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Setting

Setting: 

● study with expression microarrays

● samples from two conditions (e.g., control vs. treatment, 
or tissue or phenotype vs. another)

● several biological replicates for each condition

● we are interested in differentially expressed (DE) genes



Standard gene-centred analysis

● Do the usual pre-processing.

● Assess statistical significance of any difference in 
expression between the two conditions with a suitable test 
procedure, e.g. Student's t test or with Limma.

● Correct for multiple testing, e.g., with Benjamini-Hochberg

● Look at the list of genes with significant differential 
expression.

● If the list is long, just look at the genes at the top.

● Find a biological meaning in the list.



Gene sets

Gene sets are sets of genes that have something in common, 
e. g., that they are

● part of the same pathway

● coding for proteins that are part of the same cellular 
component

● co-expressed under certain conditions

● putative targets of the same regulatory factor

● on the same cytogenetic band

● have come up as hits in some published assay

● ...



Sources of gene sets

Sources of gene sets:

● Gene Ontology (GO) Annotation (GOA)
● cellular components (CC)

● biological processes (BP)

● molecular functions (MF)

● Pathway data bases:
● KEGG

● GenMAPP

● Biocarta

● Gene set collections
● MSigDB

● GAzer

Any published assay
result can also be a very 
useful gene list.



Gene set testing

The standard question in gene set testing is:

“It there an association between the expression of the genes 
in the given gene set and the studied condition?”

This may mean: “Are unusually many (or: unusually few) of the genes in S 
differentially expressed?”

To make the meaning of “unusually many” more precise: 
“If I picked n genes at random (with n being the size of S), how probable is it 
that among these genes, there are at least as many differentially expressed ones 
as in S?”

Even though it sound natural, we shall see that this is a problematic way of 
formalizing the question.



R. A. Fisher and the lady tasting tea



Hypergeometric testing

A simple example:

5 patients with the disease D and 5 healthy control subjects 
have been checked for elevated levels of the blood 
constituent C. 4 of the patients, but only 2 of the healthy 
subjects show an elevated level of C.

May we infer that the concentration of C is elevated in 
patients with disease D more often than in healthy subjects?

Or could our result have been mere coincidence?



2×2 contigency table

Patient with 
disease D

Healthy control 
subject Total

Elevated level of 
compound C 4 2 6

Normal level of 
compound C 1 3 4

Total 5 5 10

Expected value for top left corner 
from null model (no association):  5×6 / 10 = 3



Hypergeometric distribution

Probability to get this 2×2 table without an association 
between D and C:

Number of ways to
choose 4 out of the 
5 patients to have

elevated C

Number of ways to
choose 2 out of the 
5 controls to have

elevated C

Number of ways to
choose 6 out of the 
10 persons to have

elevated C

×

=

5
4( ) 5

2( )
10
6( )

in R:
> dhyper( 4, 5, 5, 6 )
[1] 0.2380952



Hypergeometric distribution

Under the null hypothesis, i.e., the assumption that there is 
no association between elevated levels of compound C and 
presence of disease D, the probability that 4 or even more of 
the patients have elevated levels of C, is

5
4( ) 5

2( )
10
6( )

5
5( ) 5

1( )
10
6( )

= 0.26p = +

in R:
> 1 ­ phyper( 3, 5, 5, 6 )
[1] 0.2619048



Hypergeometric testing in R

> contigency.matrix <­ rbind( c(4, 2), c(1, 3) )
> contigency.matrix
     [,1] [,2]
[1,]    4    2
[2,]    1    3
> fisher.test( contigency.matrix, alternative="greater" )

Fisher's Exact Test for Count Data

data:  contigency.matrix 
p­value = 0.2619
alternative hypothesis: true odds ratio is greater than 1 
95 percent confidence interval:
 0.3152217       Inf 
sample estimates:
odds ratio 
  4.918388 



Hypergeometric testing of gene sets

Given a list of differentially expressed genes and a collection 
of gene sets, the following strategy is often employed:

● For each gene set, fill a 2x2 contigency table:

● Calculate p value by hypergeometric testing (Fisher's exact 
test)

Differentially 
expressed

Not differentially 
expressed

Total

in gene set . . .
not in geneset . . .

Total . . .



Hypergeometric testing with R

All this can be done conveniently with the hyperGTest 
function in the Category package.

Try it in the labs.

[Gentleman et al., Category package]



Universe

It is important to chose the universe correctly.

Case 1: Universe is all genes in the genome

Case 2: Universe is only the expressed genes

Differentially 
expressed

Not differentially 
expressed

Total

in gene set   10     30     40
not in geneset 390 3570 3960

Total 400 3600 4000

Differentially 
expressed

Not differentially 
expressed

Total

in gene set   10   30     40
not in geneset 390 570 960

Total 400 600 1000

p=0.049

p=0.0048



Cut-off

So far, we have divided the list of all genes in differentially 
expressed and not differentially expressed ones. 

This is not optimal

● The choice of cut-off is always somewhat arbitrary.
● Nevertheless, it may influence the result drastically [Pan et al., 2005]

● The ranking of the genes (or the strength of their DE) is not 
used.

● A concerted but small effect on many genes will be missed.

We shall discuss alternative approaches in the second half of 
the talk.



Sampling over genes

● Hypergeometric testing for gene sets has been critizised on 
the ground of it sampling over genes (observation) instead 
of over microarrays (subjects)

● Hence, the meaning of the p values is quite unclear.

● Especially: Correlations between genes inflate the apparent 
sample size, causing potentially severe over-estimation of 
significance.

● Increasing the number of replicates influences significance 
only indirectly.

[ Goeman and Bühlmann, 2007 ]



Sampling over subjects

Goeman and Bühlmann's suggestion:

Instead of using the hypergeometric distribution to get a p 
value from out statistic, we should better use subject 
permutation:
● Let L0 be the list of differential expressed genes and m=∣L0∣ its size.

● For N permutations σi (i=1,...,N) of the subject labels, calculate the DE 
statistic and let Li be the list of the m top ranking genes.

● Let ki be the number of differentially expressed genes in the gene set, i.e., 
the size of the intersetion Li ∩ S.

● The p value for gene set S is now the fraction of permutation that had a 
larger gene set than the correct sample assignment, i.e.,

p=
∣{i∣k ik0}∣

N



Problems with subject sampling

● Enough replicates are required to have something to 
permute.

● The calculation is time consuming.

Hence, it may still make sense to use hypergeometric testing 
and live with the disagreement on whether it is statistically 
sound.



Overlap between gene sets

A
B

Both gene sets, A and B, are enriched. However, B seems to be enriched
only because of its overlap with A.
Both gene sets, A and B, are enriched. However, B seems to be enriched
only because of its overlap with A.



GO is a directed acyclic graph (DAG)

Figure taken from 
Alexa et al., 2006



TopGO's elimination algorithm

The Bioconductor package “TopGO” [Alexa et al., 
Bioinformatics 22 (2006) 1600] offers this solution to the 
overlap problem in gene set collection that ar DAGs:

● Test the leaf gene sets first.

● If a gene set is significant, remove its genes from its 
ancestor sets before testing these.
Alternatively, downweight them.

● The Category/GOstat package's [Falcon and Gentleman (2006)] hyperGTest 
offers a similar mechanism, called conditional testing.

● Goeman and Mansmann [2008] offer an alternative approach, namely to 
take the DAG into account when correcting for multiple testing.



Cut-off

So far, we have divided the list of all genes in differentially 
expressed and not differentially expressed ones. 

This is not optimal

● The choice of cut-off is always somewhat arbitrary.
● Nevertheless, it may influence the result drastically [Pan et al. (2005)]

● The ranking of the genes (or the strength of their DE) is not 
used.

● A concerted but small effect on many genes will be missed.

We shall now discuss alternative approaches.



A simple approach

● Calculate the log fold changes (LFCs) between conditions.

● Compare the LFCs in the gene set with those of the other 
genes with a two-sample t test.

● To get a p value, use Student's t distribution, or, better, get 
a null distribution from subject permutation.

Is this a good statistic?



Gene Set Enrichment Analysis (GSEA)

Mootha et al. [2003] suggest to use the Kolmogorov-Smirnov 
statistic:

● Sort all genes by LFC.

● Go through the list, increasing a running sum for each gene 
in the gene set by (N­n), and decreasing it for each gene 
not in the gene set by n. 
[N: number of genes, n: size of gene set]

● The maximum value of the running sum is the enrichment 
score (ES).



GSEA

Assessing significance

● To get p values, we do not use the KS distribution but 
rather estimate the null by subject permutation.

Improved enrichment score

● The KS statistic tests whether distributions are different, 
but this difference may not have a clear direction, making 
biological interpretation difficult.

● The updated GSEA algorithm [Subramanian et al., PNAS 
102 (2005) 15545] weights the in-/decrements of the 
running sum by the LFC.



What is the null hypothesis?

What does it mean to look for gene sets with “enrichment”?

It is important to distinguish:

● Competitive null hypothesis: The genes in the gene set do 
not have stronger association with the subject condition 
than the other genes.

● Self-contained null hypothesis: The genes in the gene set do 
not have any association with the subject condition (i.e., no 
gene in the set is differentially expressed). We do not care about 
what the genes outside the set do.

Tian et al. (2005), 
Goemann and Bühlmann (2007),
Nam and Kim (2008)



Competitive and self-contained null

Nam and Kim (2008) illustrate the difference with a 
simulation with 20 treatment and 20 control subjects: 30% of 
2000 genes are DE. 100 gene sets were build by chosing 20 
genes for each, at random and indipendently of the DE.

● The p values for the competitive null are uniform

● The p values for the self-contained null are below 5% for 
83% of the gene sets.

Of course, if we want to test against the null hypothesis that 
the treatment does not cause any DE, this is fine.



Tian et al.'s self-contained test 

Tian et al. [2005] suggest to test each gene for differential 
expression and take the average of the t score of all the genes 
in a set as statistic. Subject permutation then yields a p value.

This is a test against the self-contained null, while GSEA 
[Mootha et al. (2003), Subramanian et al. (2005)] tests against 
the competitive null.

Other test statistics have been suggested, too, e.g. the sum of the squared t 
values [Dinu et al. (2007)] or Hotellings T2 test [Kong et al. (2006)].



Now, subject permutation is crucial

Transcription
Factor

regulates expression

gene set of targets

TF activity varies between 
biological replicates but
is not influenced by conditions

Neither the TF, not its targets may show a DE that is called 
significant, but the gene set might become significant 
nevertheless because of the correlation between the target 
genes.

Note that in tests without DE cut-off, it is even more important to use subject 
permutation to get p values.



Linear models for gene set testing

Hummel et al. (2007) suggest to use linear models to check 
gene sets for DE (self-contained null). This is especially useful 
in the presence of covariates.

Their example: Colorectal tumors may have good (“stage II”) 
or bad (“stage III”) prognosis. Which pathways show different 
activity in the two stages?

Differential expression may also be caused by these 
covariates:
● sex of the patient

● location of the tumor (colon or rectum)



GlobalANCOVA

The expression value of a gene in all the subject can now be 
regressed on the covariates tumor stage, sex and location and 
all their interaction (“full model”) or only on sex and location 
(“reduced model”)

For each gene set (pathway), we build a large model to 
regress all the genes in the set together and calculate how 
much variance the inclusion of the stage explains.

With subject permutations (not: with the F distribution), we 
check whether the reduction of the RSS is significant.

This tells us, for each gene set, whether there is association 
between its expression and the tumor stage.



GlobalANCOVA

As the permutation analysis may take time, an asymptotic 
calculation of the test statistic has been derived, too.

The R package “GlobalANCOVA” performs all this.

It also allows for intersting visualization by showing in plots, 
which genes and which subjects contribute how much to the 
reduction of the RSS of a gene set.

Mansmann and Meister (2005)
Hummel et al. (2007)



Summary

Gene set testing methods differ in these points:

● whether they employ a hard cut-off between differentially 
expressed and not diffentially expressed genes

● whether they calculate the p values from gene or subject 
sampling

● whether they test against the self-contained or the 
competitive null hypothesis (or against a hybrid of these)

● how the test statistic is calculated

● how they deal with overlapping gene sets



Summary

● whether they are available as stan-alone application, web 
tool or R package

● what gene set collections they can use

The review by Nam and Kim (2008) classifies all cut-off-free 
testing methods by these criteria.



Summary: R packages

● Category

● GOstats

● topGO

● GlobalANCOVA

● GSEAbase

● PGSEA

● SigPathways

● GSEAlm
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