
Minfi tutorial
BioC2014

Jean-Philippe Fortin Kasper D. Hansen

July 2014

1 Introduction

The goal of the tutorial is to present a standard analysis workflow of 450K data with the
package minfi, incorporating the functions recently added to the package. We invite you
to read the software paper recently published [1] and the online package vignette on the
Bioconductor project [2] for more details.

We will start from the very beginning by reading input raw data (IDAT files) from an example
dataset, and ending with a list of candidate genes for differential methylation. Among
others, we will cover quality control assessments, different within-array and between-array
normalizations, SNPs removal, sex prediction, differentially methylated positions (DMPs)
analysis and bump hunting for differentially methylated regions (DMRs).

If time permits, we will introduce a complementary interactive visualization tool package,
shinyMethyl that allows interactive quality control assessment. [3] You can download the
package online from gitHub [4] and try it online at http://spark.rstudio.com/jfortin/
shinyMethyl/

450k Array design and terminology

In this section, we introduce briefly the 450K array as well as the terminology used throughout
the minfi package. Each sample is measured on a single array, in two different color channels
(red and green). As the name of the platform indicates, each array measures more than
450,000 CpG positions. For each CpG, we have two measurements: a methylated intensity
and an unmethylated intensity. Depending on the probe design, the signals are reported in
different colors:

For Type I design, both signals are measured in the same color: one probe for the methylated
signal and one probe for the unmethylated signal.

1

http://spark.rstudio.com/jfortin/shinyMethyl/
http://spark.rstudio.com/jfortin/shinyMethyl/

Figure 1: Probe design of the 450k array. For Type I design, both signals are measured
in the same color: one probe for the methylated signal and one probe for the unmethylated
signal. For Type II design, only one probe is used. The Green intensity measures the
methylated signal, and the Red intensity measures the unmethylated signal.

For Type II design, only one probe is used. The Green intensity measures the methylated
signal, and the Red intensity measures the unmethylated signal.

Some definitions

Two commonly measures are used to report the methylation levels: Beta values and M
values.

Beta value:

β =
M

M + U + 100

where M and U denote the methylated and unmethylated signals respectively. In minfi the
constant 100 can easily be changed, if needed.

MValue:

Mval = log
(
M

U

)
DMP: Differentially methylated position: single genomic position that has a different methy-
lated level in two different groups of samples (or conditions)
DMR: Differentially methylated region: when consecutive genomic locations are differen-
tially methylated in the same direction.
Array: One sample
Slide: Physical slide containing 12 arrays (6 × 2 grid)
Plate: Physical plate containing at most 8 slides (96 arrays). For this tutorial, we use batch
and plate interchangeably.

2

2 Reading Data

The starting point of minfi is reading the .IDAT files with the built-in function read.450k.exp.
Several options are available: the user can specify the sample filenames to be read in along
with the directory path, or can specify the directory that contains the files. In the latter
case, all the files with the extension .IDAT located in the directory will be loaded into R.
The user can also read in a sample sheet, and then use the sample sheet to load the data
into a RGChannelSet. For more information, see the minfi vignette. Here, we will load the
dataset containing 6 samples from the minfiData package using the sample sheet provided
within the package:

> require(minfi)

> require(minfiData)

> baseDir <- system.file("extdata",package="minfiData")

> targets <- read.450k.sheet(baseDir)

[read.450k.sheet] Found the following CSV files:

[1] "/usr/local/R/R-3.1/lib/R/site-library/minfiData/extdata/SampleSheet.csv"

> targets

Sample_Name Sample_Well Sample_Plate Sample_Group Pool_ID person age sex

1 GroupA_3 H5 NA GroupA NA id3 83 M

2 GroupA_2 D5 NA GroupA NA id2 58 F

3 GroupB_3 C6 NA GroupB NA id3 83 M

4 GroupB_1 F7 NA GroupB NA id1 75 F

5 GroupA_1 G7 NA GroupA NA id1 75 F

6 GroupB_2 H7 NA GroupB NA id2 58 F

status Array Slide

1 normal R02C02 5723646052

2 normal R04C01 5723646052

3 cancer R05C02 5723646052

4 cancer R04C02 5723646053

5 normal R05C02 5723646053

6 cancer R06C02 5723646053

Basename

1 /usr/local/R/R-3.1/lib/R/site-library/minfiData/extdata/5723646052/5723646052_R02C02

2 /usr/local/R/R-3.1/lib/R/site-library/minfiData/extdata/5723646052/5723646052_R04C01

3 /usr/local/R/R-3.1/lib/R/site-library/minfiData/extdata/5723646052/5723646052_R05C02

4 /usr/local/R/R-3.1/lib/R/site-library/minfiData/extdata/5723646053/5723646053_R04C02

5 /usr/local/R/R-3.1/lib/R/site-library/minfiData/extdata/5723646053/5723646053_R05C02

6 /usr/local/R/R-3.1/lib/R/site-library/minfiData/extdata/5723646053/5723646053_R06C02

> RGSet <- read.450k.exp(base = baseDir, targets = targets)

3

The class of RGSet is a RGChannelSet object. This is the initial object of a minfi analysis that
contains the raw intensities in the green and red channels. Note that this object contains the
intensities of the internal control probes as well. Because we read the data from a data sheet
experiment, the phenotype data is also stored in the RGChannelSet and can be accessed via
the accessor command pData:

> phenoData <- pData(RGSet)

> phenoData[,1:6]

Sample_Name Sample_Well Sample_Plate Sample_Group Pool_ID

5723646052_R02C02 GroupA_3 H5 NA GroupA NA

5723646052_R04C01 GroupA_2 D5 NA GroupA NA

5723646052_R05C02 GroupB_3 C6 NA GroupB NA

5723646053_R04C02 GroupB_1 F7 NA GroupB NA

5723646053_R05C02 GroupA_1 G7 NA GroupA NA

5723646053_R06C02 GroupB_2 H7 NA GroupB NA

person

5723646052_R02C02 id3

5723646052_R04C01 id2

5723646052_R05C02 id3

5723646053_R04C02 id1

5723646053_R05C02 id1

5723646053_R06C02 id2

The RGChannelSet stores also a manifest object that contains the probe design information
of the array. This object is mainly of interest for developers; the package makes use of this
behind the scenes.

> manifest <- getManifest(RGSet)

> manifest

IlluminaMethylationManifest object

Annotation

array: IlluminaHumanMethylation450k

Number of type I probes: 135476

Number of type II probes: 350036

Number of control probes: 850

Number of SNP type I probes: 25

Number of SNP type II probes: 40

> head(getProbeInfo(manifest))

DataFrame with 6 rows and 8 columns

Name AddressA AddressB Color NextBase

<character> <character> <character> <character> <DNAStringSet>

1 cg00050873 32735311 31717405 Red A

4

2 cg00212031 29674443 38703326 Red T

3 cg00213748 30703409 36767301 Red A

4 cg00214611 69792329 46723459 Red A

5 cg00455876 27653438 69732350 Red A

6 cg01707559 45652402 64689504 Red A

ProbeSeqA

<DNAStringSet>

1 ACAAAAAAACAACACACAACTATAATAATTTTTAAAATAAATAAACCCCA

2 CCCAATTAACCACAAAAACTAAACAAATTATACAATCAAAAAAACATACA

3 TTTTAACACCTAACACCATTTTAACAATAAAAATTCTACAAAAAAAAACA

4 CTAACTTCCAAACCACACTTTATATACTAAACTACAATATAACACAAACA

5 AACTCTAAACTACCCAACACAAACTCCAAAAACTTCTCAAAAAAAACTCA

6 ACAAATTAAAAACACTAAAACAAACACAACAACTACAACAACAAAAAACA

ProbeSeqB nCpG

<DNAStringSet> <integer>

1 ACGAAAAAACAACGCACAACTATAATAATTTTTAAAATAAATAAACCCCG 2

2 CCCAATTAACCGCAAAAACTAAACAAATTATACGATCGAAAAAACGTACG 4

3 TTTTAACGCCTAACACCGTTTTAACGATAAAAATTCTACAAAAAAAAACG 3

4 CTAACTTCCGAACCGCGCTTTATATACTAAACTACAATATAACGCGAACG 5

5 AACTCTAAACTACCCGACACAAACTCCAAAAACTTCTCGAAAAAAACTCG 2

6 GCGAATTAAAAACACTAAAACGAACGCGACGACTACAACGACAAAAAACG 6

See the minfi vignette for more information.

3 Class structure

minfi contains a number of classes corresponding to various transformations of the raw data.
It is important to understand how these classes relate to each other. Figure 2 provides a
useful overview.

MethylSet and RatioSet

A MethylSet objects contains the methylated and unmethylated signals. The most basic
way to construct a MethylSet is to using the function preprocessRaw which uses the array
design to match up the different probes and color channels to construct the methylated and
unmethylated signals. This function does not do any normalization (see later).

> MSet <- preprocessRaw(RGSet)

> MSet

MethylSet (storageMode: lockedEnvironment)

assayData: 485512 features, 6 samples

5

GenomicRatioSet

preprocessRaw

ratioConvertmapToGenome

ratioConvert mapToGenome

MethylSet

RGChannelSet

GenomicMethylSet RatioSet

IDAT files

Analysis

Figure 2: Flow chart of the minfi’s functions

6

element names: Meth, Unmeth

phenoData

sampleNames: 5723646052_R02C02 5723646052_R04C01 ...

5723646053_R06C02 (6 total)

varLabels: Sample_Name Sample_Well ... filenames (13 total)

varMetadata: labelDescription

Annotation

array: IlluminaHumanMethylation450k

annotation: ilmn12.hg19

Preprocessing

Method: Raw (no normalization or bg correction)

minfi version: 1.10.2

Manifest version: 0.4.0

The accessors getMeth and getUnmeth can be used to get the methylated and unmethylated
intensities matrices:

> head(getMeth(MSet)[,1:3])

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

cg00050873 22041 588 20505

cg00212031 679 569 439

cg00213748 1620 421 707

cg00214611 449 614 343

cg00455876 5921 398 3257

cg01707559 1238 646 637

> head(getUnmeth(MSet)[,1:3])

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

cg00050873 1945 433 1012

cg00212031 6567 300 2689

cg00213748 384 461 295

cg00214611 4869 183 1655

cg00455876 1655 792 1060

cg01707559 12227 1009 7414

A RatioSet object is a class designed to store Beta values and/or M values instead of the
methylated and unmethylated signals. An optional copy number matrix, CN, the sum of the
methylated and unmethylated signals, can be also stored. Mapping a MethylSet to a Ra-

tioSet is irreversible, i.e. one cannot technically retrieve the methylated and unmethylated
signals from a RatioSet. A RatioSet can be created with the function ratioConvert:

> ratioSet <- ratioConvert(MSet, what = "both", keepCN = TRUE)

> ratioSet

7

RatioSet (storageMode: lockedEnvironment)

assayData: 485512 features, 6 samples

element names: Beta, CN, M

phenoData

sampleNames: 5723646052_R02C02 5723646052_R04C01 ...

5723646053_R06C02 (6 total)

varLabels: Sample_Name Sample_Well ... filenames (13 total)

varMetadata: labelDescription

Annotation

array: IlluminaHumanMethylation450k

annotation: ilmn12.hg19

Preprocessing

Method: Raw (no normalization or bg correction)

minfi version: 1.10.2

Manifest version: 0.4.0

The functions getBeta, getM and getCN return respectively the Beta value matrix, M value
matrix and a the Copy Number matrix.

> beta <- getBeta(ratioSet)

Why do we have these two classes? This is to allow methods development where normal-
ization is done directly on the beta and/or M-values, such as quantile normalization of the
Beta matrix (which we btw. do not recommend).

Mapping to the Genome

The function mapToGenome applied to a RatioSet object will add genomic coordinates to
each probe together with some additional annotation information. The output object is a
GenomicRatioSet (class holding M or/and Beta values together with associated genomic
coordinates). It is possible to merge the manifest object with the genomic locations by
setting the option mergeManifest to TRUE.

> gset <- mapToGenome(ratioSet)

> gset

class: GenomicRatioSet

dim: 485512 6

exptData(0):

assays(3): Beta M CN

rownames(485512): cg13869341 cg14008030 ... cg08265308 cg14273923

rowData metadata column names(0):

colnames(6): 5723646052_R02C02 5723646052_R04C01 ... 5723646053_R05C02

5723646053_R06C02

8

colData names(13): Sample_Name Sample_Well ... Basename filenames

Annotation

array: IlluminaHumanMethylation450k

annotation: ilmn12.hg19

Preprocessing

Method: Raw (no normalization or bg correction)

minfi version: 1.10.2

Manifest version: 0.4.0

Note that the GenomicRatioSet extends the class SummarizedExperiment. Here are the
main accessors functions to access the data:

> beta <- getBeta(gset)

> m <- getM(gset)

> cn <- getCN(gset)

> sampleNames <- sampleNames(gset)

> probeNames <- featureNames(gset)

> pheno <- pData(gset)

To return the probe locations as a GenomicRanges objects, one can use the accessor granges:

> gr <- granges(gset)

> head(gr, n= 3)

GRanges with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

cg13869341 chr1 [15865, 15865] *

cg14008030 chr1 [18827, 18827] *

cg12045430 chr1 [29407, 29407] *

seqlengths:

chr1 chr2 chr3 chr4 chr5 chr6 ... chr19 chr20 chr21 chr22 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA NA

We can similary use mapToGenome on a MethylSet to get a GenomicMethylSet.

Annotation

To access the full annotation, one can use the command getAnnotation:

> annotation <- getAnnotation(gset)

> names(annotation)

9

[1] "chr" "pos"

[3] "strand" "Name"

[5] "AddressA" "AddressB"

[7] "ProbeSeqA" "ProbeSeqB"

[9] "Type" "NextBase"

[11] "Color" "Probe_rs"

[13] "Probe_maf" "CpG_rs"

[15] "CpG_maf" "SBE_rs"

[17] "SBE_maf" "Islands_Name"

[19] "Relation_to_Island" "Forward_Sequence"

[21] "SourceSeq" "Random_Loci"

[23] "Methyl27_Loci" "UCSC_RefGene_Name"

[25] "UCSC_RefGene_Accession" "UCSC_RefGene_Group"

[27] "Phantom" "DMR"

[29] "Enhancer" "HMM_Island"

[31] "Regulatory_Feature_Name" "Regulatory_Feature_Group"

[33] "DHS"

The order and content of the annotation DataFrame is in the same order as the main object
(here: gset). There are a number of convenience functions to get parts of the annotation,
like

> islands <- getIslandStatus(gset)

> head(islands)

[1] "OpenSea" "OpenSea" "Island" "Island" "Island" "OpenSea"

> probeType <- getProbeType(gset)

> head(probeType)

[1] "I" "II" "I" "I" "I" "II"

(see later regarding SNPs). Also, you can get different subsets of the annotation by using
the what argument.

4 Quality control

Efficient and reliable quality control is important. Our view on this has evolved over time
and currently we recommend using the qc plot described below as well as shinyMethyl for
interactive visualization. We conclude this section with some comments on what we don’t
recommend using.

10

QC plot

minfi provides a simple quality control plot that uses the log median intensity in both the
methylated (M) and unmethylated (U) channels. When plotting these two medians against
each other, it has been observed that good samples cluster together, while failed samples
tend to separate and have lower median intensities [1]. In general, we advice users to make
the plot and make a judgement. The line separating ”bad” from ”good” samples represent a
useful cutoff, which may have to be adapted to a specific dataset. The functions getQC and
plotQC are designed to extract and plot the quality control information from the MethylSet:

> qc <- getQC(MSet)

> head(qc)

DataFrame with 6 rows and 2 columns

mMed uMed

<numeric> <numeric>

5723646052_R02C02 11.69566 11.82058

5723646052_R04C01 11.99046 11.95274

5723646052_R05C02 11.55603 12.05393

5723646053_R04C02 12.06609 12.09276

5723646053_R05C02 12.23332 12.08448

5723646053_R06C02 11.36851 11.60594

> plotQC(qc)

11

●
●

● ● ●

●

Meth median intensity (log2)

U
nm

et
h

m
ed

ia
n

in
te

ns
ity

 (
lo

g2
)

9 11 13

9
11

13

●

●

good
bad, with sample index

Moreover, the function addQC applied to the MethylSet will add the QC information to the
phenotype data.

To further explore the quality of the samples, it is useful to look at the Beta value densities
of the samples, with the option to color the densities by group:

> densityPlot(MSet, sampGroups = phenoData$Sample_Group)

12

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Beta

D
en

si
ty

GroupA
GroupB

or density bean plots:

> densityBeanPlot(MSet, sampGroups = phenoData$Sample_Group)

13

0.0 0.2 0.4 0.6 0.8 1.0

5723646052_R02C02

5723646052_R04C01

5723646052_R05C02

5723646053_R04C02

5723646053_R05C02

5723646053_R06C02

Beta

Beta

shinyMethyl [3] is particularly useful to visualize all plots at the same time in an interactive
fashion.

Control probes plot

The 450k array contains several internal control probes that can be used to assess the quality
control of different sample preparation steps (bisulfite conversion, hybridization, etc.). The
values of these control probes are stored in the initial RGChannelSet and can be plotted by
using the function controlStripPlot and by specifying the control probe type:

> controlStripPlot(RGSet, controls="BISULFITE CONVERSION II")

All the plots above can be exported into a pdf file in one step using the function qcReport:

> qcReport(RGSet, pdf= "qcReport.pdf")

14

In practice, we use the QC plot presented above as well as inspection of the bisulfite conver-
sion probes and marginal densities to do QC. We don’t really use the qcReport anymore.

5 SNPs

Because the presence of SNPs inside the probe body or at the nucleotide extension can have
important consequences on the downstream analysis, minfi offers the possibility to remove
such probes. The function getSnpInfo, applied to a GenomicRatioSet, returns a data frame
with 6 columns containing the SNP information of the probes:

> snps <- getSnpInfo(gset)

> head(snps,10)

DataFrame with 10 rows and 6 columns

Probe_rs Probe_maf CpG_rs CpG_maf SBE_rs SBE_maf

<character> <numeric> <character> <numeric> <character> <numeric>

cg13869341 NA NA NA NA NA NA

cg14008030 NA NA NA NA NA NA

cg12045430 NA NA NA NA NA NA

cg20826792 NA NA NA NA NA NA

cg00381604 NA NA NA NA NA NA

cg20253340 NA NA NA NA NA NA

cg21870274 NA NA NA NA NA NA

cg03130891 rs77418980 0.305556 NA NA NA NA

cg24335620 rs147502335 0.012800 NA NA NA NA

cg16162899 NA NA NA NA NA NA

Probe, CpG and SBE correspond the SNPs present inside the probe body, at the CpG inter-
rogation and at the single nucleotide extension respectively. The columns with rs give the
names of the SNPs while the columns with maf gives the minor allele frequency of the SNPs
based on the dbSnp database. The function addSnpInfo will add to the GenomicRanges of
the GenomicRatioSet the 6 columns.:

> gset <- addSnpInfo(gset)

> head(granges(gset))

GRanges with 6 ranges and 6 metadata columns:

seqnames ranges strand | Probe_rs Probe_maf CpG_rs

<Rle> <IRanges> <Rle> | <character> <numeric> <character>

cg13869341 chr1 [15865, 15865] * | <NA> <NA> <NA>

cg14008030 chr1 [18827, 18827] * | <NA> <NA> <NA>

cg12045430 chr1 [29407, 29407] * | <NA> <NA> <NA>

cg20826792 chr1 [29425, 29425] * | <NA> <NA> <NA>

15

cg00381604 chr1 [29435, 29435] * | <NA> <NA> <NA>

cg20253340 chr1 [68849, 68849] * | <NA> <NA> <NA>

CpG_maf SBE_rs SBE_maf

<numeric> <character> <numeric>

cg13869341 <NA> <NA> <NA>

cg14008030 <NA> <NA> <NA>

cg12045430 <NA> <NA> <NA>

cg20826792 <NA> <NA> <NA>

cg00381604 <NA> <NA> <NA>

cg20253340 <NA> <NA> <NA>

seqlengths:

chr1 chr2 chr3 chr4 chr5 chr6 ... chr19 chr20 chr21 chr22 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA NA

We strongly recommend to drop the probes that contain either a SNP at the CpG inter-
rogation or at the single nucleotide extension. The function dropLociWithSnps allows to
drop the corresponding probes (introduced in minfi 1.11.9). Here is an example where we
drop the probes containing a SNP at the CpG interrogation and/or at the single nucleotide
extension, for any minor allele frequency:

> gset <- dropLociWithSnps(gset, snps=c("SBE","CpG"), maf=0)

There are several options for SNP databases. These are contained inside the annotation
object. A list of databases can be had by printing the annotation object. In mifni 1.11.8 we
made it possible to do the following

> getAnnotationObject(gset)

In earlier versions of minfi, you can get the same outcome by first getting the name of the
annotation object and then printing it, by

> annoStr <- paste(annotation(MsetEx), collapse = "anno.")

> annoStr

[1] "IlluminaHumanMethylation450kanno.ilmn12.hg19"

> get(annoStr)

IlluminaMethylationAnnotation object

Annotation

array: IlluminaHumanMethylation450k

annotation: ilmn12

genomeBuild: hg19

Available annotation

Islands.UCSC

Locations

16

Manifest

Other

SNPs.132CommonSingle

SNPs.135CommonSingle

SNPs.137CommonSingle

SNPs.Illumina

Defaults

Locations

Manifest

SNPs.137CommonSingle

Islands.UCSC

Other

Cross-reactive probes

It has been previously reported than about 6% of the probes on the 450K array co-hybridize
to alternate genomic sequences, therefore potentially generating spurious signals [5]. We are
planning to include a function in minfi that drops these cross-reactive probes. The function
can be either applied to a [Genomic]MethylSet or a [Genomic]RatioSet:

> gset <- dropCrossReactiveProbes(gset)

This functionality is currently being tested.

6 Preprocessing and normalization

So far, we did not use any normalization to process the data. Different normalization proce-
dures are available in minfi.

preprocessRaw

As seen before, it converts a RGChannelSet to a MethylSet by converting the Red and
Green channels into a matrix of methylated signals and a matrix of unmethylated signals.
No normalization is performed.

Input: RGChannelSet
Output: MethylSet

17

preprocessIllumina

Convert a RGChannelSet to a MethylSet by implementing the preprocessing choices as
available in Genome Studio: background subtraction and control normalization. Both of
them are optional and turning them off is equivalent to raw preprocessing (preprocessRaw):

> MSet.illumina <- preprocessIllumina(RGSet, bg.correct = TRUE,

+ normalize = "controls")

Input: RGChannelSet
Output: MethylSet

preprocessSWAN

Perform Subset-quantile within array normalization (SWAN) [6], a within-array normaliza-
tion correction for the technical differences between the Type I and Type II array designs.
The algorithm matches the Beta-value distributions of the Type I and Type II probes by
applying a within-array quantile normalization separately for different subsets of probes (di-
vided by CpG content). The input of SWAN is a MethylSet, and the function returns
a MethylSet as well. If an RGChannelSet is provided instead, the function will first call
preprocessRaw on the RGChannelSet, and then apply the SWAN normalization. We rec-
ommend setting a seed (using set.seed) before using preprocessSWAN to ensure that the
normalized intensities will be reproducible.

> MSet.swan <- preprocessSWAN(RGSet)

Input: RGChannelSet or MethylSet
Output: MethylSet

preprocessQuantile

This function implements stratified quantile normalization preprocessing. The normalization
procedure is applied to the Meth and Unmeth intensities separately. The distribution of type
I and type II signals is forced to be the same by first quantile normalizing the type II probes
across samples and then interpolating a reference distribution to which we normalize the
type I probes. Since probe types and probe regions are confounded and we know that
DNAm distributions vary across regions we stratify the probes by region before applying
this interpolation. Note that this algorithm relies on the assumptions necessary for quantile
normalization to be applicable and thus is not recommended for cases where global changes
are expected such as in cancer-normal comparisons. Note that this normalization procedure
is essentially similar to one previously presented [7]. The different options can be summarized
into the following list:

18

1) If fixMethOutlier is TRUE, the functions fixes outliers of both the methylated and
unmethylated channels when small intensities are close to zero.

2) If removeBadSamples is TRUE, it removes bad samples using the QC criterion discussed
previously

3) Performs stratified subset quantile normalization if quantileNormalize=TRUE and
stratified=TRUE

4) Predicts the sex (if not provided in the sex argument) using the function getSex and
normalizes males and females separately for the probes on the X and Y chromosomes

> gset.quantile <- preprocessQuantile(RGSet, fixOutliers = TRUE,

+ removeBadSamples = TRUE, badSampleCutoff = 10.5,

+ quantileNormalize = TRUE, stratified = TRUE,

+ mergeManifest = FALSE, sex = NULL)

[preprocessQuantile] Mapping to genome.

[preprocessQuantile] Fixing outliers.

[preprocessQuantile] Quantile normalizing.

Input: RGChannelSet
Output: GenomicRatioSet

Note that the function returns a GenomicRatioSet object ready for downstream analysis.

preprocessFunnorm

The function preprocessFunnorm implements the functional normalization algorithm de-
veloped in [8]. Briefly, it uses the internal control probes present on the array to infer
between-array technical variation. It is particularly useful for studies comparing conditions
with known large-scale differences, such as cancer/normal studies, or between-tissue studies.
It has been shown that for such studies, functional normalization outperforms other existing
approaches [8]. By default, is uses the first two principal components of the control probes
to infer the unwanted variation.

> gset.funnorm <- preprocessFunnorm(RGSet)

[preprocessFunnorm] Mapping to genome

[preprocessFunnorm] Quantile extraction

[preprocessFunnorm] Normalization

Input: RGChannelSet
Output: GenomicRatioSet

As the preprocessQuantile function, it returns a GenomicRatioSet object.

19

7 dmpFinder: to find differentially methylated posi-

tions (DMPs)

While we do not encourage particularly a single position differential methylation analysis,
minfi implements a simple algorithm called dmpFinder to find differentially methylated posi-
tions with respect to a phenotype covariate. The phenotype may be categorical (e.g. cancer
vs. normal) or continuous (e.g. blood pressure). Below is an example of a DMP analysis for
age using the gset.funnorm object created above:

> beta <- getBeta(gset.funnorm)

> age <- pData(gset.funnorm)$age

> dmp <- dmpFinder(beta, pheno = age , type = "continuous")

> head(dmp)

intercept beta t pval qval

cg05764847 0.9984524 -0.0007670769 -51.86582 8.270863e-07 0.4015603

cg10467968 0.3434299 0.0061458131 33.35419 4.818942e-06 0.9999983

cg00135841 -0.6673803 0.0189247545 28.63051 8.857500e-06 0.9999983

ch.17.28266240F 0.1352752 -0.0008316485 -26.87454 1.139697e-05 0.9999983

cg05389038 0.5306783 -0.0056651940 -22.63167 2.257633e-05 0.9999983

cg21498547 -1.8114330 0.0323934580 21.46843 2.784158e-05 0.9999983

8 Bumphunter: to find differentially methylated re-

gions (DMRs)

The bumphunter function in minfi is a version of the bump hunting algorithm [9] adapted
to the 450k array, relying on the bumphunter function implemented in the eponym package
bumphunter [10].

Instead of looking for association between a single genomic location and a phenotype of
interest, bumphunter looks for genomic regions that are differentially methylated between
two conditions. In the context of the 450k array, the algorithm first defines clusters of probes.
Clusters are simply groups of probes such that two consecutive probe locations in the cluster
are not separated by more than some distance mapGap. Briefly, the algorithm first computes
a t-statistic at each genomic location, with optional smoothing. Then, it defines a candidate
region to be a cluster of probes for which all the t-statistics exceed a predefined threshold.
To test for significance of the candidate regions, the algorithm uses permutations (defined
by the parameter B). The permutation scheme is expensive, and can take a few days when
the number of candidate bumps is large. To avoid wasting time, we propose the following
guideline:

• Define your phenotype of interest

20

> pheno <- pData(gset.funnorm)$status

> designMatrix <- model.matrix(~ pheno)

• Run the algorithm with B = 0 permutation on the Beta-values, with a medium differ-
ence cutoff, say 0.2 (which corresponds to 20% difference on the Beta-values):

> dmrs <- bumphunter(gset.funnorm, design = designMatrix,

+ cutoff = 0.2, B=0, type="Beta")

• If the number of candidate bumps is large, say > 30000, increase the cutoff to reduce
the number of candidate bumps. The rationale behind this is that the most of the
additional candidate regions found by lowering the cutoff will be found to be non-
significant after the permutation scheme, and therefore time can be saved by being
more stringent on the cutoff (high cutoff).

• Once you have decided on the cutoff, run the algorithm with a large number of per-
mutations, say B = 1000:

> dmrs <- bumphunter(gset.funnorm, design = designMatrix,

+ cutoff = 0.2, B=1000, type="Beta")

Since the permutation scheme can be expensive, parallel computation is implemented in the
bumphunter function. The foreach package allows different parallel “back-ends” that will
distribute the computation across multiple cores in a single machine, or across machines in
a cluster. For instance, if one wished to use 3 cores, the two following commands have to be
run before running bumphunter:

> library(doParallel)

> registerDoParallel(cores = 3)

The results of bumphunter are stored in a data frame with the rows being the different
differentially methylated regions (DMRs):

> names(dmrs)

> head(dmrs$table, n=3)

As an example, we have run the bump hunting algorithm to find DMRs between colon and
kidney (20 samples each from TCGA), with B = 1000 permutations, and a cutoff of 0.2 on
the Beta values:

chr start end value area cluster indexStart indexEnd

15861 chr8 145103393 145107199 0.3767581 6.404887 194325 238277 238293

4810 chr13 113425756 113428172 0.4257673 5.960743 57562 337302 337315

4064 chr12 54446019 54447349 0.3278039 5.900470 46543 311839 311856

17813 chr10 11206772 11208339 -0.4148710 5.393322 21466 251989 252001

18360 chr10 130844121 130844899 -0.5869309 5.282378 29724 269921 269929

4054 chr12 54409207 54409770 0.4370705 5.244846 46529 311742 311753

L clusterL p.value fwer p.valueArea fwerArea

21

15861 17 17 0 0 0 0

4810 14 24 0 0 0 0

4064 18 28 0 0 0 0

17813 13 15 0 0 0 0

18360 9 9 0 0 0 0

4054 12 42 0 0 0 0

The start and end columns indicate the limiting genomic locations of the DMR; the value

column indicates the average difference in methylation in the bump, and the area column
indicates the area of the bump with respect to the 0 line. The fwer column returns the
family-wise error rate (FWER) of the regions estimated by the permeation scheme. One can
filter the results by picking a cutoff on the FWER.

9 Other important topics

Batch effects correction with SVA

Surrogate variable analysis (SVA) [11, 12] is a useful tool to identified surrogate variables for
unwanted variation while protecting for a phenotype of interest. In our experience, running
SVA after normalizing the 450K data with preprocessFunnorm or preprocessQuantile

increases the statistical power of the downstream analysis. For instance, to run SVA on the
M-values, protecting for case-control status, the following code can be used to estimate the
surrogate variables (this can take a few hours to run):

> require(sva)

> mval <- getM(gset)

> pheno <- pData(gset)

> mod <- model.matrix(~as.factor(status), data=pheno)

> mod0 <- model.matrix(~1, data=pheno)

> sva.results <- sva(mval, mod, mod0)

Once the surrogate variables are computed, one can include them in the downstream analysis
to adjust for unknown unwanted variation. See sea package vignette for a more comprehensive
use of sva.

Cell Type Composition

As shown in [13], biological findings in blood samples can often be confounded with cell
type composition. In order to estimate the confounding levels between phenotype and
cell type composition, the function estimateCellCounts depending on the package Flow-
Sorted.Blood.450k [14] estimates the cell type composition of blood samples by using a mod-

22

ified version of the algorithm described in [15]. The function takes as input a RGChannelSet

and returns a cell counts vector for each samples:

> require(FlowSorted.Blood.450k)

> cellCounts <- estimateCellCounts(RGSet)

Block finder

The approximately 170,000 open sea probes on the 450K array can be used to detect long-
range changes in methylation status. These large scale changes that can range up to several
Mb have typically been identified only through whole-genome bisulfite sequencing. The func-
tion blockFinder groups the average methylation values in open-sea probe cluster (via cpg-

Collapse) into large regions, and then run the bumphunter algorithm with a large (250KB+)
smoothing window (see the bump hunting section for DMRs above).

Sex prediction

By looking at the median total intensity of the X chromosome-mapped probes, denoted
med(X), and the median total intensity of the Y-chromosome-mapped probes, denoted
med(Y), one can observe two different clusters of points corresponding to which gender
the samples belong to. To predict the gender, minfi separate the points by using a cutoff
on log2med(Y) − log2med(Y). The default cutoff is −2. Since the algorithm needs to map
probes to the X-chr and to the Y-chr, the input of the function getSex() needs to be a
GenomicMethylSet or a GenomicRatioSet.

> predictedSex <- getSex(gset, cutoff = -2)$predictedSex

> head(predictedSex)

[1] "M" "F" "M" "F" "F" "F"

To choose the cutoff to separate the two gender clusters, one can plot med(Y) against med(Y)
with the function plotSex:

> plotSex(getSex(gset, cutoff = -2))

Finally, the function addSex applied to the GenomicRatioSet will add the predicted sex to
the phenotype data. Remark : the function does not handle datasets with only females or
only males

23

10 Advanced functions

getSnpBeta

The array contains by design 65 probes that are not meant to interrogate methylation status,
but instead are designed to interrogate SNPs. By default, minfi drops these probes. The
function getSnpBeta devel version allows the user to extract the Beta values for those probes
from an RGChannelSet. The return object is a matrix with the columns being the samples
and the rows being the different SNP probes:

> snps <- getSnpBeta(rgset)

> head(snaps)

These SNP probes are intended to be used for sample tracking and sample mixups. Each
SNP probe ought to have values clustered around 3 distinct values corresponding to homo-,
and hetero-zygotes.

Out-of-band (or ghost) probes

The function getOOB applied to an RGChannelSet retrieves the so-called“out-of-band”(OOB)
probes. These are the measurements of Type I probes in the “wrong” color channel. The
function returns a list with two matrices, named Red and Grn.

> oob <- getOOB(rgset)

11 Exercises

1) Before processing a RGChannelSet further, could you remove the probes which failed
more than 50% of the samples in the example dataset?

2) For the top loci that we found differentially methylated for the predicted sex, could
you tell if those loci are mostly mapped to the X and Y chromosomes?

3) It is known that the Beta-value distribution of the Type I probes is different from the
Beta value distribution of the Type II probes. Can you verify this with by plotting the
Beta-value distribution density for each type separately?

References

[1] Martin J. Aryee, Andrew E. Jaffe, Hector Corrada-Bravo, Christine Ladd-Acosta, An-
drew P. Feinberg, Kasper D. Hansen, and Rafael A. Irizarry. Minfi: A flexible and

24

comprehensive Bioconductor package for the analysis of Infinium DNA Methylation
microarrays. Bioinformatics, 2014. doi: 10.1093/bioinformatics/btu049.

[2] Robert C Gentleman, Vincent J Carey, Douglas M Bates, Ben Bolstad, Marcel Det-
tling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gentry, Kurt
Hornik, Torsten Hothorn, Wolfgang Huber, Stefano Iacus, Rafael Irizarry, Friedrich
Leisch, Cheng Li, Martin Maechler, Anthony J Rossini, Gunther Sawitzki, Colin Smith,
Gordon Smyth, Luke Tierney, Jean Y H Yang, and Jianhua Zhang. Bioconductor: open
software development for computational biology and bioinformatics. Genome Biology,
5(10):R80, 2004. doi: 10.1186/gb-2004-5-10-r80.

[3] Jean-Philippe Fortin, Elana J Fertig, and Kasper D Hansen. shinyMethyl: interactive
quality control of Illumina 450k DNA methylation arrays in R. F1000Research, 3(175),
2014. doi: 10.12688/f1000research.4680.1.

[4] Jean-Philippe Fortin and Kasper D. Hansen. shinyMethyl repository, 2014. URL https:

//github.com/Jfortin1/shinyMethyl. Online.

[5] Yi-an Chen, Mathieu Lemire, Sanaa Choufani, Darci T Butcher, Daria Grafodatskaya,
Brent W Zanke, Steven Gallinger, Thomas J Hudson, and Rosanna Weksberg. Discovery
of cross-reactive probes and polymorphic cpgs in the illumina infinium humanmethyla-
tion450 microarray. Epigenetics, 8(2):203–9, 2013. doi: 10.4161/epi.23470.

[6] Jovana Maksimovic, Lavinia Gordon, and Alicia Oshlack. SWAN: Subset quantile
Within-Array Normalization for Illumina Infinium HumanMethylation450 BeadChips.
Genome Biology, 13(6):R44, 2012. doi: 10.1186/gb-2012-13-6-r44.

[7] Nizar Touleimat and Jörg Tost. Complete pipeline for Infinium Human Methylation
450K BeadChip data processing using subset quantile normalization for accurate DNA
methylation estimation. Epigenomics, 4(3):325–341, 2012. doi: 10.2217/epi.12.21.

[8] Jean-Philippe Fortin, Aurelie Labbe, Mathieu Lemire, Brent W. Zanke, Thomas J.
Hudson, Elana J. Fertig, Celia M.T. Greenwood, and Kasper D. Hansen. Functional
normalization of 450k methylation array data improves replication in large cancer stud-
ies. bioRxiv, 2014. doi: 10.1101/002956. URL http://biorxiv.org/content/early/

2014/02/23/002956.

[9] Andrew E Jaffe, Peter Murakami, Hwajin Lee, Jeffrey T Leek, M Daniele Fallin, An-
drew P Feinberg, and Rafael A Irizarry. Bump hunting to identify differentially methy-
lated regions in epigenetic epidemiology studies. International Journal of Epidemiology,
41(1):200–209, 2012. doi: 10.1093/ije/dyr238.

[10] Rafael A. Irizarry, Martin Aryee, Hector Corrada Bravo, Kasper D. Hansen, and Har-
ris A. Jaffee. bumphunter: Bump Hunter. R package version 1.2.0.

25

https://github.com/Jfortin1/shinyMethyl
https://github.com/Jfortin1/shinyMethyl
http://biorxiv.org/content/early/2014/02/23/002956
http://biorxiv.org/content/early/2014/02/23/002956

[11] Jeffrey T Leek and John D Storey. Capturing heterogeneity in gene expression studies
by surrogate variable analysis. PLoS Genetics, 3(9):1724–1735, 2007. doi: 10.1371/
journal.pgen.0030161.

[12] Jeffrey T Leek and John D Storey. A general framework for multiple testing dependence.
Proceedings of the National Academy of Sciences, 105(48):18718–18723, 2008. doi: 10.
1073/pnas.0808709105.

[13] Andrew E Jaffe and Rafael A Irizarry. Accounting for cellular heterogeneity is critical in
epigenome-wide association studies. Genome Biol, 15(2):R31, Feb 2014. doi: 10.1186/
gb-2014-15-2-r31.

[14] Andrew E Jaffe. FlowSorted.Blood.450k: Illumina HumanMethylation data on sorted
blood cell populations. R package version 1.0.2.

[15] Eugene Andres Houseman, William P Accomando, Devin C Koestler, Brock C Chris-
tensen, Carmen J Marsit, Heather H Nelson, John K Wiencke, and Karl T Kelsey. Dna
methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinfor-
matics, 13:86, 2012. doi: 10.1186/1471-2105-13-86.

26

	Introduction
	Reading Data
	Class structure
	Quality control
	SNPs
	Preprocessing and normalization
	dmpFinder: to find differentially methylated positions (DMPs)
	Bumphunter: to find differentially methylated regions (DMRs)
	Other important topics
	Advanced functions
	Exercises

