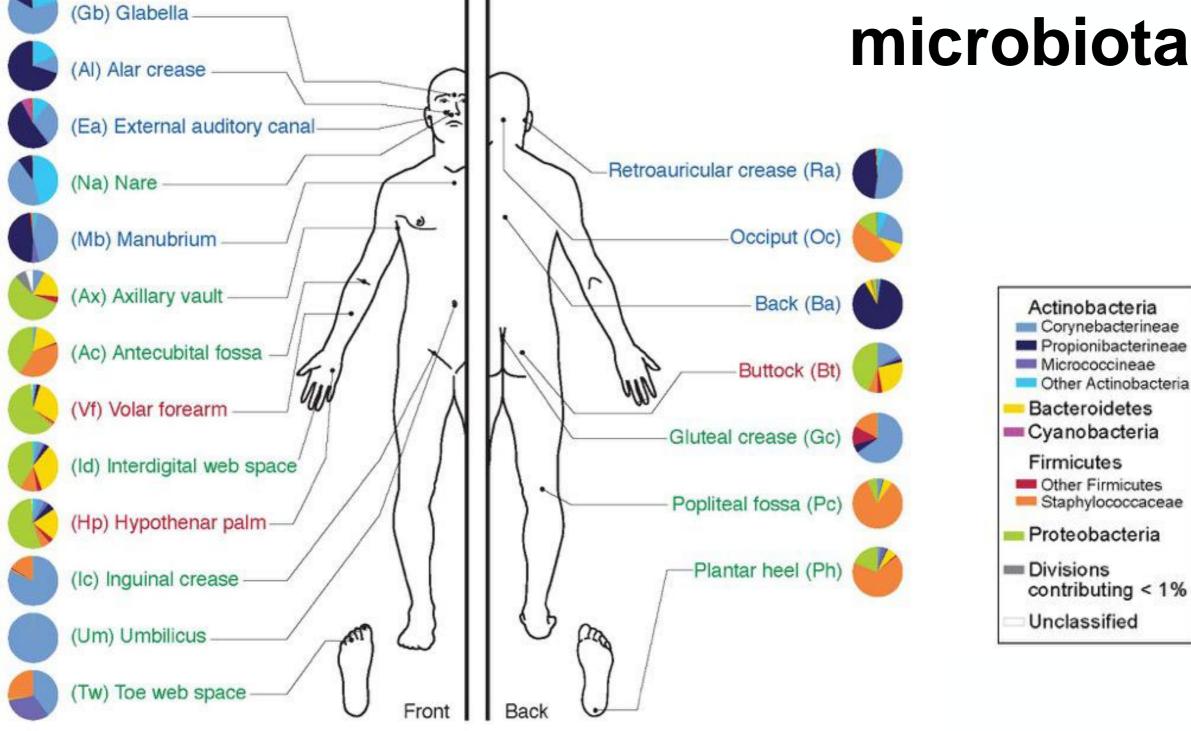
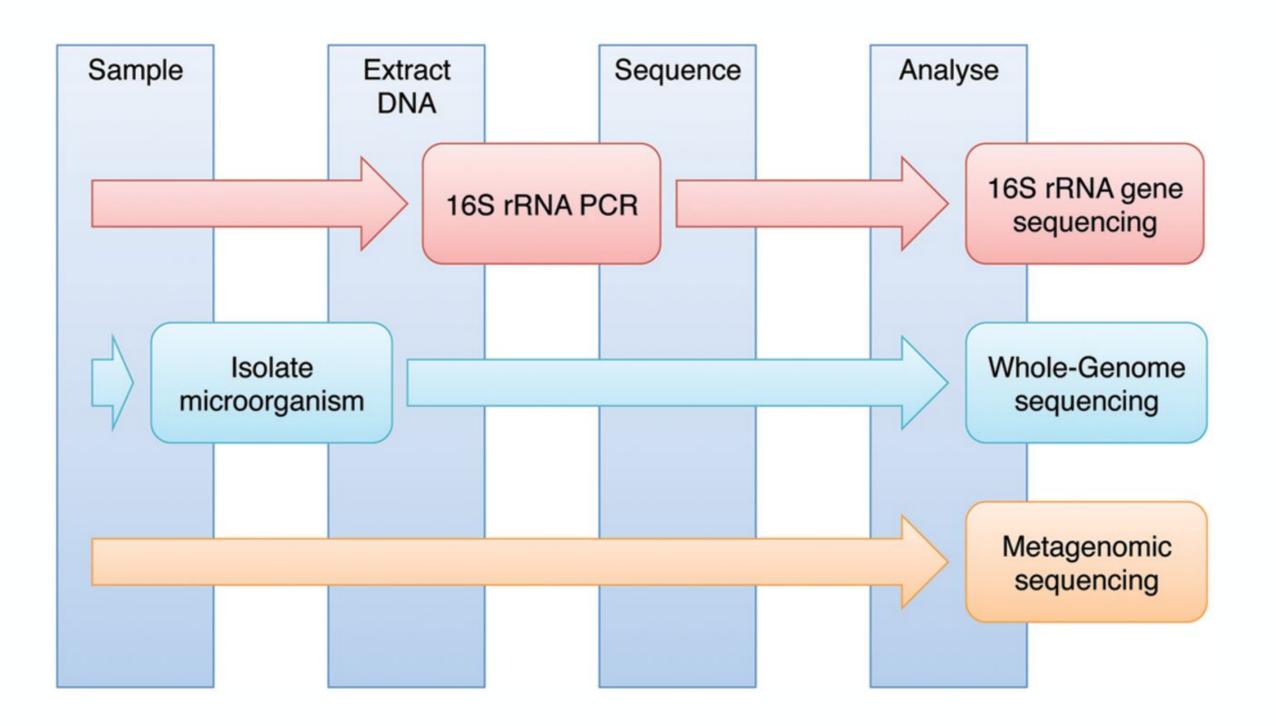
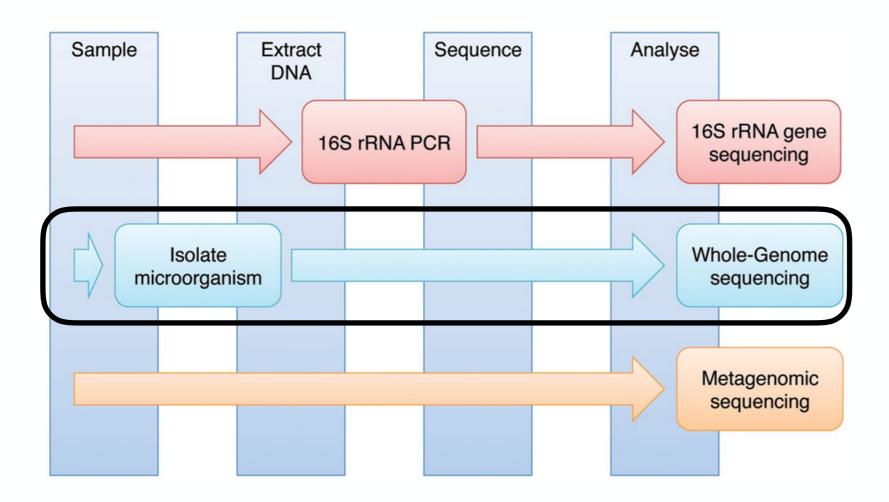
Microbial genomics

Charlotte Soneson University of Zurich Brixen 2016

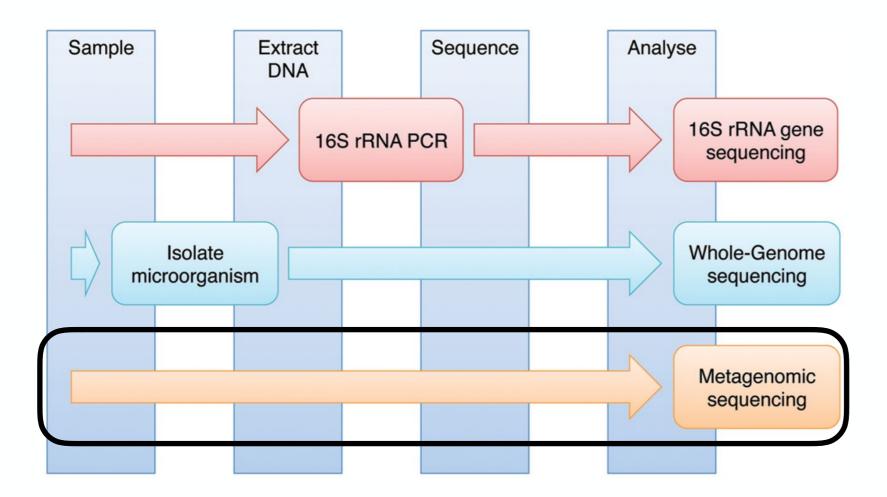
What is the "microbiome"?

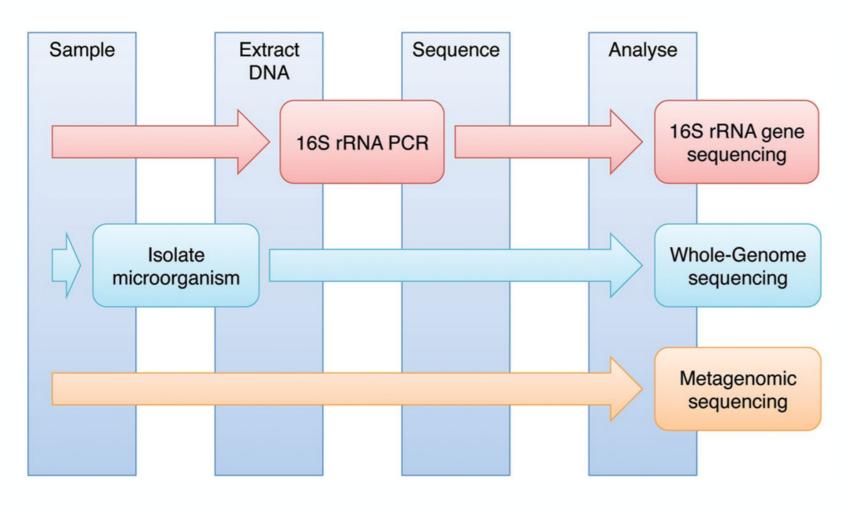

What is the "microbiome"?

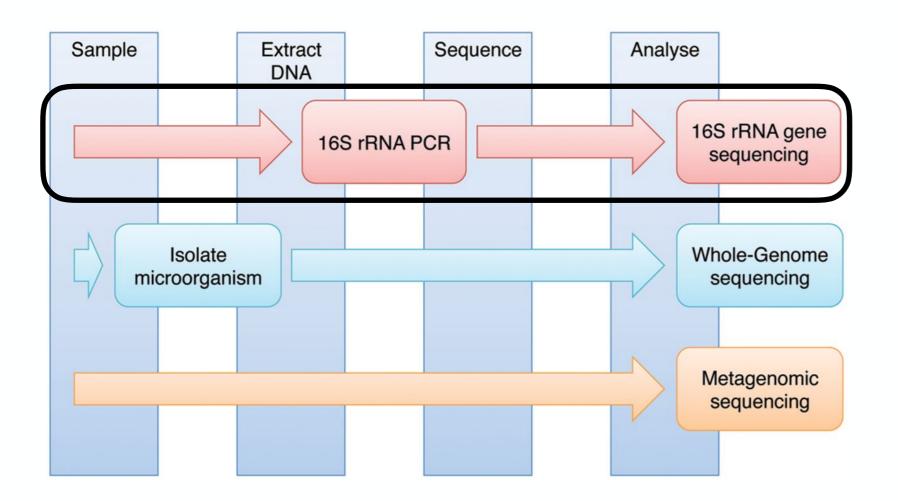

- microbiota = the assemblage of microorganisms (e.g., bacteria, archaea, viruses, fungi)
- microbiome = the ecosystem comprising all microorganisms in an environment, as well as their genes and environmental interactions


The human microbiota

- "microorganisms that exist upon, within or in close proximity to the human body"
- widely varying composition between body sites and individuals
- important for health: building vitamins, breaking down food etc.
- ratio of microbial to human genes in the body is estimated between 1:1 and 100:1


Human skin microbiota




Whole-genome sequencing: characterize specific isolate

 Metagenomic (shotgun) sequencing: sequence complete set of DNA in a sample

- meta*transcriptomics*
- metaproteomics
- metabolomics
- ...

• [16S] rRNA amplicon/marker gene sequencing: infer microbial composition

Amplicon sequencing - basic idea

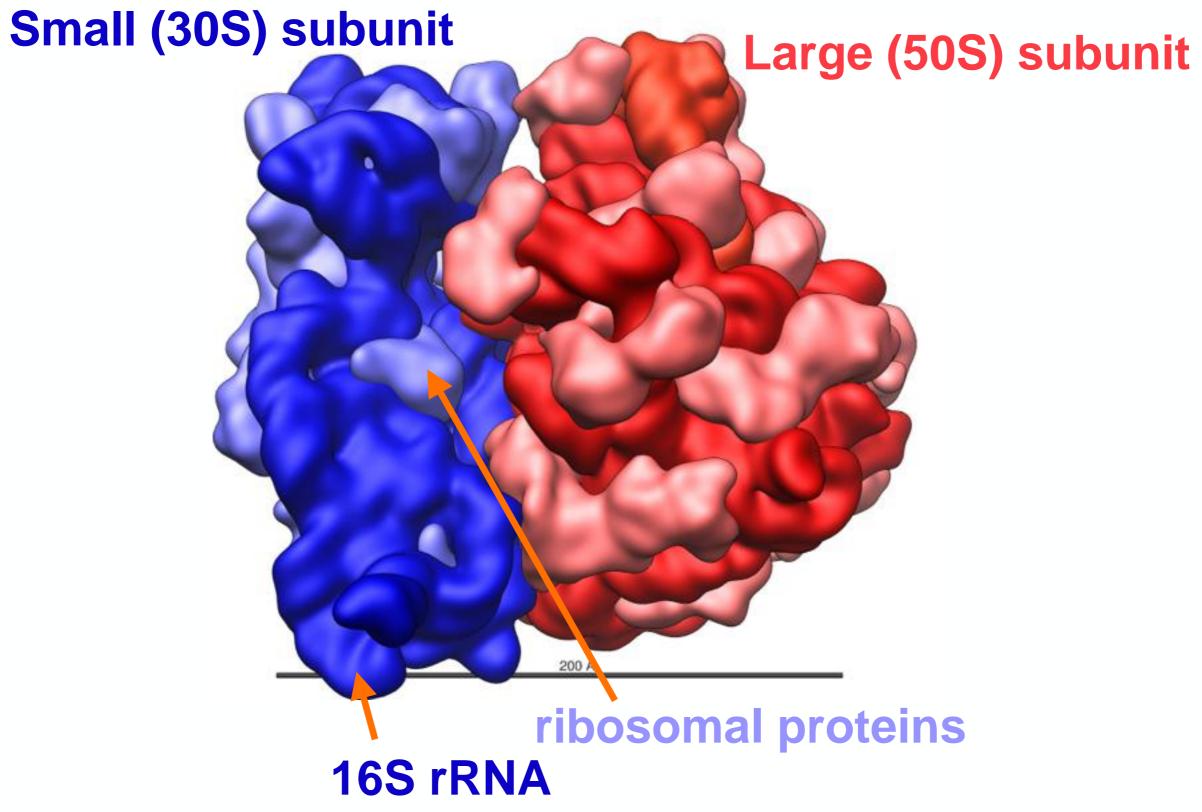
- Amplify (part of) the 16S rRNA gene from all microbes - sequence amplified part
- Cluster sequences together in so called OTUs (= clusters of similar sequences ~ "species")
- Get the number of sequences in each cluster/OTU for each sample
- Generate an abundance table (OTUs x samples)

Amplicon sequencing - basic idea

Which part?

We need primers!

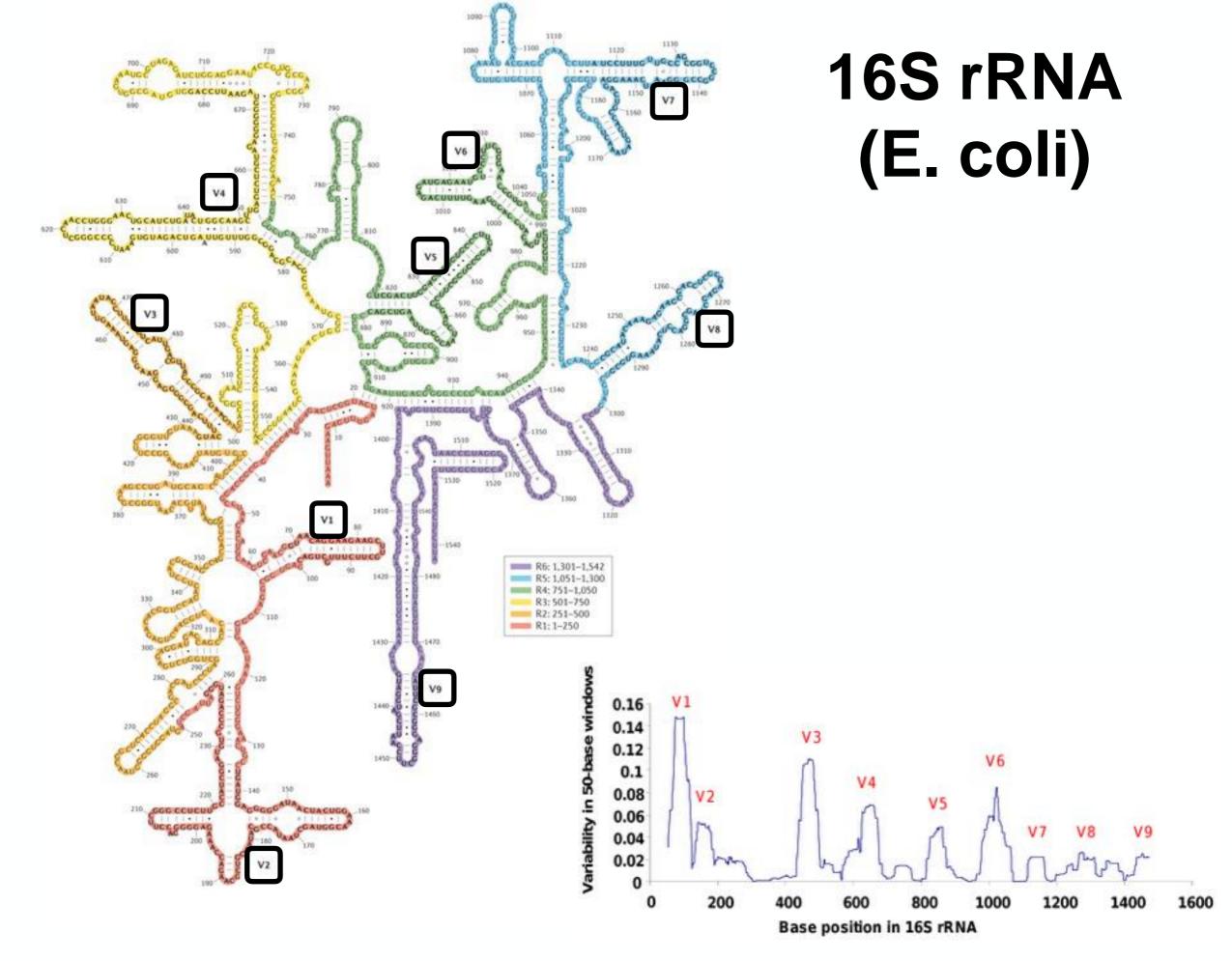
 Amplify (part of) the 16S rRNA gene from all microbes - sequence amplified part


How to cluster?

- Cluster sequences together in so called OTUs (= clusters of similar sequences ~ "species")
- Get the number of sequences in each cluster/OTU for each sample

How to analyze?

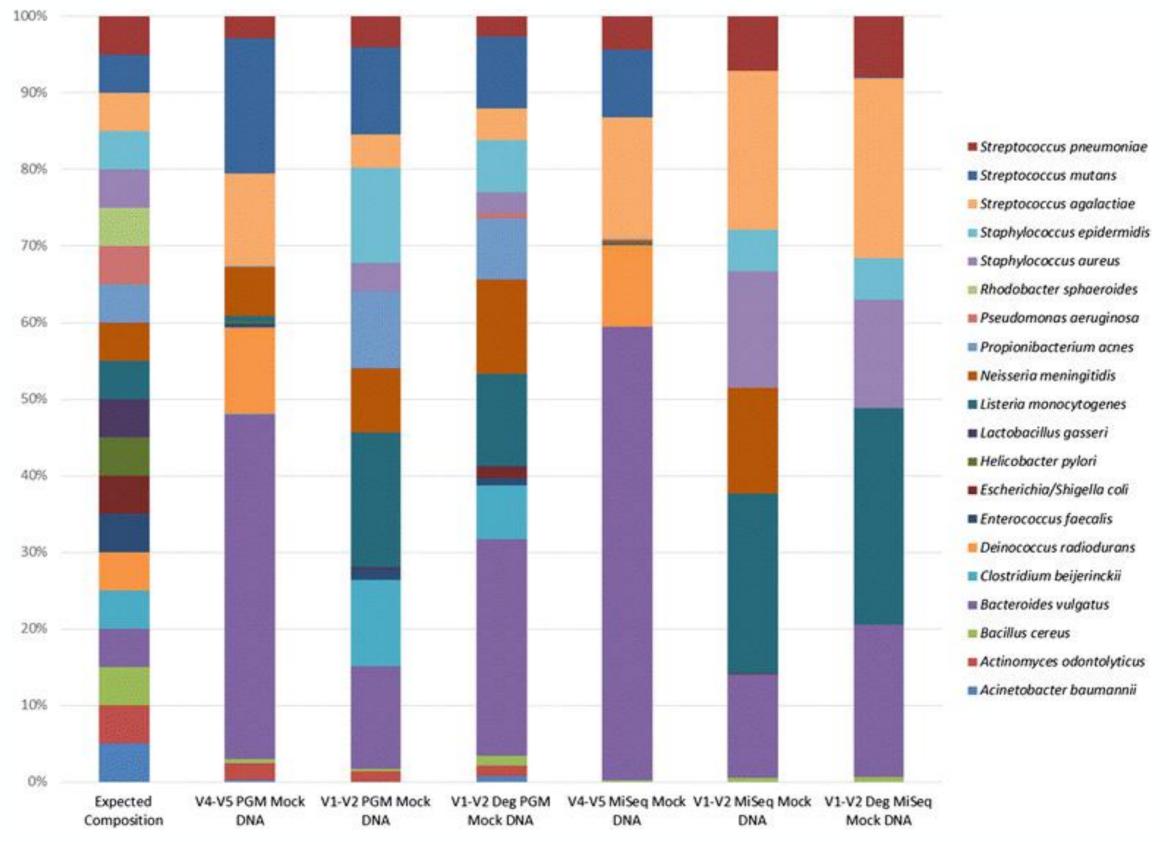
• Generate an abundance table (OTUs x samples)


An E.coli ribosome

https://commons.wikimedia.org/wiki/File:Ribosome_shape.png

Why [16S] rRNA?

- rRNA is one of the few gene products present in all cells
- 16S rRNA has 9 hypervariable regions allowing species identification, as well as conserved regions allowing primer construction
- conserved function
- sequence has been characterized for many species



Yarsa et al., Nature Rev Microbiology 2014; Bodilis et al., PLoS One 2012

16S is not perfect

- 16S doesn't capture all differences between the full DNA sequences
- Different species can have similar 16S sequences
- A single species can have paralogs that are not identical
- Results can depend on which variable region is considered, and which sequencer is used

There are still challenges to overcome

Fouhy et al., BMC Microbiology 2016

Preprocessing of reads

mothur

- Merge read pairs and remove low-quality reads
- Align reads to reference 16S sequence

16S sequence databases

- SILVA (<u>http://www.arb-silva.de/</u>)
- RDP (<u>https://rdp.cme.msu.edu/</u>)
- GreenGenes (<u>http://greengenes.lbl.gov/cgi-bin/nph-index.cgi</u>)

>AF515816.1				
>AY688433.1	AT-GA-C-G-C-			
	ACGA-C-G-C-	-T-G-G-CG-GC-A-T-G	CT-TACAC-/	AT-GCA-
>Z22781.1				
>AJ582031.1	ACGA-C-G-T-	-TG-CG-AT-G-C-G	TC-TTA-AGC-/	AT-GCA-
	ACG-AC-G-C-	-T-G-G-CG-GC-A-G-G	C-TAA-TAC-/	AT-GCA-
>AB070566.1				
>AB070570.1	ACG-AC-G-C-	-T-G-G-CG-GC-A-G-G	CT-TAA-CAC-/	AT-GCA-
	ACG-ACAG-C-	-T-G-G-CG-GC-A-G-G	CT-TAA-CAC-/	AT-GCA-
>AY033301.1				
>AY035307.1	ACG-AA-C-G-C-	-T-G-G-CG-GC-A-G-G	CC-TAA-CAC-/	AT-GCA-

16S sequence databases

- SILVA (<u>http://www.arb-silva.de/</u>)
- RDP (<u>https://rdp.cme.msu.edu/</u>)
- GreenGenes (<u>http://greengenes.lbl.gov/cgi-bin/nph-index.cgi</u>)

AB000389.1 Bacteria; Proteobacteria; Gammaproteobacteria; Alteromonadales; Pseudoalteromonadaceae; Pseudoalteromonas;

- AB000699.1 Bacteria; Proteobacteria; Betaproteobacteria; Nitrosomonadales; Nitrosomonadaceae; Nitrosomonas;
- AB000700.1 Bacteria; Proteobacteria; Betaproteobacteria; Nitrosomonadales; Nitrosomonadaceae; Nitrosomonas;
- AB000701.1 Bacteria; Proteobacteria; Betaproteobacteria; Nitrosomonadales; Nitrosomonadaceae; Nitrosomonas;
- AB000702.1 Bacteria; Proteobacteria; Betaproteobacteria; Nitrosomonadales; Nitrosomonadaceae; Nitrosomonas;
- AB001518.1 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Rickettsiaceae;
- AB001724.1 Bacteria; Cyanobacteria; Chroococcales; Microcystis;
- AB001774.1 Bacteria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydophila;
- AB001775.1 Bacteria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydophila;

Preprocessing of reads

mothur

- Merge read pairs and remove low-quality reads
- Align reads to reference 16S sequence
- Denoise (cluster very similar sequences)
- Identify and remove chimeras and contaminants
- Cluster reads into **O**perational **T**axonomic **U**nits (OTUs)

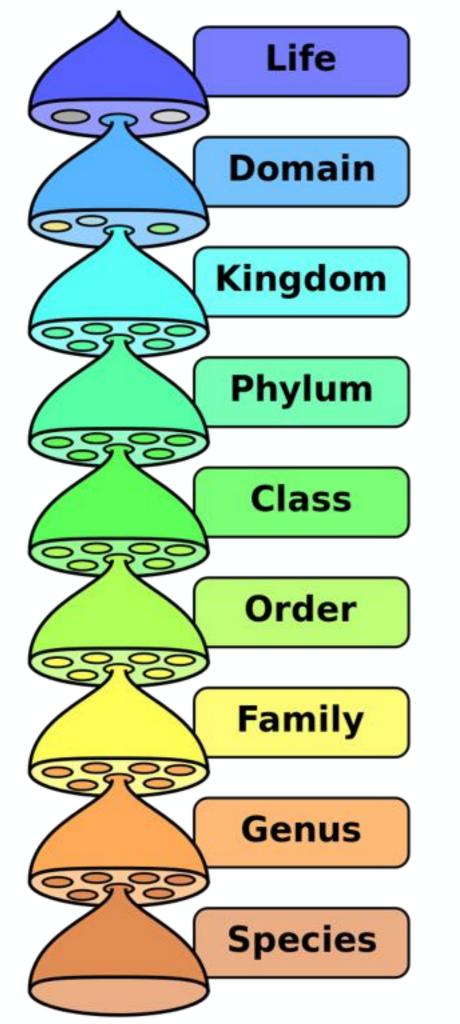
OTU generation

- "closed-reference clustering": compare sequences to a reference catalog, group together sequences that are similar to the same references.
- "distance-based/de novo clustering": cluster based on pairwise distances among sequences.
- "open-reference clustering": closed-reference clustering followed by *de novo* clustering of unclassified sequences

OTU generation

- "closed-reference clustering": compare sequences to a reference catalog, group together sequences that are similar to the same references.
- Fast, parallelizable
- OTU assignment independent of other sequences
- Comparable OTUs across studies
- Relies on accuracy and completeness of reference catalog
- Sequence can be similar to multiple reference sequences
- Similarity among clustered sequences may be lower than the similarity between each of them and the reference

OTU generation


- "closed-reference clustering": compare sequences to a reference catalog, group together sequences that are similar to the same references.
- "distance-based/de novo clustering": cluster based on pairwise distances among sequences.
- Independent of reference catalog
- Scales quadratically with number of sequences

OTU assignment depends on which other sequences are present

de novo OTU clustering

- results depend on clustering method
- single-linkage tends to be (too?) "inclusive" while average-linkage/complete-linkage are more "exclusive"

	700114607	700114380	700114716	700114798				
OTU_97.4499	0	0	0	0				
OTU_97.44990	0	0	0	0				
OTU_97.44991	0	1	4	0				
OTU_97.44992	0	0	0	0				
OTU_97.44993	0	1	1	0				
					Consensus Lineage			
OTU_97.4499				Root;	pFirmicutes;cClostridia;oClostridiales;fRuminococcaceae;g			
OTU_97.44990		Roo	ot;pBacto	eroidetes;c	Bacteroidia;oBacteroidales;fPorphyromonadaceae;gOdoribacter			
OTU_97.44991	Root;p_	Actinoba	cteria;c/	Actinobacte	ria;oActinomycetales;fPropionibacteriaceae;gPropionibacterium			
OTU_97.44992		Root;p/	Actinobact	eria;cAct	inobacteria;oActinomycetales;fMycobacteriaceae;gMycobacterium			
OTU_97.44993 Root;pProteobacteria;cEpsilonproteobacteria;oCampylobacterales;fCampylobacteraceae;gCampylobacter								

Which similarity threshold?

- Typical (but arbitrary) similarity threshold: 97% (for species level)
- This means different things depending on the clustering method that was used!

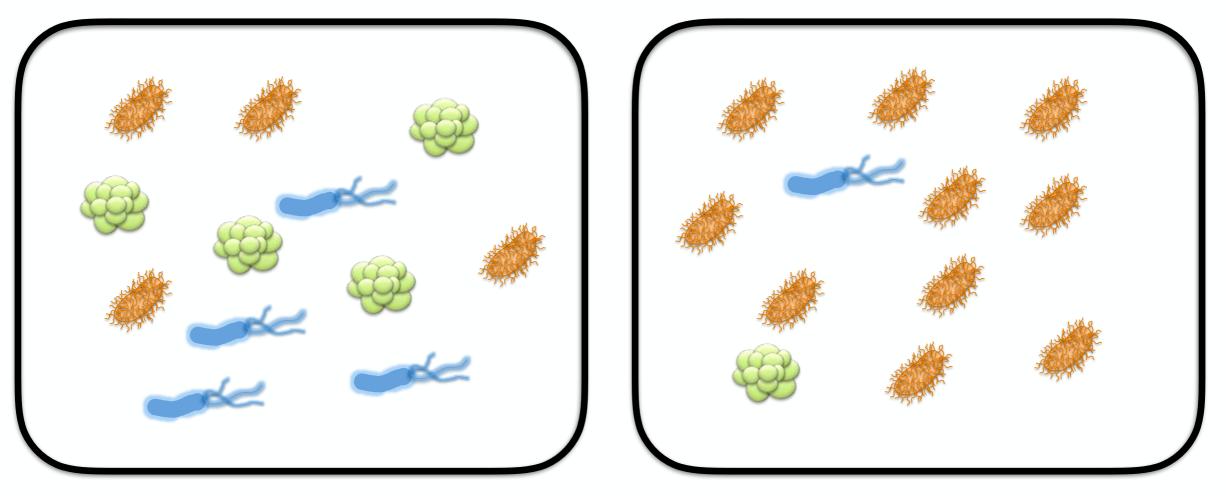
Representation in R - phyloseq object

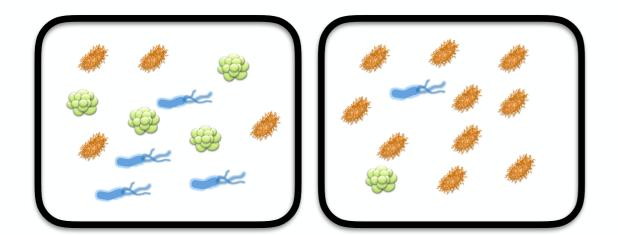
<pre>> libra > data(> Globa phylose otu_tab</pre>	Globa Patt q-clo	al Po tern	ntte ns exp	erns)	ment-	level ob	270 Carl 1	taxa and	26 s	ample	s]						
sample_	data() S	amp	lel	Data:	[26 samp	oles by a	7 sam	ple v	ariable	s]					
tax_tab	le()	Т	axo	nomy	y Tab	le: [19216 +	taxa by a	7 tax	onomi	c ranks]					
phy_tre	e()	P	hyl	oger	netic	Tree: [19216 1	tips and	1921	5 int	ernal n	odes]]				
> head(otu_t	abl	.e(0	lob	alPat	terns))											
OTU Tab	le:			E	6 tax	a and 26	samples	5]									
						are rows											1220
	-				1Fcsw	M11Fcsw	M31Plmr	M11Plm	• F21	Plmr	M31Tong	M11T	ong	LMEpi24M	SLEpi20M	0.000	100
549322	0	0	e	3	0	e			0	0	0)	0	0	1	27	100
522457	0	0	0		0			0 (0	0	e)	0	0	0	0	2
951	0	0	e		0			0	L	0	e)	0	0	0	0	0
244423	0	0	e		0	1.5		3	0	0	0)	0	0	0	0	22
586076	0	0	0)	0	e) (0 (0	0	0)	0	0	0	0	2
246140	0	0	e)	0	6) () ()	0	0)	0	0	0	0	1
				100 C		and a second	TRRsed2	TRRsed3	STREET, ST	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		Even2	Eve	in3			
549322	13	30	1	0		0	0	0	0			0		0			
522457		6	0	0	0	0	0	0	0	0		0		0			
951		0	0	0	0	0	0	0	0	0	0	0		0			
244423	2	29	0	0	0	0	0	0	0	0	0	0		0			
586076		1	0	0	0	0	0	0	0	0	0	0		0			
246140		3	0	0	0	0	0	0	0	0	0	0		0			

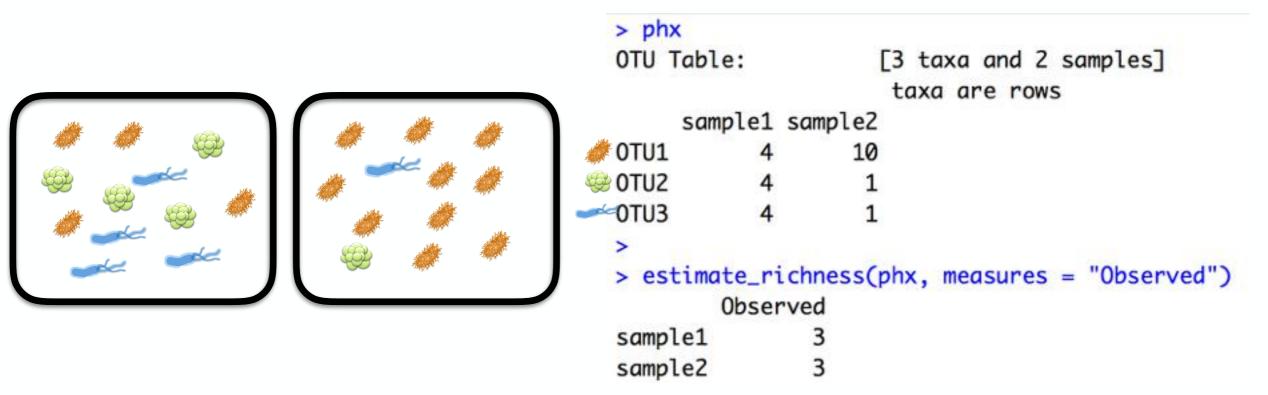
Representation in R - phyloseq object

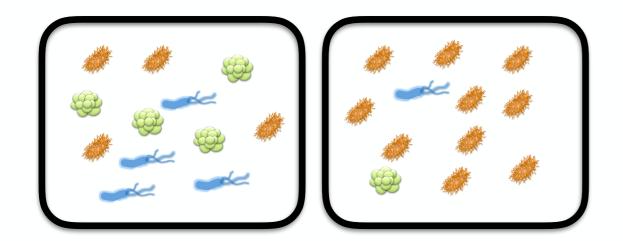
> head(s	ample_data(GlobalPatte	erns))				
Sample D		by 7 sample varia	ables]:			
	X.SampleID Primer Fir			_T Barcode_full	length Sampl	eType
CL3	CL3 ILBC_01	AACGCA	TGC		ССТСССТ	Soil
CC1	CC1 ILBC_02	AACTCG	CGA	GTT CATC	GACGAGT	Soil
SV1	SV1 ILBC_03	AACTGT	ACA	GTT GTAC	GCACAGT	Soil
M31Fcsw	M31Fcsw ILBC_04	AAGAGA	TCT	TT TCGA	CATCTCT	Feces
M11Fcsw	M11Fcsw ILBC_05	AAGCTG	CAG	CTT CGAC	TGCAGCT	Feces
M31Plmr	M31Plmr ILBC_07	AATCGT	ACG	ATT CGAG	TCACGAT	Skin
		Descripti	ion			
CL3	Calhoun South Caroli	na Pine soil, pH 4	4.9			
CC1	Cedar Creek Minnesot	a, grassland, pH 6	5.1			
SV1	Sevilleta new Mexico,	desert scrub, pH &	8.3			
M31Fcsw	M3, Day 1, fecal sw	wab, whole body stu	Jdy			
M11Fcsw	M1, Day 1, fecal swa	ab, whole body stud	dy			
M31Plmr	M3, Day 1, right po	alm, whole body stu	ydy			
> head(t	ax_table(GlobalPatterr	is))				
Taxonomy	Table: [6 taxa by	7 taxonomic ranks	s]:			
к	ingdom Phylum	Class	Order	Family	Genus	Species
549322 "	Archaea" "Crenarchaeot	a" "Thermoprotei"	NA	NA	NA	NA
	Archaea" "Crenarchaeot	장애에 다 지금 말을 줄 것 같아. 것은 것 같아. 것은 것은 것 같아. 것이 없다		NA	NA	NA
951 "	Archaea" "Crenarchaeot	a" "Thermoprotei"	"Sulfolobales"	"Sulfolobaceae"	"Sulfolobus"	"Sulfolobusacidocaldarius"
244423 "	Archaea" "Crenarchaeot	a" "Sd-NA"	NA	NA	NA	NA
586076 "	Archaea" "Crenarchaeot	a" "Sd-NA"	NA	NA	NA	NA
246140 "	Archaea" "Crenarchaeot	a" "Sd-NA"	NA	NA	NA	NA

Construct phyloseq object

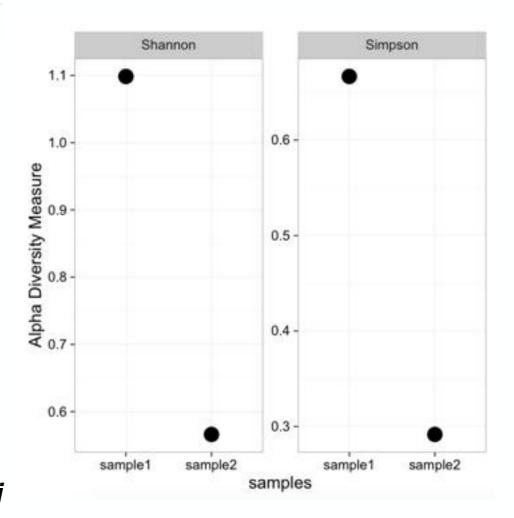

> otu_table[1:3, 1:5]

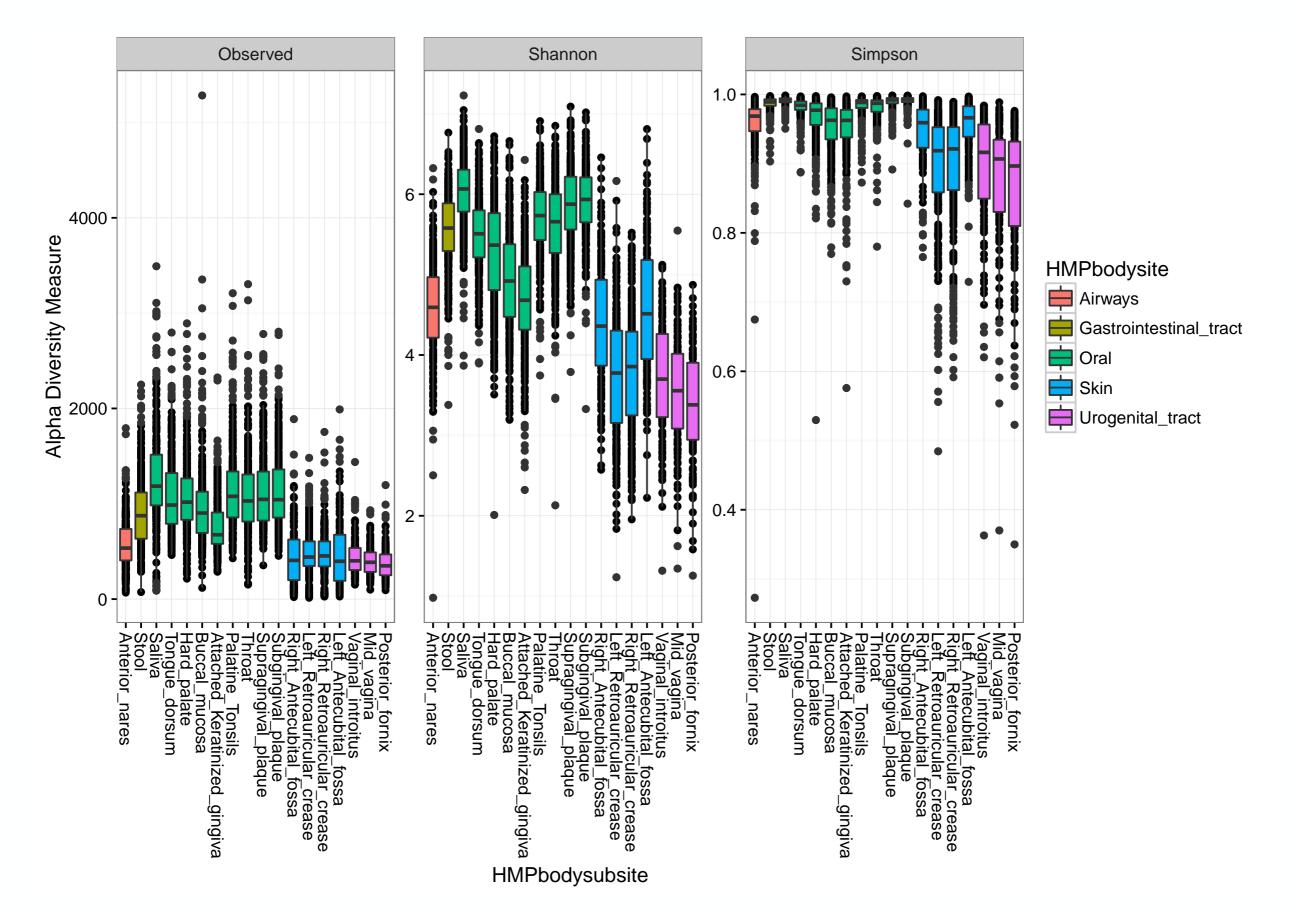

	700013549 7000	014386 7000	14403 7000	14409 70	00014412			
OTU_97.1	0	0	0	0	0			
OTU_97.10	0	0	0	0	0			
OTU_97.100	0	Ø	0	0	0			
>		1000	105.10	1000	0.50			
<pre>> sample_i</pre>	nfo[1:3,]							
	RSID visit	tno sex	RUNCENTER	HMPbody	subsite Misl	abeled Cont	aminated	
700013549	158013734	1 female	BCM		Stool	NA	NA	
700014386	158398106	1 male	BCM, BI		Stool	NA	NA	
700014403	158398106	1 male	BCM, BI		Saliva	NA	NA	
						Des	cription	HMPbodysite
700013549	HMP_Human_metag	genome_samp	le_7000135	49_from	_subject_158	013734sex	_female_ G	astrointestinal_tract
700014386								astrointestinal_tract
700014403	HMP_Human_met	tagenome_sa	mple_70001	4403_fr	om_subject_1	58398106s	ex_male_	Oral
>								
> lineage2	[1:3,]							
	Phylum	Class		Ord	er	Family		Genus
OTU_97.1	"Firmicutes"	"Bacill	i"	"La	ctobacillale	es" "Strepto	coccaceae"	"Streptococcus"
OTU_97.10	"Proteobacter	ia" "Betapr	oteobacter	ia" "Ne	isseriales"	"Neisser	iaceae"	"Neisseria"
OTU_97.100	"Bacteroidetes	s" "Bacter	oidia"	"Ba	cteroidales"	"Bactero	idaceae"	"Bacteroides"
>								
> phylo <-	phyloseq(otu_	table = otu	_table(otu	_table,	taxa_are_ro	ows = TRUE),		
+	samp	le_data = s	ample_data	(sample	_info),			
+	tax_t	table = tax	_table(lin	eage2))				
>								
> phylo								
phyloseq-c	lass experiment	t-level obj	ect					
otu_table()) OTU Table:	Ε	45383 taxa	and 47	43 samples]			
sample_date	a() Sample Date	а: Г	4743 campl	oc hy Q	comple want	ables 7		
		. L	TTTJ Sumpl	es by s	sample vari	ables		


Filtering and subsetting


```
> phylo
phyloseq-class experiment-level object
otu_table() OTU Table: [ 45383 taxa and 4743 samples ]
sample_data() Sample Data: [ 4743 samples by 9 sample variables ]
tax_table() Taxonomy Table: [ 45383 taxa by 5 taxonomic ranks ]
>
> phylo <- prune_taxa(taxa_sums(phylo) > 0, phylo)
> phylo <- prune_samples(sample_sums(phylo) > 100, phylo)
>
> phylo
phyloseq-class experiment-level object
otu_table() OTU Table: [ 45369 taxa and 4586 samples ]
sample_data() Sample Data: [ 4586 samples by 9 sample variables ]
tax_table() Taxonomy Table: [ 45369 taxa by 5 taxonomic ranks ]
>
> phylosub <- subset_taxa(phylo, Phylum == "Acidobacteria")</pre>
>
> phylosub
phyloseq-class experiment-level object
otu_table() OTU Table: [ 26 taxa and 4586 samples ]
sample_data() Sample Data: [ 4586 samples by 9 sample variables ]
tax_table() Taxonomy Table: [ 26 taxa by 5 taxonomic ranks ]
```

- richness = number of species observed in a sample
- alpha diversity ~ diversity ("unevenness") of species abundances within a sample

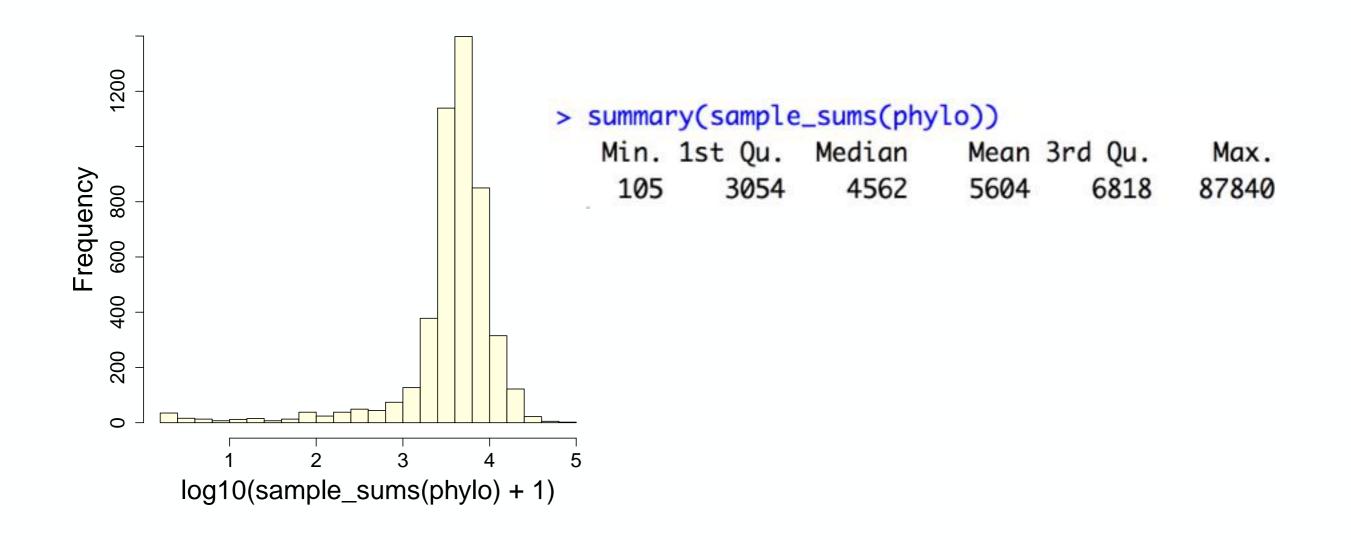



> estimate_richness(phx, measures = c("Shannon", "Simpson"))
 Shannon Simpson
sample1 1.0986123 0.66666667
sample2 0.5660857 0.2916667
>
 plot_richness(phx, measures = c("Shannon", "Simpson")) +
 theme_bw(base_size = 18) + geom_point(size = 7)

Shannon:
$$H = -\sum_{i} p_i \log p_i$$

Simpson: $D = 1 - \sum_{i} p_i^2 / \sum_{i} p_i^2$

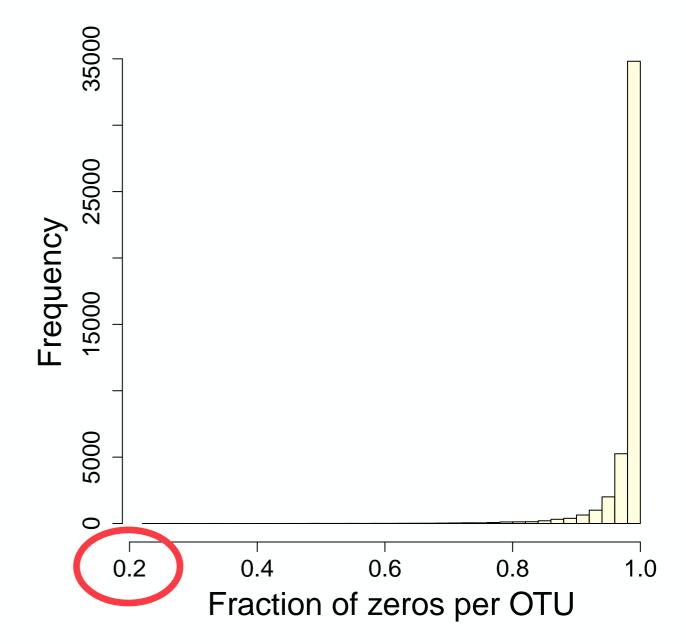
relative abundance of species i



Richness and alpha diversity - HMP data

Normalization

• Library sizes vary greatly between samples

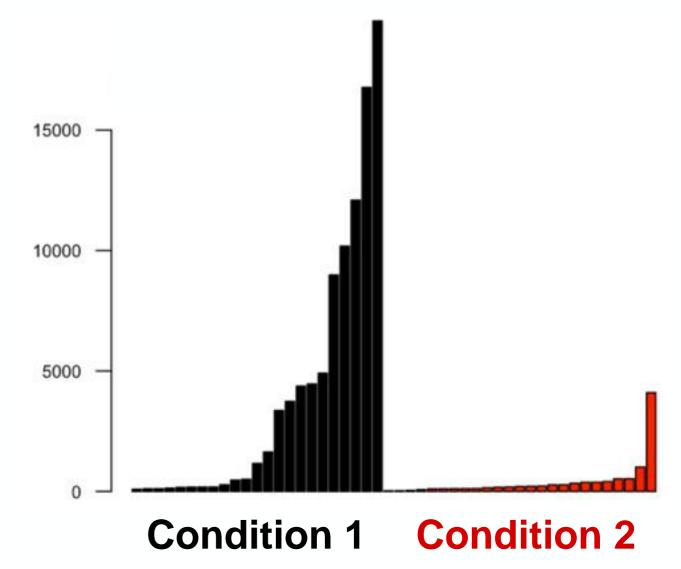


Normalization

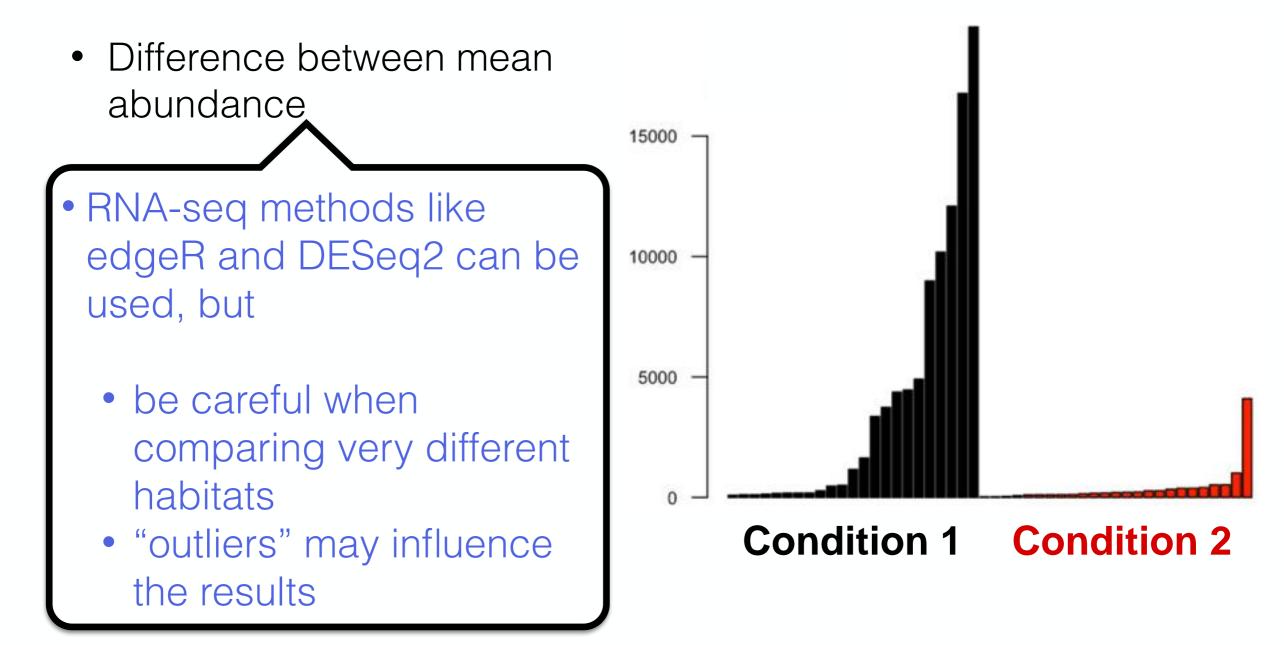
- Library sizes vary greatly between samples
- OTU abundances are often normalized by rarefying (subsampling to equal sequencing depth across samples) or by representing them as relative abundances.
- Recent studies have suggested using scaling normalization (similar to RNA-seq).

Scaling normalization - challenges

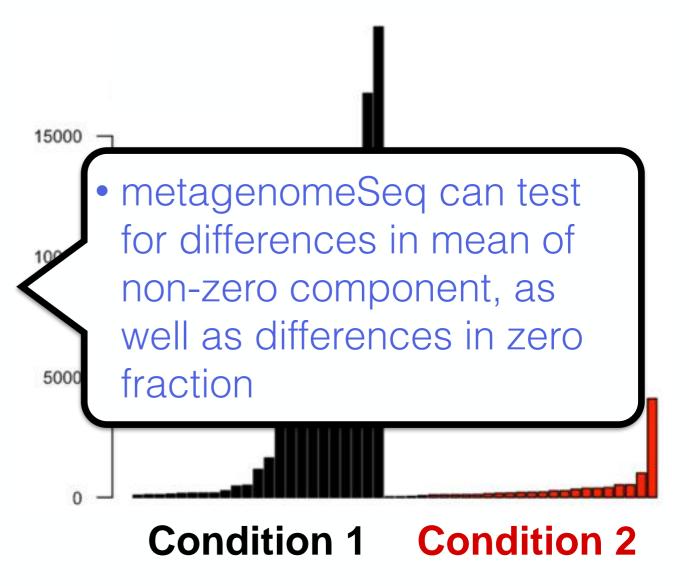
- Lots of zero counts!
- Assumption that "most things don't change" across samples may not be valid.
- RNA-seq normalization methods require (e.g.) at least one OTU which is observed in all samples.


Scaling normalization - challenges

- Lots of zero counts!
- Many of them are likely due to undersampling would be nonzero if the library size increased

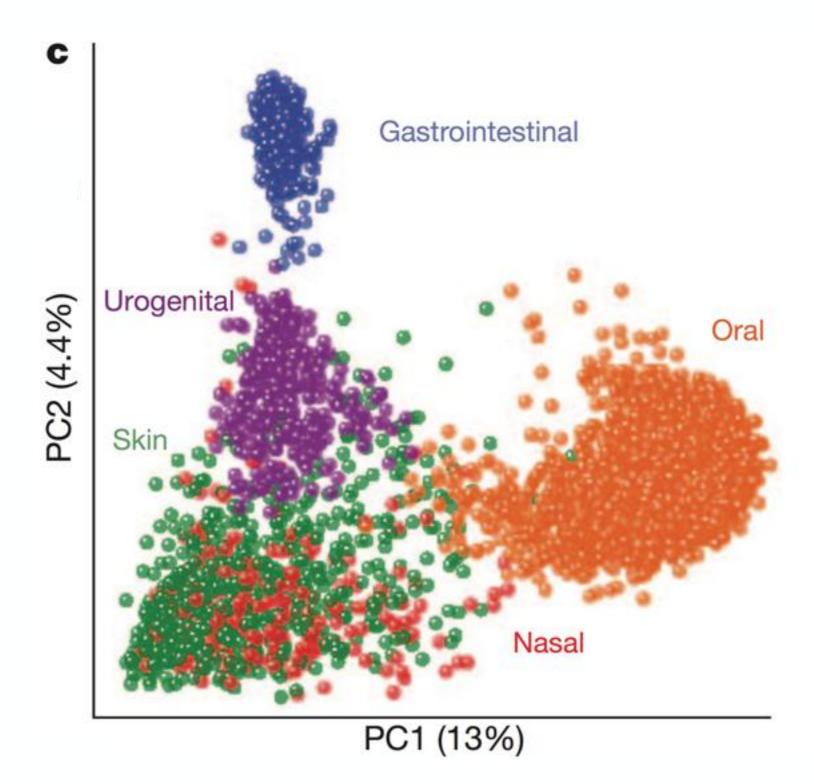

Differential abundance testing

- What do we want to test?
 - Difference between mean abundance
 - Difference in fraction of zeros
 - Difference between mean abundance conditioning on being present
 - Overall difference in OTU composition


Differential abundance testing

• What do we want to test?

Differential abundance testing


- What do we want to test?
 - Difference between mean abundance
 - Difference in fraction of zeros
 - Difference between mean abundance conditioning on being present
 - Overall difference in OTU composition

Visualization/ordination

- Calculate pairwise dissimilarities between samples (a.k.a. beta diversity)
 - Based on presence/absence of OTUs ("unweighted")
 - Incorporating abundances of OTUs ("weighted")
- Common dissimilarity measures: UniFrac, Bray-Curtis
- Generate low-dimensional representation that preserves these distances

Visualization/ordination

References

- Paulson et al.: Differential abundance analysis for microbial marker-gene surveys. Nature Methods 10(12):1200-1203 (2013) - metagenomeSeq
- Mandal et al.: Analysis of composition of microbiomes: a novel method for studying microbial composition. Microbial Ecology in Health and Disease 26:27663 (2015) - ANCOM
- McMurdie & Holmes: Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Computational Biology 10(4):e1003531 (2014)
- Weiss et al.: Effects of library size variance, sparsity, and compositionality on the analysis of microbiome data. PeerJ Preprints (2015)
- The Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature 486:207-214 (2012) Human Microbiome Project
- Lovell et al.: Proportionality: a valid alternative to correlation for relative data. PLoS Computational Biology 11(3):e1004075 (2015) **log-ratio analysis**
- Gloor et al.: It's all relative: analyzing microbiome data as compositions. Annals of Epidemiology (2016) log-ratio
 analysis
- Westcott & Schloss: De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ 3:e1487 (2015) - OTU clustering
- Schmidt et al.: Limits to robustness and reproducibility in the demarcation of operational taxonomic units. Environmental Microbiology 17(5):1689-1706 (2015) - OTU clustering
- Caporaso et al.: QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7:335-336 (2010) - QIIME
- Schloss et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75(23):7537-7541 (2009) **mothur**
- Cox et al.: Sequencing the human microbiome in healthy and disease. Human Molecular Genetics 22:R88-R94 (2013)
- Yarza et al.: Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology 12:635-645 (2014)
- Bodilis et al.: Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in *Pseudomonas*. PLoS One 7(4):e35647 (2012)
- Janda & Abbott: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils and pitfalls. Journal of Clinical Microbiology 45(9):2761-2764 (2007)
- Fouhy et al.: 16S rRNA gene sequencing of mock microbial populations impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiology 16:123 (2016)