

## Lecture part: BioC2014 Differential gene- and exon-level expression analyses for RNA-seq data using edgeR, voom and featureCounts

Mark D. Robinson, University of Zurich



#### Abundance by Fluorescence Intensity



http://en.wikipedia.org/wiki/DNA\_microarray

#### b а 2× poly (A) selection 25-bp reads Add standards and shatter RNA Make cDNA and sequence 1 kb Map 25-bp tags RNA-Seq onto genome graph - -25-bp Calculate splices transcript prevalence Myf6 📹 Conservation Uniquely map. 2 RPKM 1 RPKM 1 RPKM RepeatMasker

#### Abundance by Counting

Mortazavi et al., Nature Methods, 2008

# University of Gene-level counting: issues can be dealt with at second step

Institute of Molecular Life Sciences



Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene

Mar Gonzàlez-Porta<sup>1</sup>, Adam Frankish<sup>2</sup>, Johan Rung<sup>1</sup>, Jennifer Harrow<sup>2</sup> and Alvis Brazma<sup>1\*</sup>

# University of Zurich<sup>VIII</sup> Data analysis pipelines for RNA-seq differential expression

Institute of Molecular Life Sciences

### edgeR, DESeq



Nature Protocols September 2013 (preprint at <a href="http://arxiv.org/pdf/1302.3685v3.pdf">http://arxiv.org/pdf/1302.3685v3.pdf</a>)



Figure 1 Overview of Trinity. (a) Inchworm assembles the read data set (short black lines, top) by greedily searching for paths in a *k*-mer graph (middle), resulting in a collection of linear contigs (colore lines, bottom), with each *k*-mer present only once in the contigs. (b) Chrysalis pools contigs (colored lines) if they share at least one *k* - 1-mer and if reads span the junction between contigs, and then it builds individual de Bruing graphs from each pool. (c) Butterfly takes each de Bruing graph from Chrysalis (top), and trims spurious edges and compacts linear paths (middle). It then reconciles the graph with reads (dashed colored arrows, bottom) and pairs (not shown), and outputs one linear sequences).



### **Counting: a few considerations (gene-level)**

All the downstream statistical methods start with a count table.

- annotation-based? What about novel genes?
- gene-level versus transcriptlevel? versus exon-level?
- ambiguities

|                          | union     | intersection<br>_strict | intersection<br>_nonempty |
|--------------------------|-----------|-------------------------|---------------------------|
| read<br>gene_A           | gene_A    | gene_A                  | gene_A                    |
| read<br>gene_A           | gene_A    | no_feature              | gene_A                    |
| gene_A gene_A            | gene_A    | no_feature              | gene_A                    |
| gene_A gene_A            | gene_A    | gene_A                  | gene_A                    |
| read<br>gene_A<br>gene_B | gene_A    | gene_A                  | gene_A                    |
| read<br>gene_A<br>gene_B | ambiguous | gene_A                  | gene_A                    |
| gene_A<br>gene_B         | ambiguous | ambiguous               | ambiguous                 |
|                          |           |                         |                           |

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html



# Sampling reads from population of DNA fragment is multinomial



...



## For a single gene, it's a coin toss, i.e. Binomial



- $Y_i \sim \text{Binomial}(M, \lambda_i)$
- Y<sub>i</sub> observed number of reads for gene i
- M total number of sequences
- $\lambda_i$  proportion

Large M, small  $\lambda_i \rightarrow$  approximated well by Poisson(  $\mu_i = M \cdot \lambda_i$ )







## Mean-Variance plots: What we see in real data





## Normalization: "Composition" or "Diversity" can affect read depth

- Hypothetical example: Sequence 6 libraries to the same depth, with varying levels of *unique-to-sample* counts
- Read depth is affected not only by expression (and length), but also expression levels of other genes
- Composition can induce (sometimes significant) differences in counts



Red=low, goldenyellow=high

Robinson and Oshlack (2010) Genome Biology



# Model assumptions

Institute of Molecular Life Sciences

 $M_j = library size$  $\lambda_{ij} = relative abundance of feature i$ 

Poisson describes technical variation:

$$Y_{ij} \sim Pois(M_j * \lambda_{ij})$$
  
mean( $Y_{ii}$ )= variance( $Y_{ii}$ ) =  $M_i * \lambda_i$ 

Negative binomial models **biological** variability using the dispersion parameter  $\boldsymbol{\phi}$ :

 $\mathsf{Y}_{ij} \sim \mathsf{NB}(\ \mu_{ij}{=}\mathsf{M}_{j}\ *\ \lambda_{ij}\ ,\ \varphi_{i}\ )$ 

Same mean, variance is quadratic in the mean:

variance( $Y_{ij}$ ) =  $\mu_{ij}$  (1 +  $\mu_{ij} \varphi_i$ )

## Critical parameter to estimate: dispersion





Abundance

Davis McCarthy



### sity of Flexibility for various experimental designs: <sup>™</sup> Generalized linear modeling

Institute of Molecular Life Sciences

Response: negative binomial with dispersion fixed (to make it in the exponential family). Link function (relate mean of response to linear combination of parameters) For example:

$$\begin{split} Y_i &\sim \mathsf{NB}(\mu_i, \phi) & \mathsf{X} & -\operatorname{design} \operatorname{matrix} \\ & \ln() & -\operatorname{link} \operatorname{function} \\ \mathbf{X} \boldsymbol{\beta} &= \ln\left(\mu\right) & \boldsymbol{\beta} & -\operatorname{parameters} \end{split}$$

Applicability to a wide range of designs



## Voom method

Institute of Molecular Life Sciences

- Converts discrete counts to (log-cpm)
- Removes trend in the variance of counts
- Estimate variances and use inverse as weight



*Voom: precision weights unlock linear model analysis tools for RNA-seq read counts.* Law et al. 2014. Genome Biology.2014, 15:R29.

(slide from Charity Law)







# **Beyond differential expression: differential splicing**

Relative exon expression lo 0.5 1.6

0

## Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments

Hugues Richard<sup>1,\*</sup>, Marcel H. Schulz<sup>1,2</sup>, Marc Sultan<sup>3</sup>, Asja Nürnberger<sup>3</sup>, Sabine Schrinner<sup>3</sup>, Daniela Balzereit<sup>3</sup>, Emilie Dagand<sup>3</sup>, Axel Rasche<sup>3</sup>, Hans Lehrach<sup>3</sup>, Martin Vingron<sup>1</sup>, Stefan A. Haas<sup>1</sup> and Marie-Laure Yaspo<sup>3</sup>

<sup>1</sup>Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestr. 73, <sup>2</sup>International Max Planck Research School for Computational Biology and Scientific Computing, and <sup>3</sup>Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany

## Sex-specific and lineage-specific alternative splicing in primates

Ran Blekhman, <sup>1,4,5</sup> John C. Marioni, <sup>1,4,5</sup> Paul Zumbo, <sup>2</sup> Matthew Stephens, <sup>1,3,5</sup> and Yoav Gilad<sup>1,5</sup>

<sup>1</sup>Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA; <sup>2</sup>Keck Biotechnology Laboratory, New Haven, Connecticut 06511, USA; <sup>3</sup>Department of Statistics, University of Chicago, Chicago, Illinois 60637, USA





### **Counting: a few considerations (exon-level)**



**Figure 1.** Flattening of gene models: This (fictional) gene has three annotated transcripts involving three exons (light shading), one of which has alternative boundaries. We form counting bins (dark shaded boxes) from the exons as depicted; the exon of variable length gets split into two bins.

Anders et al. 2012 Genome Research



#### **DEXSeq** – general structure

We use generalized linear models (GLMs) (McCullagh and Nelder 1989) to model read counts. Specifically, we assume  $K_{iil}$  to follow a negative binomial (NB) distribution:

$$K_{ijl} \sim NB \Big( \text{mean} = s_j \mu_{ijl}, \text{dispersion} = \alpha_{il} \Big),$$
 (1)

where  $\alpha_{il}$  is the dispersion parameter (a measure of the distribution's spread; see below) for counting bin (*i*, *l*), and the mean is predicted via a log-linear model as

$$\log \mu_{ijl} = \beta_i^{\rm G} + \beta_{il}^{\rm E} + \beta_{i\rho_j}^{\rm C} + \beta_{i\rho_jl}^{\rm EC}.$$
 (2)

*i* – gene

*j* – sample ...  $\rho_i$  is condition (categorical)

I - bin

Method

#### $\beta^{G}$ – baseline "expression strength"

- $\beta^{E}$  "exon" (bin) effect
- $\beta^{C}$  condition effect
- $\beta^{EC}$  condition x "exon" interaction

#### Detecting differential usage of exons from **RNA-seq** data

Simon Anders,<sup>1,2</sup> Alejandro Reyes,<sup>1</sup> and Wolfgang Huber European Molecular Biology Laboratory, 69111 Heidelberg, Germany