vim + R-Plugin, RStudio for local
computer.

@ R Studio Server: http://192.168.224.109:8787/
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Unsupervised Learning: Clustering

What is clustering?

Cluster analysis or clustering is the task of grouping a set
of objects in such a way that objects in the same group
(called cluster) are more similar (in some sense or another)
to each other than to those in other groups (clusters).
---Wikipedia
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Applications

Applications of Clustering

@ Clustering for Understanding

Biology
o Information Retrieval
o Climate
("]
*]

Psychology and medicine
business

@ Clustering for Utility
e Summarization
@ compression
o Efficiently finding nearest neighbors
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Common Clustering Methods

Clustering Methods

@ Density-based clustering
@ K-means

@ Hierarchical Clustering

@ Semi-supervised clustering
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Unsupervised Learning in Bioinformatics

Unsupervised Learning in Bioinformatics

@ Discovery of tumor subtypes by clustering gene
expression, CNV, miRNA or integrated data.

@ Clonal evolution analysis of tumor
@ Mutation spectrum clustering
@ Pathway or functional annotation based clustering

@ Graph clustering for identification of protein
functional module or protein complex

@ Clustering metagenomic sequences
@ Metabolomics

Nt
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Hierarchical Clustering and its Applications in Bioinformatics

Hierarchical Clustering

@ Calculating distance between individuals

@ Combine closest individuals (optional, recaculate
distance)

@ Visualization and annotation
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Hierarchical Clustering and its Applications in Bioinformatics

Clustering in Bioinformatics
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Hierarchical Clustering and its Applications in Bioinformatics

Hierarchical Clustering in R

help(dist)
help(hclust)
help (heatmap)
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Hierarchical Clustering and its Applications in Bioinformatics

Distance Calculation

dist(x, method = "euclidean",
diag = FALSE,

upper = FALSE,

p=2)

Nt
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Hierarchical Clustering and its Applications in Bioinformatics

Distance Calculation

exprDist = dist(t(subdata))

exprDist

## TCGA.20.0987 TCGA.23.1031 TCGA.24.0979 TCGA.23.1117

## TCGA.23.1031 6.765

## TCGA.24.0979 6.495 4.846

## TCGA.23.1117 5.789 5.305 5.726

## TCGA.23.1021 6.097 4.794 4.873 5.458

## TCGA.04.1337 7.009 5.767 6.460 4.511

## TCGA.20.0990 6.429 5.265 5.944 5.618

## TCGA.23.1032 6.970 5.398 5.288 6.379

## TCGA.23.1118 5.517 5.133 4.765 4.597

## TCGA.23.1026 5.392 5.576 5.815 4.420

## TCGA.20.0991 5.388 7.008 7.103 6.001

## TCGA.24.1103 6.648 5.375 4.458 6.125

## TCGA.24.0982 5.699 4.882 5.616 4.821

## TCGA.23.1119 5.628 6.059 6.169 5.151

## TCGA.23.1028 5.135 5.508 5.487 5.069

## TCGA.04.1341 6.312 5.080 6.328 4.921

## TCGA.20.0996 6.647 5.027 5.337 5.342

## TCGA.24.1104 4.447 5.653 5.785 4.994

## TCGA.23.1107 5.415 5.980 6.480 5.255

## TCGA.23.1120 5.548 5.096 4.268 5.123

## TCGA.23.1030 6.042 4.712 5.769 5.278

## TCGA.04.1342 5.516 4.932 5.259 3.878 .
## TCGA.23.1022 6.616 4.723 4.901 5.594 k
## TCGA.24.1105 5.625 5.109 6.099 4.709 h
## TCGA.23.1109 6.094 5.077 5.624 3.991

## TCGA.23.1121 6.466 6.528 7.355 6.291
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Hierarchical Clustering and its Applications in Bioinformatics

Clustering

hclust(d, method = "complete", members = NULL)
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Hierarchical Clustering and its Applications in Bioinformatics

Clustering

exprDist = dist(t(subdata))
exprClust = hclust(exprDist)
exprClust

#it
## Call:
## hclust(d = exprDist)
#i#
## Cluster method : complete
## Distance : euclidean
## Number of objects: 80
LRI
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Hierarchical Clustering and its Applications in Bioinformatics

Visualization

Visualization
@ Dendrogram: plot.hclust
@ Heat Map: heatmap
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Hierarchical Clustering and its Applications in Bioinformatics

Dendrogram

plot(exprClust, cex = 0.6, main = "Dendrogram")

Dendrogram

Height

Nt
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Hierarchical Clustering and its Applications in Bioinformatics

plot.hclust

plot(x, labels = NULL,

hang = 0.1,

axes = TRUE,

frame.plot = FALSE,

ann = TRUE,

main = "Cluster Dendrogram",
sub = NULL,

xlab = NULL, ylab = "Height"
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Hierarchical Clustering and its Applications in Bioinformatics

Heat Map

heatmap (subdata)
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Hierarchical Clustering and its Applications in Bioinformatics

heatmap

heatmap(x, Rowv = NULL, Colv = if(symm)"Rowv" else NULL,
distfun = dist, hclustfun = hclust,

reorderfun = function(d, w) reorder(d, w),

add.expr, symm = FALSE, revC = identical(Colv, "Rowv"),
scale = c("row", "column", "none"), na.rm = TRUE,

margins = c(5, 5), ColSideColors, RowSideColors,

cexRow = 0.2 + 1/1ogl0(nr), cexCol = 0.2 + 1/1logl0(nc),
labRow = NULL, labCol = NULL, main = NULL,

xlab = NULL, ylab = NULL,

keep.dendro = FALSE, verbose = getOption("verbose"), ...)

Nt
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Hierarchical Clustering and its Applications in Bioinformatics

How to read Heat Map
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Summary

Suumary

Clustering

@ Clustering is widely used in bioinformatics
@ Clustering can be implemented by using built-in
functions of R

@ Clustering can be visualized as heat map and
dendogram
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Next

© Supervised Learning
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Supervised Learning: Classification

Classification
Assigning objects to one of several predefined categoriies.

Definition
Classification is the task of learning a target function f
that maps each attribute set x to one of the predefined

class labels y.
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How to solve a classification problem?

Learning
Algorithm

Training Learn
Set Model

Set
) A

General approach for building a classification models-
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Evaluation

Confusion Matrix for a 2-class problem
Prediction=1 | Prediction=0
Class=1 f11 f10
Class=0 f01 fo[)
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Supervised Learning

Evaluation

Accuracy and Error Rate

Number of correct predictions

Accuracy = Total number of predictions
_ fi1 4+ foo
f11 + fi0 + foo + fou
ErrorRate — Number of wrong predictions

Total number of predictions
_ f10 + fou
f11 + fi0 + foo + for
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Supervised Learning in Bioinformatics

Classification in Bioinformatics

Applications

o Classification of diseases, especially cancer.

@ Prediction of clinical outcome.

@ Prediction of the function of gene or proteins.
@ Prediction of the structure of proteins.
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Supervised Learning in Bioinformatics

Objective

Two Objectives

© To build accuate classifiers or predictors
© To derive inferences from the results obtained

Challanges

@ data incocnsistency and missing values
@ noise

@ normalization
@ Deimensionality reduction

v
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Decision Tree and its Applications in Bioinformatics

Decision Tree

IDH1 mutation; m PTEN mutation;
G-CIMP+; Chr7 Amp;
Chr7,10 intact; Chr10 Del;
TP53 i EGFR Amp;
Longer survival; Shorter survival;
Younger patient, ... { Older patient, ...
PN/G-CIMP+ Non-PN
GBM GBM
Low AGP; High AGP
CHI3L1 OE;
TRADD, RELB OE; AV
Proliferative markers: EGFR amp, OE;
PCNA, TOPA2A OE. CDKN2A deregulation
Mesenchymal \ /
Proliferative Classical

LRI
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Decision Tree and its Applications in Bioinformatics

Concepts

Types of Nodes

root node :no incoming edges and zero or more
outgoing edges.

internal nodes : has exactly one incoming edge and two
or more outgoing edges.

leaf or terminal nodes : has exactly one incoming edge
and no outgoing edges.
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Supervised Learning

Decision Tree and its Applications in Bioinformatics

How to build a Decision Tree?

Hunt's Algorithm

Let D; be the set of training records that are associated with node t and
Y =VY1,Y2,--.,Yc to be the class labels.

© if all the records in D; belong to the same class y, then t is a leaf
node labeled as y;.

@ if D; contains records that belong to more than one class, an
attribute test condition is selected to partition the records into
smaller subsets. A child node is created for each outcome of the
test condition and the records in D; are distributed to the
chirldren based on the outcomes. The algorithm is then
recursively applied to each child node.

b
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Decision Tree and its Applications in Bioinformatics

Algorithm A skeleton decision tree induction algorithm
TreeGrowth(E, F)

if stopping_cond(E, F) = true then
leaf = createNode();
leaf.label = Classify(E);

return return leaf
else

root = createNode();
roor.test_cond = find_best_split(E, F);
let V = v|vis a possible outcome of root.test_cond for each v e V
do do
v = e|root.test_cond(e) = vande € E;

child = TreeGrowth(E,, F);

add child as descendent of root and label the edge

(root — child) as v
end

end
n
return root T

=B
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Decision Tree and its Applications in Bioinformatics

Overfitting

Reasons

@ Noise
@ Lack of Representative samples

v

Occam's Razor

Given two models with the same generalization errors, the
simpler model is prefered over the more complex model.

<
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Decision Tree and its Applications in Bioinformatics

Handling Overfitting in Decision Tree

Prepruning, Early Stopping Rule

Halt tree-growing algorithm before generating a fully
grown tree:

@ the observed gain falls below a certain threshold.

@ the number of records in a node is less than a certain
threshold.

| A

Post-pruning

The decision tree is initially grown to its maximum size,
then perform pruning.
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Decision Tree and its Applications in Bioinformatics

Decision Tree in R

library(C50)

Nt
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Decision Tree and its Applications in Bioinformatics

C5.0 Algorithm in R

library(C50)
C5.0(x, y)

Nt
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Decision Tree and its Applications in Bioinformatics

C5.0Control

C5.0Control (subset = TRUE,

bands = O,

winnow = FALSE,

noGlobalPruning = FALSE,

CF = 0.25,

minCases = 2,

fuzzyThreshold = FALSE,

sample = O,

seed = sample.int (4096, size = 1) - 1L,
earlyStopping = TRUE,

label = "outcome")

=AY
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Decision Tree and its Applications in Bioinformatics

Decision Tree on Gene Expression Data

library(C50)

sgrade = TCGA_eset$summarygrade

exprData = t (log(exprs(TCGA_eset)[1:200, !is.na(sgrade)]))
sgrade = as.factor(sgrade[!is.na(sgrade)])

dt = C5.0(exprData[1:400, ], sgrade[1:400])

Nt
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Decision Tree and its Applications in Bioinformatics

summary (dt)

##

## Call:

## C5.0.default(x = exprData[1:400, ], y = sgrade[1:400])
##

##

## C5.0 [Release 2.07 GPL Edition] Fri Nov 22 13:46:47 2013
##

##

## Class specified by attribute “outcome'

##

## Read 400 cases (201 attributes) from undefined.data
##

## Decision tree:

##

## ACVR1 <= 1.902631: high (65/1)

## ACVR1 > 1.902631:

## :...ABCC4 > 2.132082:

## :...ABI2 > 1.761186: high (65)

## ABI2 <= 1.761186:

## :...ADAM7 <= 1.048816: low (2)

## 8 ADAM7 > 1.048816: high (7)

## ABCC4 <= 2.132082:

## :...ACSBG1 <= 1.065441:

## :...ADAMTS20 > 1.095798:

## : :...ABCA1 <= 2.035188: high (11)
## : ABCA1 > 2.035188: low (6/1)

## ADAMTS20 <= 1.095798:

## :...ACTR5 > 1.460658: high (82)

## ACTRE <= 1.460658:

## :...ACBD4 <= 1.408459: high (4)
H## ACBD4 > 1.408459: low (2)
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Decision Tree and its Applications in Bioinformatics

Performance

pre = predict(dt, exprData[401:500, 1)
table(pre, sgrade[401:500])

##

## pre high low
## high 64 10
##  low 21 5

Nt
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Supervised Learning
Support Vector Machine and its Applications in Bioinformatics

SVM

g=1
Misclassified ®

Keex)= ¢'(x)aix) o *

Support Vector ¢

L J * _‘_,-":;-
.-"‘;‘- '- i ¢ hd
wigx)+ b= -1 .
wigi) + =0 i *
| ]
wliglx)+b=+1 . *®
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Supervised Learning

Support Vector Machine and its Applications in Bioinformatics

Kernal

Principle of Support Vector Machines

(SVM)
K
®
Ry 7
®
Y
v .
Input Space Feature Space
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Support Vector Machine and its Applications in Bioinformatics

SVM in R

library(e1071)

Nt
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Support Vector Machine and its Applications in Bioinformatics

SVM

library(el1071)

## Loading required package: class

model = svm(x = exprData[1:400, ], y = sgrade[1:400], cross =

Nt
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Supervised Learning
Support Vector Machine and its Applications in Bioinformatics

SVM model

model

##

## Call:

## svm.default(x = exprData[1:400, ], y = sgrade[1:400], cross = 5)
##

##

## Parameters:

## SVM-Type: C-classification

## SVM-Kernel: radial

## cost: 1
## gamma: 0.005
##

## Number of Support Vectors: 313

Nt
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SVM

ret = predict(model, exprData[401:500, 1)
table(ret, sgrade[401:500])

##

## ret high low
## high 85 15
##  low 0 O

Nt
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Support Vector Machine and its Applications in Bioinformatics

Decision Tree and SVM

Decision Tree SVM
@ simple @ complicated
@ white-box @ block-box
° .. ° ...
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Summary

Summary

Classification

@ Classification is an important technique for
bioinformatics

@ Decision tree is a rule-based classification method
@ SVM is powerful

@ Classification algorithm can be implemented in R
easily
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Next

e Feature Learning
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Feature Learning

Feature Learning and Biomarker Identification

## Error: argument "n" is missing, with no default
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Feature Learning
Feature Selection: Filter and Wrapper

Feature Selection

Feature Selection

Feature selection is the process of selecting a subset of
relevant features for use in model construction.

Why?

Data always contains many redundant or irrelevant
features.

| A

A\
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Feature Selection: Filter and Wrapper

Feature Selection

Filter and Wrapper
@ Filter: Chi-Squared, correlation, ...
@ Wrapper: Decision tree, SVM, Random Forest...

Nt
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Feature Selection: Filter and Wrapper

Feature Selection

library(FSelector) library(caret)

Nt
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Filters

Filters

@ Chi-squared: discrete attributes
@ Consistency: continous and discrete attributes

@ Correlation: continous attributes and continous
classes

@ Entropy: discrete attributes and continous classes
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Feature Learning

Filters

SEIN[E

@ SD filter for clustering

@ Correlation filter for Classification

@ Decision tree based feature selection
@ SVM for feature selection

T NEE
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Filters

Summary

@ Feature selection is helful to improve performance of
classifier

@ Feature selection can be used to identify biomarkers
° ..
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Next

e Future
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Future

Future Reading

@ Data Mining for Bioinformatics
@ Introduction to Machine Learning

@ CRAN Task View: Machine Learning & Statistical
Learning: http://cran.r-project.org/web/views/
MachineLearning.html

Nt
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Future

Advanced Courses

Advaced Courses

@ Machine learning for Big Biological Data

@ Implementing high performance machine learning
algorithms

@ Deep learning for bioinformatics
@ Data integration

@ Network based machine learning
° ..

o’
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