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Moment based gene set enrichment testing — the npGSEA package

Introduction

Gene set methods are critical to the analysis of gene expression data. The
npGSEA package provides methods to run permutation-based gene set enrich-
ment analyses without the typically computationally expensive permutation
cost. These methods allow users to adjust for covariates and approximate
corresponding permutation distributions. We are currently evaluating the ap-
plicability and accuracy of our method for RNA-seq expression data.

Our methods find the exact relevant moments of a weighted sum of (squared)
test statistics under permutation, taking into account correlations among the
test statistics. We find moment-based gene set enrichment p-values that closely
approximate the permutation method p-values.

This vignette describes a typical analysis workflow and includes some infor-
mation about the statistical theory behind npGSEA. For more technical details,
please see Larson and Owen, 2015 .

Example workflow for GSEA

Preparing our gene sets and our dataset for analy-
sis

For our example, we will use the ALL dataset. We begin by loading relevant
libraries, subsetting the data, and running featureFilter on this data set. For
details on these methods, please see the limma manual.

library(ALL)

library(hgu95av2.db)

library(genefilter)

library(limma)

library(GSEABase)

library(npGSEA)

data(ALL)

ALL <- ALL[, ALL$mol.biol %in% c('NEG', 'BCR/ABL') &
lis.na(ALL$sex) ]

ALL$mol.biol <- factor(ALL$mol.biol,
levels = c('NEG', 'BCR/ABL'))

ALL <- featureFilter(ALL)

vV + V. + V V V V V V V V

We adjust the feature names of the ALL dataset so that they match the names
of our gene sets below. We convert them to entrez ids.
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> featureNames(ALL) <- select(hgu95av2.db, featureNames(ALL),
+ "ENTREZID", "PROBEID")$ENTREZID

We now make four arbitrary gene sets by randomly selecting from the genes in
our universe.

xData <- exprs(ALL)

geneEids <- rownames(xData)

set.seed(12345)

setl <- GeneSet(genelds=sample(geneEids,15, replace=FALSE),
setName="setl",
shortDescription="This is setl")

set?2 <- GeneSet(genelds=sample(geneEids,50, replace=FALSE),
setName="set2",
shortDescription="This is set2")

set3 <- GeneSet(genelds=sample(geneEids, 100, replace=FALSE),
setName="set3",
shortDescription="This is set3")

set4 <- GeneSet(genelds=sample(geneEids,500, replace=FALSE),
setName="set4",
shortDescription="This is set4")

+ + V + + V + + V + + V V V V

As a positive control, we also make three gene sets that include our top differ-
entially expressed genes.

model <- model.matrix(~mol.biol, ALL)

fit <- eBayes(lmFit(ALL, model))

tt <- topTable(fit, coef=2, n=200)

ttUp <- tt[which(tt$logFC >0), 1

ttDown <- tt[which(tt$logFC <0), ]

set5 <- GeneSet(genelds=rownames(ttUp)[1:20],
setName="set5",
shortDescription="This is a true set of the top 20 DE
genes with a positive fold change")

setb6 <- GeneSet(genelds=rownames(ttDown)[1:20],
setName="set6",
shortDescription="This is a true set of the top 20 DE genes
with a negative fold change")

set7 <- GeneSet(genelds=c(rownames(ttUp)[1:10], rownames(ttDown)[1:10]),
setName="set7",
shortDescription="This is a true set of the top 10 DE genes
with a positive and a negative fold change")

+ + + V + + + V + + + V V V V V V

We then collapse all of our gene sets into a GeneSetCollection. For more
information on GeneSets and GeneSetCollections, see the GSEABase manual.
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> gsc <- GeneSetCollection( c(setl, set2, set3, setd4, set5, set6, set7) )

> gsc
GeneSetCollection
names: setl, set2, ..., set7 (7 total)
unique identifiers: 933, 10970, ..., 6767 (693 total)

types in collection:
geneldType: Nullldentifier (1 total)
collectionType: NullCollection (1 total)

2.2 Running npGSEA

Now that we have both our gene sets and experiment, we are ready to run
npGSEA and determine the level of enrichment in our experiment. We can use
npGSEA with our eset or expression data (xData) directly. We call npGSEASummary
to get a summary of the results. T_Gw is explained in more detail in Section 3.2.

> yFactor <- ALL$mol.biol
> resl <- npGSEA(x = ALL, y = yFactor, set = setl) ##with the eset

> resl

Normal Approximation for setl

T_Gw = 0.457

var(T_Gw) = 0.0364

pLeft = 0.992, pRight = 0.00824, pTwoSided = 0.0165

> res2_exprs <- npGSEA(xData, ALL$mol.biol, gsc[[2]]) ##with the expression data
> res2_exprs

Normal Approximation for set2

T Gw = 1.17

var(T_Gw) = 0.138

pLeft = 0.999, pRight = 0.000793, pTwoSided = 0.00159

npGSEA has several built in accessor functions to gather more information about
the analysis of your set of interest in your experiment.

> res3 <- npGSEA(ALL, yFactor, set3)
> res3

Normal Approximation for set3

T_Gw = -0.645

var(T_Gw) = 0.223

pLeft = 0.0861, pRight = 0.914, pTwoSided = 0.172

> geneSetName(res3)
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2.3

| 1] "set3"

> stat(res3)

| [1]1 -0.6449809
> sigmaSq(res3)

| 111 0.223123

> zStat(res3)

| [1]1 -1.365447
> pTwoSided(res3)
| 111 0.1721127
> pLeft(res3)

| [1] 0.08605636
> pValues(res3)

| pLeft = 0.0861, pRight = 0.914, pTwoSided = 0.172
> dim(xSet(res3))
| 11 100 109

There is also a npGSEA specific plot function (npGSEAPlot) to visualize the
results of your analysis. Highlighted in red on the plot is the corresponding
zStat of our analysis.

> npGSEAPlot(res3)

Running npGSEA with the beta and chi-sq approx-
imations

There are three types of approximation methods in npGSEA: "norm", "beta",
and "chiSq". Each method is discussed in brief in Section 3. The "norm"
approximation method is the default. Note that each of these methods has the
same (3, (see methods section).

> res5_norm <- npGSEA(ALL, yFactor, set5, approx= "norm")
> res5_norm

Normal Approximation for set5

T Gw =5

var(T_Gw) = 0.394

pLeft = 1, pRight = 8.72e-16, pTwoSided = 1.74e-15
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Figure 1: Set3 normal approximation results This plot displays the standard normal
curve and our observed zStat for set3 in this analysis.

> betaHats(res5_norm)

[,1]
1490  0.53814745
168544 0.10183475
1893  0.23559626
2013  0.11853248
2022  0.23358385
216 0.19554569
2273  0.35939613
23179 0.24618755
25 0.21597396
2549  0.21100011
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2934  0.33968229
5445  0.23247513
55884 0.16183870
57556 0.37650630
687 0.46075522
6915 0.10897784
7277  0.34083849
92 0.15933797
9369 0.09865998
9788  0.26243503

> npGSEAPlot(res5_norm)

The beta approximation yields results quite similar to the normal approximation.

> res5_beta <- npGSEA(ALL, yFactor, set5, approx= "beta")
> res5_beta

Beta Approximation for set5
T Gw =5
var(T_Gw) = 0.394
pLeft = 1, pRight = 5.83e-29, pTwoSided = 1.17e-28
> betaHats(res5_beta)
[,1]
1490 0.53814745
168544 0.10183475
1893  0.23559626
2013  0.11853248
2022  0.23358385
216 0.19554569
2273  0.35939613
23179 0.24618755
25 0.21597396
2549  0.21100011
2934  0.33968229
5445  0.23247513
55884 0.16183870
57556 0.37650630
687 0.46075522
6915 0.10897784
7277  0.34083849
92 0.15933797
9369 0.09865998
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| 9788  0.26243503
> npGSEAPlot(res5_beta)

The chi-sq approximation method is only available for the two-sided test. Here
we call npGSEA and then show how the chiSqStat is related to C_Gw. C_Gw is
explained in more detail in Section 3.2.

> res5_chiSq <- npGSEA(ALL, yFactor, set5, approx= "chiSq")
> res5_chiSq

Chi-sq Approximation for set5
C_Gw = 1.52
df = 2.42, sigmaSq = 0.0172
pTwoSided = 0
> betaHats(res5_chiSq)
[,1]
1490 0.53814745
168544 0.10183475
1893  0.23559626
2013  0.11853248
2022  0.23358385
216 0.19554569
2273  0.35939613
23179 0.24618755
25 0.21597396
2549  0.21100011
2934  0.33968229
5445  0.23247513
55884 0.16183870
57556 0.37650630
687 0.46075522
6915 0.10897784
7277  0.34083849
92 0.15933797
9369 0.09865998
9788  0.26243503

> chiSqStat(res5_chiSq)
| [1] 88.81123
> stat(res5_chiSq)

| 111 1.524982
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> stat(res5_chiSq)/sigmaSq(res5_chiSq)
| 1] 88.81123
> npGSEAPlot(res5_chiSq)

Note that, as we expected, set5 is a significantly enriched in all three methods.
In each of the three corresponding plots, the observed statistic is a very rare
event.

Beta distribution with Chi-sq distribution with

Standard Normal Distribution alpha = 33.98 and beta = 36.89 df=2.42
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Figure 2: Set5 normal, beta, and chi-sq approximation results These plots displays
the reference normal, beta, and chi-sq curves, and our observed zStat, betaStat, and chiSg-
Stat for set5 in this analysis.

2.4 Adding weights to the model

Sometimes we do not want to weigh each gene in our set equally. We want
to assign a larger weight to genes that are of a particular interest, and a lower
weight to genes that we know may behave poorly. In this example, we weight
the genes in set7 by their variance.

> res7_nowts <- npGSEA(x = ALL, y= yFactor, set = set7)
res’7_nowts

\Y

Normal Approximation for set7

T Gw =1.4

var(T_Gw) = 0.0583

pLeft = 1, pRight = 3.04e-09, pTwoSided = 6.09e-09

> wts <- apply(exprs(ALL)[match(genelds(set7), featureNames(ALL)), 1,

+ 1, var)

> wts <- 1/wts

> res7_wts <- npGSEA(x = ALL, y = yFactor, set = set7, w = wts, approx= "norm")
> res7_wts

Normal Approximation for set7
T Gw = 8.33
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var(T_Gw) = 1.47
pLeft = 1, pRight = 3.15e-12, pTwoSided = 6.3e-12

By adding these weights, we get a slightly more significant result. We can add
weights for the beta and chi-sq approximations, too. By default, npGSEA assigns
a weight of 1 for all genes.

2.5 Adding covariates to model

Often we want to correct for confounders in our model. To do this with npGSEA,
we provide a vector or matrix in the covars slot of our function. npGSEA then
projects both the data (x) and the outcome of interest (y) against our covariate
matrix/vector. The resulting residuals are used for further analysis.

In this example, we correct for the age and sex of the subjects in our experiment.
For more details on model selection and its relation to inference, please see the
limma manual.

> res3_age <- npGSEA(x = ALL, y = yFactor, set = set3, covars = ALL$age)
> res3_age

Normal Approximation for set3

T Gw = -0.404

var(T_Gw) = 0.185

pLeft = 0.174, pRight = 0.826, pTwoSided = 0.348

> res3_agesex <- npGSEA(x = ALL, y = yFactor, set = set3, covars = cbind(ALL$age, ALL$se
> res3_agesex

Normal Approximation for set3

T_Gw = -0.382

var(T_Gw) = 0.182

pLeft = 0.185, pRight = 0.815, pTwoSided = 0.37

By adjusting for these variables, we get a slight different result than above.
Note that we can adjust for covariates in the beta and chi-sq approximation
methods, too.

2.6 Running npGSEA with multiple gene sets

To explore multiple gene sets, we let set be a GeneSetCollection. This returns
a list of npGSEAResultNorm objects, called a npGSEAResultNormCollection
We can access statistics for each GeneSet in our analysis through accessors of
npGSEAResultNormCollection

10
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> resgsc_norm <- npGSEA(x = ALL, y = yFactor, set = gsc)
> unlist( pLeft(resgsc_norm) )
setl set2 set3 set4 set5 setb
9.917587e-01 9.992073e-01 8.605636e-02 9.874496e-01 1.000000e+00 2.660288e-11
set7

1.000000e+00

> unlist( stat (resgsc_norm) )
setl set2 set3 setd seth setb set7
0.4574477 1.1712563 -0.6449809 3.2438833 4.9973052 -3.7548816 1.4034573

> unlist( zStat (resgsc_norm) )

setl set2 set3 set4 seth setb set?
2.398051 3.158578 -1.365447 2.239848 7.958358 -6.561678 5.814316

Note how quick our method is. We get results as accurate as permutation
methods in a fraction of the time, even for multiple gene sets.

Using the ReportingTools package, we can publish these results to a HTML
page for exploration. We first adjust for multiple testing.

> pvals <- p.adjust( unlist(pTwoSided(resgsc_norm)), method= "BH" )

> library(ReportingTools)

> npgseaReport <- HTMLReport (shortName = "npGSEA",

+ title = "npGSEA Results", reportDirectory = "./reports")

> publish(gsc, npgseaReport, annotation.db = "org.Hs.eg",

+ setStats = unlist(zStat (resgsc_norm)), setPValues = pvals)
> finish(npgseaReport)

Methods in brief

Disadvantages to a permutation approach

There are three main disadvantages to permutation-based analyses: cost, ran-
domness, and granularity.

Testing many sets of genes becomes computationally expensive for two reasons.
First, there are many test statistics to calculate in each permuted version of the
data. Second, to allow for multiplicity adjustment, we require small nominal
p-values to draw inference about our sets, which in turn requires a large number
of permutations.

11
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3.2

Permutations are also subject random inference. Because permutations are
based on a random shuffling of the data, there is a chance that we will obtain
a different p-value for our set of interest each time we run our permutation
analysis.

Permutations also have a granularity problem. If we do M permutations, then
the smallest possible p-value we can attain is 1/(M +1). When it is necessary to
adjust for multiplicity, the permutation approach becomes very computationally
expensive. Another aspect of the granularity problem is that permutations give
us no basis to distinguish between two gene sets that both have the same p-value
1/(M 4 1). There may be many such gene sets, and they have meaningfully
different effect sizes.

Because of each of these limitations of permutation testing, there is a need to
move beyond permutation-based GSEA methods. The methods we present in
npGSEA and discuss in brief below are not as computationally expensive, random,
or granular than their permutation counterparts. More details on our method
can be found in Larson and Owen (2015).

Test statistics

We present our notation using the language of gene expression experiments.

Let ¢ and h denote individual genes and GG be a set of genes. Our experiment
has n subjects. The subjects may represent patients, cell cultures, or tissue
samples. The expression level for gene g in subject ¢ is X,;, and Y; is the target
variable on subject i. Y; is often a treatment, disease, or genotype. We center
the variables so that >~ | ¥; =>"" X, =0,Vg.

Our measure of association for gene g on our treatment of interest is
1 n
B, = - Zl X,V
1=

We consider the linear statistic

TG,w - Z wgﬁg
geG
and the quadratic statistic
A2
CG,U) = Z wg/ﬁg7
e

where w, corresponds to the weight given to gene g in set G.
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3.3

Moment based reference distributions

To avoid the issues discussed above, we approximate the distribution of the
permuted test statistics T, by Gaussian or by rescaled beta distributions. For
the quadratic statistic Cg,,, we use a distribution of the form UQX%,,)-

For the Gaussian treatment of T, we calculate 0% = Var(Tg.) under per-
mutation, and then report the p-value

p = Pr(N(0, 02) <Tecuw)-

The above is a left tail p-value. Two-sided and right tailed p-values are analo-
gous.

When we want something sharper than the normal distribution, we can use a
scaled Beta distribution, of the form A+ (B — A)Beta(a, ). The Beta(a, ()
distribution has a continuous density function on 0 < x < 1 for a,, 8 > 0. We
choose A, B, a and 3 by matching the upper and lower limits of T¢;,, under
permutation, as well as its mean and variance. The observed left tailed p-value
® TG,w - A)

p= Pr(Beta(a,B) < B A

For the quadratic test statistic Cy,, We use a o”x7,, reference distribution
reporting the p-value
Pr(o®xt,) > Cow),

after matching the first and second moments of 0*x,, to £(Cg,,) and E(CZ ,,)
under permutation, respectively.

Additional details on how 02, A, B, «, 3, E(Cg.), E(Céw), and v are derived
can be found in Larson and Owen (2015).

Session Info

R version 4.5.0 Patched (2025-04-21 r88169), aarch64-apple-darwin20
= Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

= Time zone: America/New_York

= T/Zcode source: internal

= Running under: mac0S Ventura 13.7.1

= Matrix products: default
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= BLAS:
/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/1ibRblas.0.dylib

= LAPACK:
/Library/Frameworks/R. framework/Versions/4.5-arm64/Resources/lib/1libRlapack.dylib
LAPACK version3.12.1

= Base packages: base, datasets, grDevices, graphics, methods, stats,
stats4, utils

= Other packages: ALL 1.51.0, AnnotationDbi 1.71.0, Biobase 2.69.0,
BiocGenerics 0.55.0, GSEABase 1.71.0, IRanges 2.43.0,
S4Vectors 0.47.0, XML 3.99-0.18, annotate 1.87.0, genefilter 1.91.0,
generics 0.1.3, graph 1.87.0, hgu95av2.db 3.13.0, limma 3.65.0,
npGSEA 1.45.0, org.Hs.eg.db 3.21.0

= Loaded via a namespace (and not attached): BiocManager 1.30.25,
BiocStyle 2.37.0, Biostrings 2.77.0, DBI 1.2.3, GenomelnfoDb 1.45.0,
GenomelnfoDbData 1.2.14, KEGGREST 1.49.0, Matrix 1.7-3,
MatrixGenerics 1.21.0, R6 2.6.1, RSQLite 2.3.9, UCSC.utils 1.5.0,
XVector 0.49.0, bit 4.6.0, bit64 4.6.0-1, blob 1.2.4, cachem 1.1.0,
cli 3.6.5, compiler 4.5.0, crayon 1.5.3, digest 0.6.37, evaluate 1.0.3,
fastmap 1.2.0, grid 4.5.0, htmltools 0.5.8.1, httr 1.4.7, jsonlite 2.0.0,
knitr 1.50, lattice 0.22-7, matrixStats 1.5.0, memoise 2.0.1,
pkgconfig 2.0.3, png 0.1-8, rlang 1.1.6, rmarkdown 2.29, splines 4.5.0,
statmod 1.5.0, survival 3.8-3, tools 4.5.0, vctrs 0.6.5, xfun 0.52,
xtable 1.8-4, yaml 2.3.10
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