RNA-seq data analysis and differential expression part II

Michael Love Irizarry Lab Dept. of Biostatistics Dana-Farber Cancer Institute & Harvard T.H. Chan SPH

Outline

- 1. counts and sampling
- 2. shrinkage estimators
 - dispersion
 - fold changes
 - regularized logarithm
- 3. statistical power
 - independent filtering
 - threshold tests

mRNAs to fragments

colors: different genes

number of mapped fragments proportional to:

- expression of RNA
- length of gene
- sequencing depth
- lib. prep. factors (PCR)
- in silico factors (alignment)
- ...

Sequencing depth

sample 1

sample 2

M. Love: RNA-seq data analysis

Variance of counts

Consider one gene:

M. Love: RNA-seq data analysis

Variance of counts

Consider one gene:

• Binomial sampling distribution

 With millions of reads & small proportion for each gene
=> Poisson sampling distribution

Raw counts vs. normalized counts

Frequency Raw count with mean of 100 Poisson sampling, so SD=10 Frequency Raw count mean = 1000Scaled by 1/10 SD = ? Frequency Raw count mean = 10Scaled by 10 SD = ?

M. Love: RNA-seq data analysis

Raw counts vs normalized counts

Biological replicates

If the proportions of mRNA stays exactly constant ("technical replicate") we can expect Poisson dist.

But realistically, biological variation across sample units is expected

Biological replicates

Biological variation for the abundance of a given gene produces "over-dispersion" relative to the Poisson dist. Negative Binomial = Poisson with a varying mean

0

100

200

300

400

Shrinkage estimators in genomics

- Lönnstedt and Speed 2002: microarray
- Smyth 2004: <u>limma</u> for microarray
- Robinson and Smyth 2007: SAGE, digital gene exprs.
- Many adaptations: DSS and DESeq2 are a similar approach, data-driven strength of shrinkage

An introduction to shrinkage estimators: Baseball players as example Efron and Morris 1977 "Stein's Paradox in Statistics"

Shrinkage of dispersion

- 1. Gene estimate = maximum likelihood estimate (MLE)
- 2. Fitted dispersion trend = the mean of the prior
- 3. Final estimate = maximum a posteriori (MAP)

Shrinkage of fold changes

Why shrink fold changes?

Split a dataset into two equal parts, compare LFC

Why shrink fold changes?

Comparison of log fold changes across two experiments.

"A new two-step high-throughput approach:

1. gene expression screening of a large number of conditions

2. deep sequencing of the most relevant conditions"

G. A. Moyerbrailean et al. "A high-throughput RNA-seq approach to profile transcriptional responses" http://dx.doi.org/10.1101/018416

Regularized logarithm, "rlog"

similar idea, but now shrink sample/sample fold changes

M. Love: RNA-seq data analysis

rlog stabilizes variances along the mean

3. Statistical power

- False positive rate (1 specificity): under the null (no differences), how many positives?
- Precision (1 false discovery rate): of the positives (predicted to be DE), how many true?
- Power (sensitivity): under the alternative to the null, how many positives (reject null)?

Statistical power

Why not just use a t-test on log normalized counts?

M. Love: RNA-seq data analysis

Factors influencing power

- Value of count
 - Sequencing depth
 - Expression
 - Gene length
- Sample size
- Dispersion
- True fold change

Bioc pkg: RNASeqPower

varying the count

varying the dispersion

Power depends on range of counts

Power depends on range of counts

quantile of mean of normalized counts

- Filter on a statistic which is:
 - independent of the test statistic under the null
 - correlated under the alternate hypothesis

Bourgon, Gentleman and Huber, PNAS 2010.

Testing against a threshold

null hypothesis: fold change = 1

null hypothesis: fold change is < 2 or > 1/2

"For **well-powered experiments**, however, a statistical test against the conventional null hypothesis of zero LFC may report genes with statistically significant changes that are so weak in effect strength that they could be **considered irrelevant or distracting**."