Conducting Genomic Symphonies with Bioconductor

Michael Lawrence

December 4, 2017
Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges
Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges
Fast facts about Genentech and Roche

- **Genentech**
 - Founded in 1976
 - Headquartered in South San Francisco
 - ~14,000 employees
 - Became a member of the Roche Group in March 2009
 - Headquarters for all Roche pharmaceutical operations in the U.S.

- **Roche Group**
 - Founded in 1896
 - Headquartered in Basel, Switzerland
 - ~88,500 employees worldwide, active in 150 countries
 - World’s largest biotech company
 - Top five globally in pharmaceuticals
 - Number one globally in *in vitro* diagnostics

Statistics from 2016
gRED’s emphasis on scientific research

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,100</td>
<td>gRED employees</td>
</tr>
<tr>
<td>1,200</td>
<td>researchers and scientists</td>
</tr>
<tr>
<td>785,000</td>
<td>square feet dedicated to research; the largest in the world</td>
</tr>
<tr>
<td>3,303</td>
<td>peer-reviewed publications in the last ten years</td>
</tr>
<tr>
<td>#1</td>
<td>employer according to Science for 8 of 13 past years; always in the top 3</td>
</tr>
</tbody>
</table>

Statistics from 2015
A growing scientific advantage: the ability to combine rich forward and reverse translation

• The best information about human disease, including response to drug, is in the context of actual human patients.

• Beyond randomization, clinical data are always associative. Nailing down cause and effect—in order to fully justify new therapeutic strategies—requires controlled experiments.
Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges
Genomic workflows are symphonies of different tools.
Genomic workflows are symphonies of different tools
Tweet-size example from bedtools tutorial

brent pedersen @brent_p · 10 Jan 2014
given a.bam and b.regions.bed. how to get the parts of b.regions.bed that are not covered by a.bam? cc @aaronquinlan
Tweet-size example from bedtools tutorial

@brent_pedersen @brent_p · 10 Jan 2014
given a.bam and b.regions.bed. how to get the parts of b.regions.bed that are not covered by a.bam? cc @aaronquinnlan

@brent_p bedtools genomecov -ibam aln.bam -bga |
 awk '$4==0' |
 bedtools intersect -a regions -b - > foo

2:31 PM · 10 Jan 2014
Tweet-size example from bedtools tutorial

@brent_p · 10 Jan 2014

given a.bam and b.regions.bed. how to get the parts of b.regions.bed that are not covered by a.bam? cc @aaronquinlan

@aaronquinlan

Replying to @brent_p

@brent_p bedtools genomecov -ibam aln.bam -bga \
| awk '$4==0' |
| bedtools intersect -a regions -b -

> foo

2:31 PM - 10 Jan 2014
Tweet-size example from bedtools tutorial

Nick Loman @pathogenomenick · 28 Apr 2014
Replying to @aaronquinlan
@aaronquinlan @brent_p @lexnederbragt I did this once. Any way of changing bedtools to lose the awk?

Aaron Quinlan @aaronquinlan · 28 Apr 2014
@pathogenomenick @brent_p @lexnederbragt You mean something like a --only-zero-depth option to genomecov?

Compute coverage
bedtools genomecov -i a.bam -bga

Select zero runs
awk '$4 == 0'

Find intersection with regions
bedtools intersect -a b.bed -a -
Typical real-world example from bedtools tutorial

Compute the pairwise similarity between samples of DNAse hypersensitivity regions, according to the bedtools Jaccard statistic.
bedtools solution

Languages used

Side-effects
Languages used

- shell
- GNU parallel
- awk

Compute pairwise distances in parallel

```bash
parallel "bedtools jaccard -a {1} -b {2} \n    | awk 'NR>1' \n    | cut -f 3 \n    > {1}.{2}.jaccard" \n::: \n::: `ls *.merge.bed`
::: `ls *.merge.bed`
```

Side-effects

- 400 .jaccard
Languages used

- shell
- GNU parallel
- awk
- sed
- perl

Combine jaccard files

```
find . \
  | grep jaccard \
  | xargs grep "" \
  | sed -e s"/\.\.///" \n  | perl -pi -e "s/.bed./.bed\t/" \n  | perl -pi -e "s/.jaccard:/\t/" \n> pairwise.txt
```
bedtools solution

Languages used

- shell
- GNU parallel
- awk
- sed
- perl
- python

Reshape into matrix

```bash
awk 'NF==3' pairwise.txt \
  | awk '$1 ~ /^f/ && $2 ~ /^f/’ \
  | python make-matrix.py \
> pairwise.mat
```

Side-effects

- 400 .jaccard
- pairwise.txt
- pairwise.mat
Languages used

- shell
- GNU parallel
- awk
- sed
- perl
- python
- R

Side-effects

- 400 .jaccard
- pairwise.txt
- pairwise.mat

Plot the matrix

```r
library(gplots)
library(RColorBrewer)
jaccard_df <- read.table('pairwise.dnase.mat')
jaccard_matrix <- as.matrix(jaccard_df[, -1])
heatmap.2(jaccard_matrix,
          col = brewer.pal(9, "Blues"),
          margins = c(14, 14),
          density.info = "none",
          lhei = c(2, 8),
          trace = "none")
```
Typical obstacles in implementing genomic data analyses

- Tools are difficult to build, install and run
- Limitations require mixing languages and semi-compatible, inconsistently documented toolsets
- Interoperability depends on inefficient, complex file formats
- Analyst has to directly manipulate and manage files, instead of focusing on the analysis
- Reproducibility is hard
Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges
R is a platform and language for statistical computing

- Core principles according to John Chambers in "Extending R":
 - Everything is an object
 - Everything that happens is a function call
 - Interfaces to other software are core to R
- Addendum: every published extension is a package
 - Primary mechanism for distributing statistical computing research
R packages are easy to install

- CRAN, Bioconductor distribute vetted packages
 - Tested as a cohort
 - Standardized through R CMD check
- Package installation usually just works
 - `install.packages("gplots")`
R has consistent, function-level documentation

Standalone programs provide documentation in different ways:

- `man bedtools`?
- `bedtools intersect --help`?
- Google?

Every R package provides a man page of each function:

```
?brewer.pal
```

ColorBrewer palettes

Description:

Creates nice looking color palettes especially for thematic maps

Usage:

`brewer.pal(n, name)`

Arguments:

- `n`: Number of different colors in the palette, minimum 3, maximum depending on palette
- `name`: A palette name from the lists below
R enables reproducibility

- Dependencies trackable through versioned packages
- Packages like switchr and packrat make it easy to record and restore sets of package versions
- `sessionInfo()`

R Under development (unstable) (2017-08-02 r73018)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X El Capitan 10.11.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] gplots_3.0.1 RColorBrewer_1.1-2

loaded via a namespace (and not attached):
[1] compiler_3.5.0 tools_3.5.0 KernSmooth_2.23-15 gdata_2.18.0
[5] caTools_1.17.1 bitops_1.0-6 gtools_3.5.0
R unifies workflows through object-oriented interfaces

An object affords interoperability and abstraction:

```r
library(gplots)
library(RColorBrewer)
jaccard_df <- utils::read.table('pairwise.mat')
jaccard_matrix <- as.matrix(jaccard_df[, -1])
heatmap.2(jaccard_matrix, col = brewer.pal(9, "Blues"))
```
R is improving
Pushing object orientation down to the C level

R 3.5 will add:

- Object-oriented mechanism for custom implementations of R vectors

 Compact representations Run-length encodings, 1:10 sequences
 External storage Spark, databases, HDF5, Arrow, etc

- Notions of sortedness and any missingness to the vector API

- Heuristics that construct compact vectors when it makes sense

Luke Tierney, Gabe Becker, Tomas Kalibera
Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges
Bioconductor

A unified platform for the analysis and comprehension of high-throughput genomic data.

- Started 2002
- Led by Martin Morgan
- Core infrastructure maintained by about 8 people, based in Roswell Park CRC in Buffalo, NY
- 1476 software packages that form a unified platform
- Well-used and respected.
 - 53k unique IP downloads / month.
 - 21,700 PubMedCentral citations.
- Embraces the R principles of object, function, interface and package
Bioconductor is growing
Bioconductor qualities

- Discoverable
- Installable
- Reliable
- Documented
- Supported
- Integrated
- Scalable
- State of the art
- Community-driven
Bioconductor qualities

- Discoverable
- Installable
- Reliable
- Documented
- Supported
- Integrated
- Scalable
- State of the art
- Community-driven

```r
source("https://bioconductor.org/biocLite.R")
biocLite()
biocLite("Gviz")
```
Bioconductor qualities

- Discoverable
- Installable
- Reliable
- Documented
- Supported
- Integrated
- Scalable
- State of the art
- Community-driven
Bioconductor qualities

- Discoverable
- Installable
- Reliable
- Documented
- Supported
- Integrated
- Scalable
- State of the art
- Community-driven

Documentation

To view documentation for the version of this package installed in your system, start R and enter:

```
browseVignettes("GenomicRanges")
```

<table>
<thead>
<tr>
<th>Format</th>
<th>Type</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF</td>
<td>R Script</td>
<td>1. An Introduction to the GenomicRanges Package</td>
</tr>
<tr>
<td>PDF</td>
<td>R Script</td>
<td>2. GenomicRanges HOWTOs</td>
</tr>
<tr>
<td>PDF</td>
<td>R Script</td>
<td>3. A quick introduction to GRanges and GRangesList objects (slides)</td>
</tr>
<tr>
<td>PDF</td>
<td>R Script</td>
<td>4. Ten Things You Didn't Know (slides from BioC 2016)</td>
</tr>
<tr>
<td>PDF</td>
<td>R Script</td>
<td>5. Extending GenomicRanges</td>
</tr>
<tr>
<td>Text</td>
<td>Reference Manual</td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>NEWS</td>
<td></td>
</tr>
</tbody>
</table>
Bioconductor qualities

- Discoverable
- Installable
- Reliable
- Documented
- Supported
- Integrated
- Scalable
- State of the art
- Community-driven
Bioconductor qualities

- Discoverable
- Installable
- Reliable
- Documented
- Supported
- Integrated
- Scalable
- State of the art
- Community-driven
Bioconductor qualities

- Discoverable
- Installable
- Reliable
- Documented
- Supported
- Integrated
- Scalable
- State of the art
- Community-driven

```r
se <- TENxBrainData()
se
```

```r
## class: SingleCellExperiment
## dim: 27998 1306127
## metadata(0):
## assays(1): counts
## rownames: NULL
## rowData names(2): Ensembl Symbol
## colnames(1306127): AAACCTGAGATAGGAG-1 AAACCTGAGCGGCTTC-1 ... TTTGTCATCTGAAAGA-133 TTTGTCATCTGAAAGA-133
## colData names(4): Barcode Sequence Library Mouse
## reducedDimNames(0): 
## spikeNames(0):
```

```r
libSize <- colSums(assay(se)[, 1:1000])
range(libSize)
```

```r
## [1] 1453 34233
```
Bioconductor qualities

- Discoverable
- Installable
- Reliable
- Documented
- Supported
- Integrated
- Scalable
- State of the art
- Community-driven
Bioconductor qualities

- Discoverable
- Installable
- Reliable
- Documented
- Supported
- Integrated
- Scalable
- State of the art
- Community-driven
- 1064 unique package maintainers
- Web users by country:
Bioconductor is built on shared infrastructure
Central data structures of Bioconductor

Data on genomic ranges

Summarized data
GRanges: data on genomic ranges

- seqnames, start, end, strand, ...
 - chr1 1 10 +
 - chr1 15 24 -

- Plus, sequence information (lengths, genome, etc)
SummarizedExperiment: the central data model

```r
se <- SummarizedExperiment(
  assays,
  rowData,
  colData,
  exptData
)
```

- `rowData(se)`
- `assays(se)`
- `colData(se)`
- `exptData(se)`

- `rowData(se)$entrezId`
- `assays(se)$count`
- `exptData(se)$projectId`

- `colData(se)$tissue`
- `se$tissue`

- `se %in% CNVs`
Bioconducting the tweeted workflow

Compute coverage

```
bedtools genomecov -i a.bam -bga
```

Select zero runs

```
awk '$4 == 0'
```

Find intersection with regions

```
bedtools intersect -a b.bed -a -
```
Bioconducting the tweeted workflow

Compute coverage

```
bedtools genomecov -i a.bam -bga
```

Select zero runs

```
awk '$4 == 0'
```

Find intersection with regions

```
bedtools intersect -a b.bed -a
```

```
coverage("a.bam") %>% GRanges()
```

```
subset(score > 0)
```

```
intersect(import("b.bed"))
```
Bioconducting the pairwise Jaccard workflow

Define a function for the Jaccard statistic

```r
jaccard <- function(x, y) {
  gr_x <- import(x)
  gr_y <- import(y)
  intersects <- intersect(gr_x, gr_y, ignore.strand=TRUE)
  unions <- union(gr_x, gr_y, ignore.strand=TRUE)
  sum(width(intersects)) / sum(width(unions))
}
```
Bioconducting the pairwise Jaccard workflow

Compute the statistics in parallel

```r
files <- Sys.glob("*.merge.bed")
jaccard_matrix <- outer(files, files,
    function(a, b) mcmapply(jaccard, a, b))
```
Bioconducting the pairwise Jaccard workflow

Make the plot

```r
library(gplots)
library(RColorBrewer)
heatmap.2(jaccard_matrix, col = brewer.pal(9, "Blues"))
```
GenomicWidgets: interactive genomic plots for Shiny/RMD
by Alicia Schep, Sarah Kummerfeld at Genentech
Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges
The Ranges infrastructure is an incubator

Insight incubation

Data Analysis
Method Prototyping
Platform Integration

- Should be accessible to the average Bioconductor user
Is the transition happening?

- From a typical package submission:
 Imports: checkmate, dplyr, ggplot2, tidyr

- A typical initial response:

 @hpages will review this package, but I note that it makes no use of other Bioconductor packages, including standard ways of representing genomic coordinates (GRanges from the GenomicRanges package) and experimental data (SummarizedExperiment class and package). Please update your package to work with these objects, so that Bioconductor users may more easily and robustly interoperable with your package.
Aspects of software quality: the ilities
Aspects of software quality: the ilities

Modularity
- Interoperability
- Flexibility
- Maintainability
- Compatibility
- Extensibility

Evolvability
- Deployability
- Stability
- Testability
- Upgradability

Reliability
- Scalability
- Accuracy
- Portability

Usability
- Learnability
- Discoverability
- Predictability
- Simplicity
- Understandability
Cognitive Dimensions of Notations

- Many are interrelated and in balance with each other.
- Guide for evaluating usability and as a framework for discussing interface design trade-offs.
Green’s cognitive dimensions

- Abstraction gradient
- Closeness of mapping
- Consistency
- Diffuseness
- Error-proneness
- Hard mental operations
- Hidden dependencies
- Provisionality
- Premature commitment
- Progressive evaluation
- Role-expressiveness
- Secondary notation
- Viscosity (robustness)
- Visibility
Abstraction

Procedural abstraction
A compound operation that enables the user tell the computer what to do without telling it how to do it.

Data abstraction
"A methodology that enables us to isolate how a compound data object is used from the details of how it is constructed from more primitive data objects"

Structure and Interpretation of Computer Programs (1979)
In the absence of abstraction

- We often start with a BED file:
  ```bash
  bash-3.2$ ls *.bed
  my.bed
  ```
- And we turn to R to analyze the data
  ```r
df <- read.table("my.bed", sep="\t")
colnames(df) <- c("chrom", "start", "end")
  chrom  start  end
  1  chr7  127471196 127472363
  2  chr7  127472363 127473530
  3  chr7  127473530 127474697
  4  chr9  127474697 127475864
  5  chr9  127475864 127477031
  ```
But file formats differ in important ways

Now for a GFF file:

```r
df <- read.table("my.bed", sep="\t")
colnames(df) <- c("chr", "start", "end")
```

<table>
<thead>
<tr>
<th>GFF</th>
<th>BED</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr</td>
<td>chrom</td>
</tr>
<tr>
<td>start</td>
<td>start</td>
</tr>
<tr>
<td>end</td>
<td>end</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>chr7 127471197 127472363</td>
<td>chr7 127471196 127472363</td>
</tr>
<tr>
<td>chr7 127472364 127473530</td>
<td>chr7 127472363 127473530</td>
</tr>
<tr>
<td>chr7 127473531 127474697</td>
<td>chr7 127473530 127474697</td>
</tr>
<tr>
<td>chr9 127474698 127475864</td>
<td>chr9 127474697 127475864</td>
</tr>
<tr>
<td>chr9 127475865 127477031</td>
<td>chr9 127475864 127477031</td>
</tr>
</tbody>
</table>
Abstraction lets us focus on the important

- Abstraction is semantic enrichment
 - Enables the user to think of data in terms of the problem domain
 - Hides implementation details
 - Unifies frameworks
Science defies rigidity: we define flexible objects that combine strongly typed fields with arbitrary user-level metadata
Diffuseness (vs expressiveness)

- Relates to the information density of the code and how well it communicates the *intent* of the programmer
- Enable the user to convey more meaning with less code
- Terseness for its own sake makes code obscure, difficult to unpack
- For genomic data, we want the user to express computations in terms of the biology
Our workflow could be more expressive
Our workflow could be more expressive

- Compute coverage
 - coverage("a.bam") %>% GRanges()

- Select zero runs
 - subset(score > 0)

- Find intersection with regions
 - intersect(import("b.bed"))

What is this for?
Import as what?
Hard mental operations

How hard the user has to think about things other than the motivating task
Bioconductor is intrinsically complex

Compute coverage

coverage("a.bam") %>% GRanges()

Select zero runs

subset(score > 0)

Find intersection with regions

intersect(import("b.bed"))
Bioconductor is intrinsically complex

- Compute coverage: `coverage("a.bam") %>% GRanges()
- Select zero runs: `subset(score > 0)`
- Find intersection with regions: `intersect(import("b.bed"))`

What is an RleList? And a GRanges?

Why does this work? Inheritance? I have to understand the entire class hierarchy?

Imported as what?
Language complexity

- Bioconductor has large, complex APIs
  ```r
  library(VariantAnnotation)
  length(methods(class="GRanges"))
  ```
 [1] 278

- Bioconductor has large, complex class hierarchies
  ```r
  pkgs <- package_dependencies("rtracklayer", installed.packages())[[1L]]
  pkgs <- setdiff(pkgs, c("methods", "XML", "RCurl"))
  cl <- unlist(lapply(pkgs, function(p) getClasses(getNamespace(p))))
  length(cl)
  ```
 [1] 243

- In total, 2239 methods on 422 generics
What needs to improve?

► Education?
► Documentation?
► The software?
► All of the above?
Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges
HelloRanges: an onramp to Bioconductor

- bedtools has a low barrier to entry but lacks the supporting ecosystem to cleanly handle realistic workflows
- We want to teach new users how to perform bedtools-style operations within R/Bioconductor
- HelloRanges compiles R code from bedtools invocations, so the student can learn by:
 - studying the output,
 - integrating it into the workflow,
 - and potentially customizing it
- Output prompts the user to fill in details like the genome build
- Supports all bedtools operations and arguments
- Research goal: comparative analysis of bedtools and Bioconductor
HelloRanges exposes the complexity of Bioconductor

Compute coverage

```
bedtools_genomecov("-i a.bam -b ga")
```

Select zero runs

```
subset(score > 0)
```

Find intersection with regions

```
R_bedtools_intersect(cov_gr, "b.bed")
```
HelloRanges exposes the complexity of Bioconductor

Compute coverage

```
bedtools_genomecov("-i a.bam -bga")
```

Select zero runs

```
subset(score > 0)
```

Find intersection with regions

```
R_bedtools_intersect(cov_gr, "b.bed")
```

Data structures required:

- Seqinfo
- GAlignments
- GRanges
- RleList
- Pairs

```
genome <- Seqinfo(genome = NA_character_)
ga_a <- import("a.bam", genome = genome)
cov <- coverage(granges(ga_a))
cov_gr <- GRanges(cov)
```

```
genome <- Seqinfo(genome = NA_character_)
gr_a <- cov_gr
gr_b <- import("b.bed", genome = genome)
pairs <- findOverlapPairs(gr_a, gr_b, ignore.strand = TRUE)
pintersect(pairs, ignore.strand = TRUE)
```
HelloRanges exposes the complexity of Bioconductor

Data structures required:
- Seqinfo
- GAlignments
- GRanges
- RleList
- Pairs
Lesson learned

- Better onramps only help to a point
- Simplifying the software would make everything easier
- The bedtools approach of "everything is a BED file" motivates the axiom:

Everything is a GRanges (or SummarizedExperiment)

Consolidating to a small number of data structures enables:
 - comprehension,
 - endomorphism, and thus
 - fluency and chainability
Simplify, but keep the semantics

It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience.

– Albert Einstein

Everything Should Be Made as Simple as Possible, But Not Simpler

– Apocryphal Einstein quote, paraphrasing above
Taking cues from the dplyr package

- dplyr is a API for tabular data manipulation
- Inspired by relational algebra, SQL
- Unified about a single, data model: the tibble
- Operations are:
 - Cohesive (do a single thing)
 - Endomorphic (return the same type as their input)
 - Verb-oriented in syntax
- Fluency emerges from chaining of verbs

```r
genes %>%
group_by(seqnames) %>%
summarize(count_per_chr=n())
```
Goal

Extend dplyr to genomics, a more complex problem domain, to achieve the accessibility of bedtools
plyranges
https://github.com/sa-lee/plyranges

- A dplyr-based API for computing on genomic ranges
- Extending the relational algebra with genomic notions
- Large set of visible verbs acting only on the core data structures:
 - **GRanges** represents annotated genomic ranges
 - **SummarizedExperiment** coordinates experimental assay data with sample and feature annotations
- Collaboration with **Stuart Lee** and Di Cook @ Monash
plyranges is simple and expressive
plyranges is simple and expressive

Compute coverage

coverage("a.bam") %>% GRanges()

Select zero runs

subset(score > 0)

Find intersection with regions

intersect(import("b.bed"))

compute_coverage("a.bam")

filter(score > 0)

intersect(read_bed("b.bed"))
plyranges is simple and expressive

```
Compute coverage
bedtools_genomecov("-i a.bam -bga")

Select zero runs
subset(score > 0)

Find intersection with regions
R_bedtools_intersect(cov_gr, "b.bed")

ga_a <- import("a.bam")
cov_gr <- GRanges(coverage(granges(ga_a)))

gr_b <- import("b.bed")
pairs <- findOverlapPairs(cov_gr, gr_b,
                           ignore.strand = TRUE)
pintersect(pairs, ignore.strand = TRUE)
```
plyranges is simple and expressive

Compute coverage

```
bedtools_genomecov("-i a.bam -bga")
```

Select zero runs

```
subset(score > 0)
```

Find intersection with regions

```
R_bedtools_intersect(cov_gr, "b.bed")
```

```
ga_a <- import("a.bam")
cov_gr <- GRanges(coverage(granges(ga_a)))

gr_b <- import("b.bed")
pairs <- findOverlapPairs(cov_gr, gr_b,
    ignore.strand = TRUE)
pintersect(pairs, ignore.strand = TRUE)

read_bam("a.bam") %>% compute_coverage()

join_overlap_intersect(read_bed("b.bed"))
```
The ever evolving Bioconductor

- Raw Data
- Preprocessing/Reduction
- Exploratory analysis, visualization, modeling
- Reporting
The ever evolving Bioconductor

- FASTQ
- BAM
- GenomicFiles
- SingleCellExperiment
- DelayedArray
- HDF5
- fst
- plyranges
- GenomicWidgets