if (!require("BiocManager")) {
install.packages("BiocManager")
}
BiocManager::install("glmSparseNet")
library(futile.logger)
library(ggplot2)
library(glmSparseNet)
library(survival)
# Some general options for futile.logger the debugging package
flog.layout(layout.format("[~l] ~m"))
options("glmSparseNet.show_message" = FALSE)
# Setting ggplot2 default theme as minimal
theme_set(ggplot2::theme_minimal())
data("cancer", package = "survival")
xdata <- survival::ovarian[, c("age", "resid.ds")]
ydata <- data.frame(
time = survival::ovarian$futime,
status = survival::ovarian$fustat
)
(group cutoff is median calculated relative risk)
resAge <- separate2GroupsCox(c(age = 1, 0), xdata, ydata)
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognosticIndexDf)
##
## n events median 0.95LCL 0.95UCL
## Low risk - 1 13 4 NA 638 NA
## High risk - 1 13 8 464 268 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below or equal the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
resAge4060 <-
separate2GroupsCox(c(age = 1, 0),
xdata,
ydata,
probs = c(.4, .6)
)
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognosticIndexDf)
##
## n events median 0.95LCL 0.95UCL
## Low risk - 1 11 3 NA 563 NA
## High risk - 1 10 7 359 156 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
This is a special case where you want to use a cutoff that includes some sample on both high and low risks groups.
resAge6040 <- separate2GroupsCox(
chosenBetas = c(age = 1, 0),
xdata,
ydata,
probs = c(.6, .4),
stopWhenOverlap = FALSE
)
## Warning in buildPrognosticIndexDataFrame(ydata, probs, stopWhenOverlap, : The cutoff values given to the function allow for some over samples in both groups, with:
## high risk size (15) + low risk size (16) not equal to xdata/ydata rows (31 != 26)
##
## We are continuing with execution as parameter `stopWhenOverlap` is FALSE.
## note: This adds duplicate samples to ydata and xdata xdata
## Kaplan-Meier results
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognosticIndexDf)
##
## n events median 0.95LCL 0.95UCL
## Low risk - 1 16 5 NA 638 NA
## High risk - 1 15 9 475 353 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
sessionInfo()
## R version 4.5.0 Patched (2025-04-21 r88169)
## Platform: x86_64-apple-darwin20
## Running under: macOS Monterey 12.7.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.1
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] grid parallel stats4 stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] glmnet_4.1-8 VennDiagram_1.7.3
## [3] reshape2_1.4.4 forcats_1.0.0
## [5] Matrix_1.7-3 glmSparseNet_1.27.0
## [7] TCGAutils_1.29.0 curatedTCGAData_1.31.0
## [9] MultiAssayExperiment_1.35.0 SummarizedExperiment_1.39.0
## [11] Biobase_2.69.0 GenomicRanges_1.61.0
## [13] GenomeInfoDb_1.45.0 IRanges_2.43.0
## [15] S4Vectors_0.47.0 BiocGenerics_0.55.0
## [17] generics_0.1.3 MatrixGenerics_1.21.0
## [19] matrixStats_1.5.0 futile.logger_1.4.3
## [21] survival_3.8-3 ggplot2_3.5.2
## [23] dplyr_1.1.4 BiocStyle_2.37.0
##
## loaded via a namespace (and not attached):
## [1] jsonlite_2.0.0 shape_1.4.6.1
## [3] magrittr_2.0.3 magick_2.8.6
## [5] GenomicFeatures_1.61.0 farver_2.1.2
## [7] rmarkdown_2.29 BiocIO_1.19.0
## [9] vctrs_0.6.5 memoise_2.0.1
## [11] Rsamtools_2.25.0 RCurl_1.98-1.17
## [13] rstatix_0.7.2 tinytex_0.57
## [15] htmltools_0.5.8.1 S4Arrays_1.9.0
## [17] BiocBaseUtils_1.11.0 progress_1.2.3
## [19] AnnotationHub_3.99.0 lambda.r_1.2.4
## [21] curl_6.2.2 broom_1.0.8
## [23] Formula_1.2-5 pROC_1.18.5
## [25] SparseArray_1.9.0 sass_0.4.10
## [27] bslib_0.9.0 plyr_1.8.9
## [29] httr2_1.1.2 zoo_1.8-14
## [31] futile.options_1.0.1 cachem_1.1.0
## [33] GenomicAlignments_1.45.0 lifecycle_1.0.4
## [35] iterators_1.0.14 pkgconfig_2.0.3
## [37] R6_2.6.1 fastmap_1.2.0
## [39] GenomeInfoDbData_1.2.14 digest_0.6.37
## [41] colorspace_2.1-1 AnnotationDbi_1.71.0
## [43] ps_1.9.1 ExperimentHub_2.99.0
## [45] RSQLite_2.3.9 ggpubr_0.6.0
## [47] labeling_0.4.3 filelock_1.0.3
## [49] km.ci_0.5-6 httr_1.4.7
## [51] abind_1.4-8 compiler_4.5.0
## [53] bit64_4.6.0-1 withr_3.0.2
## [55] backports_1.5.0 BiocParallel_1.43.0
## [57] carData_3.0-5 DBI_1.2.3
## [59] ggsignif_0.6.4 biomaRt_2.65.0
## [61] rappdirs_0.3.3 DelayedArray_0.35.1
## [63] rjson_0.2.23 tools_4.5.0
## [65] chromote_0.5.0 glue_1.8.0
## [67] restfulr_0.0.15 promises_1.3.2
## [69] checkmate_2.3.2 gtable_0.3.6
## [71] KMsurv_0.1-5 tzdb_0.5.0
## [73] tidyr_1.3.1 survminer_0.5.0
## [75] websocket_1.4.4 data.table_1.17.0
## [77] hms_1.1.3 car_3.1-3
## [79] xml2_1.3.8 XVector_0.49.0
## [81] BiocVersion_3.22.0 foreach_1.5.2
## [83] pillar_1.10.2 stringr_1.5.1
## [85] later_1.4.2 splines_4.5.0
## [87] BiocFileCache_2.99.0 lattice_0.22-7
## [89] rtracklayer_1.69.0 bit_4.6.0
## [91] tidyselect_1.2.1 Biostrings_2.77.0
## [93] knitr_1.50 gridExtra_2.3
## [95] bookdown_0.43 xfun_0.52
## [97] stringi_1.8.7 UCSC.utils_1.5.0
## [99] yaml_2.3.10 evaluate_1.0.3
## [101] codetools_0.2-20 tibble_3.2.1
## [103] BiocManager_1.30.25 cli_3.6.4
## [105] xtable_1.8-4 munsell_0.5.1
## [107] processx_3.8.6 jquerylib_0.1.4
## [109] survMisc_0.5.6 Rcpp_1.0.14
## [111] GenomicDataCommons_1.33.0 dbplyr_2.5.0
## [113] png_0.1-8 XML_3.99-0.18
## [115] readr_2.1.5 blob_1.2.4
## [117] prettyunits_1.2.0 bitops_1.0-9
## [119] scales_1.3.0 purrr_1.0.4
## [121] crayon_1.5.3 rlang_1.1.6
## [123] KEGGREST_1.49.0 rvest_1.0.4
## [125] formatR_1.14