DelayedTensor 1.15.0
Authors: Koki Tsuyuzaki [aut, cre]
Last modified: 2025-04-04 14:56:50.301149
Compiled: Tue Apr 15 19:26:37 2025
einsum
einsum
is an easy and intuitive way to write tensor operations.
It was originally introduced by
Numpy
1 https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
package of Python but similar tools have been implemented in other languages
(e.g. R, Julia) inspired by Numpy
.
In this vignette, we will use CRAN einsum package first.
einsum
is named after
Einstein summation2 https://en.wikipedia.org/wiki/Einstein_notation
introduced by Albert Einstein,
which is a notational convention that implies summation over
a set of indexed terms in a formula.
Here, we consider a simple example of einsum
; matrix multiplication.
If we naively implement the matrix multiplication,
the calculation would look like the following in a for loop.
A <- matrix(runif(3*4), nrow=3, ncol=4)
B <- matrix(runif(4*5), nrow=4, ncol=5)
C <- matrix(0, nrow=3, ncol=5)
I <- nrow(A)
J <- ncol(A)
K <- ncol(B)
for(i in 1:I){
for(j in 1:J){
for(k in 1:K){
C[i,k] = C[i,k] + A[i,j] * B[j,k]
}
}
}
Therefore, any programming language can implement this. However, when analyzing tensor data, such operations tend to be more complicated and increase the possibility of causing bugs because the order of tensors is larger or more tensors are handled simultaneously. In addition, several programming languages, especially R, are known to significantly slow down the speed of computation if the code is written in for loop.
Obviously, in the case of the R language, it should be executed using the built-in matrix multiplication function (%*%) prepared by the R, as shown below.
C <- A %*% B
However, more complex operations than matrix multiplication are not always provided by programming languages as standard.
einsum
is a function that solves such a problem.
To put it simply, einsum
is a wrapper for the for loop above.
Like the Einstein summation, it omits many notations such as for,
array size (e.g. I, J, and K), brackets (e.g. {}, (), and []),
and even addition operator (+) and
extracts the array subscripts (e.g. i, j, and k)
to concisely express the tensor operation as follows.
suppressPackageStartupMessages(library("einsum"))
C <- einsum('ij,jk->ik', A, B)
DelayedTensor
CRAN einsum is easy to use because the syntax is almost
the same as that of Numpy
‘s einsum
,
except that it prohibits the implicit modes that do not use’->’.
It is extremely fast because the internal calculation
is actually performed by C++.
When the input tensor is huge, however,
it is not scalable because it assumes that the input is R’s standard array.
Using einsum
of DelayedTensor,
we can augment the CRAN einsum
’s functionality;
in DelayedTensor,
the input DelayedArray objects are divided into
multiple block tensors and the CRAN einsum
is incremently applied in the block processing.
A surprisingly large number of tensor operations can be handled
uniformly in einsum
.
In more detail, einsum
is capable of performing any tensor operation
that can be described by a combination of the following
three operations3 https://ajcr.net/Basic-guide-to-einsum/.
Some typical operations are introduced below. Here we use the arrays and DelayedArray objects below.
suppressPackageStartupMessages(library("DelayedTensor"))
suppressPackageStartupMessages(library("DelayedArray"))
arrA <- array(runif(3), dim=c(3))
arrB <- array(runif(3*3), dim=c(3,3))
arrC <- array(runif(3*4), dim=c(3,4))
arrD <- array(runif(3*3*3), dim=c(3,3,3))
arrE <- array(runif(3*4*5), dim=c(3,4,5))
darrA <- DelayedArray(arrA)
darrB <- DelayedArray(arrB)
darrC <- DelayedArray(arrC)
darrD <- DelayedArray(arrD)
darrE <- DelayedArray(arrE)
If the same subscript is written on both sides of ->,
einsum
will simply output the object without any calculation.
einsum::einsum('i->i', arrA)
## [1] 0.5454692 0.6454625 0.8707132
DelayedTensor::einsum('i->i', darrA)
## <3> DelayedArray object of type "double":
## [1] [2] [3]
## 0.5454692 0.6454625 0.8707132
einsum::einsum('ij->ij', arrC)
## [,1] [,2] [,3] [,4]
## [1,] 0.1708841 0.8396647 0.1214658 0.4471776
## [2,] 0.8401044 0.9300048 0.7482341 0.2208772
## [3,] 0.6242099 0.9952789 0.4980487 0.8992359
DelayedTensor::einsum('ij->ij', darrC)
## <3 x 4> DelayedArray object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.1708841 0.8396647 0.1214658 0.4471776
## [2,] 0.8401044 0.9300048 0.7482341 0.2208772
## [3,] 0.6242099 0.9952789 0.4980487 0.8992359
einsum::einsum('ijk->ijk', arrE)
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6426342 0.15861344 0.006726871 0.9109190
## [2,] 0.1092752 0.02929303 0.384501612 0.4204885
## [3,] 0.1640055 0.53563991 0.785994702 0.6884517
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1643632 0.3166479 0.1785219 0.53834214
## [2,] 0.1710702 0.4849487 0.1197985 0.07929256
## [3,] 0.3099574 0.2728633 0.7786780 0.20512774
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.4122983 0.9066514 0.6869809 0.4779341
## [2,] 0.4592317 0.1983301 0.4224136 0.2122065
## [3,] 0.4317352 0.3323189 0.7806857 0.7114364
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.11224192 0.5303989 0.05099431 0.99305607
## [2,] 0.60689837 0.5737334 0.48579019 0.07079143
## [3,] 0.05558984 0.5249382 0.51795280 0.47819269
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.3820841 0.4107405 0.8824198 0.4516942
## [2,] 0.5174028 0.7811639 0.9597307 0.6588002
## [3,] 0.3050988 0.3516643 0.1212184 0.3837209
DelayedTensor::einsum('ijk->ijk', darrE)
## <3 x 4 x 5> DelayedArray object of type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 0.642634177 0.158613436 0.006726871 0.910918995
## [2,] 0.109275152 0.029293035 0.384501612 0.420488515
## [3,] 0.164005500 0.535639914 0.785994702 0.688451695
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 0.16436321 0.31664785 0.17852193 0.53834214
## [2,] 0.17107016 0.48494865 0.11979847 0.07929256
## [3,] 0.30995740 0.27286329 0.77867800 0.20512774
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 0.4122983 0.9066514 0.6869809 0.4779341
## [2,] 0.4592317 0.1983301 0.4224136 0.2122065
## [3,] 0.4317352 0.3323189 0.7806857 0.7114364
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.11224192 0.53039892 0.05099431 0.99305607
## [2,] 0.60689837 0.57373342 0.48579019 0.07079143
## [3,] 0.05558984 0.52493823 0.51795280 0.47819269
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.3820841 0.4107405 0.8824198 0.4516942
## [2,] 0.5174028 0.7811639 0.9597307 0.6588002
## [3,] 0.3050988 0.3516643 0.1212184 0.3837209
We can also extract the diagonal elements as follows.
einsum::einsum('ii->i', arrB)
## [1] 0.3780281 0.7056558 0.7072691
DelayedTensor::einsum('ii->i', darrB)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.3780281 0.7056558 0.7072691
einsum::einsum('iii->i', arrD)
## [1] 0.16432989 0.31015423 0.06343364
DelayedTensor::einsum('iii->i', darrD)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.16432989 0.31015423 0.06343364
By using multiple arrays or DelayedArray objects as input and writing “,” on the right side of ->, multiplication will be performed.
Hadamard Product can also be implemented in einsum
,
multiplying by the product of each element.
einsum::einsum('i,i->i', arrA, arrA)
## [1] 0.2975366 0.4166218 0.7581414
DelayedTensor::einsum('i,i->i', darrA, darrA)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.2975366 0.4166218 0.7581414
einsum::einsum('ij,ij->ij', arrC, arrC)
## [,1] [,2] [,3] [,4]
## [1,] 0.02920138 0.7050368 0.01475394 0.19996780
## [2,] 0.70577542 0.8649089 0.55985429 0.04878672
## [3,] 0.38963795 0.9905800 0.24805247 0.80862521
DelayedTensor::einsum('ij,ij->ij', darrC, darrC)
## <3 x 4> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.02920138 0.70503685 0.01475394 0.19996780
## [2,] 0.70577542 0.86490887 0.55985429 0.04878672
## [3,] 0.38963795 0.99058001 0.24805247 0.80862521
einsum::einsum('ijk,ijk->ijk', arrE, arrE)
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.41297869 0.0251582222 4.525079e-05 0.8297734
## [2,] 0.01194106 0.0008580819 1.478415e-01 0.1768106
## [3,] 0.02689780 0.2869101175 6.177877e-01 0.4739657
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02701527 0.10026586 0.03187008 0.28981226
## [2,] 0.02926500 0.23517519 0.01435167 0.00628731
## [3,] 0.09607359 0.07445438 0.60633943 0.04207739
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1699899 0.82201668 0.4719428 0.22842099
## [2,] 0.2108937 0.03933482 0.1784333 0.04503161
## [3,] 0.1863953 0.11043586 0.6094701 0.50614170
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.012598249 0.2813230 0.00260042 0.986160351
## [2,] 0.368325630 0.3291700 0.23599211 0.005011427
## [3,] 0.003090231 0.2755601 0.26827510 0.228668244
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.14598829 0.1687078 0.77866462 0.2040277
## [2,] 0.26770562 0.6102170 0.92108303 0.4340177
## [3,] 0.09308529 0.1236678 0.01469391 0.1472417
DelayedTensor::einsum('ijk,ijk->ijk', darrE, darrE)
## <3 x 4 x 5> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 4.129787e-01 2.515822e-02 4.525079e-05 8.297734e-01
## [2,] 1.194106e-02 8.580819e-04 1.478415e-01 1.768106e-01
## [3,] 2.689780e-02 2.869101e-01 6.177877e-01 4.739657e-01
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 0.02701527 0.10026586 0.03187008 0.28981226
## [2,] 0.02926500 0.23517519 0.01435167 0.00628731
## [3,] 0.09607359 0.07445438 0.60633943 0.04207739
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 0.16998992 0.82201668 0.47194276 0.22842099
## [2,] 0.21089373 0.03933482 0.17843329 0.04503161
## [3,] 0.18639529 0.11043586 0.60947011 0.50614170
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.012598249 0.281323015 0.002600420 0.986160351
## [2,] 0.368325630 0.329170033 0.235992105 0.005011427
## [3,] 0.003090231 0.275560141 0.268275101 0.228668244
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.14598829 0.16870776 0.77866462 0.20402767
## [2,] 0.26770562 0.61021702 0.92108303 0.43401775
## [3,] 0.09308529 0.12366776 0.01469391 0.14724172
The outer product can also be implemented in einsum
,
in which the subscripts in the input array are all different,
and all of them are kept.
einsum::einsum('i,j->ij', arrA, arrA)
## [,1] [,2] [,3]
## [1,] 0.2975366 0.3520799 0.4749472
## [2,] 0.3520799 0.4166218 0.5620127
## [3,] 0.4749472 0.5620127 0.7581414
DelayedTensor::einsum('i,j->ij', darrA, darrA)
## <3 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.2975366 0.3520799 0.4749472
## [2,] 0.3520799 0.4166218 0.5620127
## [3,] 0.4749472 0.5620127 0.7581414
einsum::einsum('ij,klm->ijklm', arrC, arrE)
## , , 1, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1098160 0.5395972 0.07805808 0.2873716
## [2,] 0.5398798 0.5976528 0.48084081 0.1419432
## [3,] 0.4011386 0.6396002 0.32006309 0.5778797
##
## , , 2, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01867339 0.09175449 0.01327319 0.04886540
## [2,] 0.09180254 0.10162641 0.08176340 0.02413639
## [3,] 0.06821063 0.10875925 0.05442434 0.09826414
##
## , , 3, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02802593 0.1377096 0.01992106 0.07333959
## [2,] 0.13778174 0.1525259 0.12271451 0.03622507
## [3,] 0.10237385 0.1632312 0.08168272 0.14747963
##
## , , 1, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02710452 0.1331821 0.01926611 0.07092838
## [2,] 0.13325185 0.1475113 0.11867998 0.03503409
## [3,] 0.09900807 0.1578646 0.07899721 0.14263090
##
## , , 2, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.005005714 0.02459633 0.003558102 0.013099189
## [2,] 0.024609208 0.02724266 0.021918048 0.006470162
## [3,] 0.018285001 0.02915474 0.014589357 0.026341349
##
## , , 3, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09153235 0.4497579 0.06506193 0.2395262
## [2,] 0.44999345 0.4981477 0.40078406 0.1183106
## [3,] 0.33435172 0.5331111 0.26677474 0.4816666
##
## , , 1, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.001149515 0.005648316 0.0008170848 0.003008106
## [2,] 0.005651274 0.006256022 0.0050332744 0.001485812
## [3,] 0.004198979 0.006695113 0.0033503091 0.006049044
##
## , , 2, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06570522 0.3228524 0.0467038 0.17194051
## [2,] 0.32302150 0.3575883 0.2876972 0.08492763
## [3,] 0.24000970 0.3826863 0.1915005 0.34575765
##
## , , 3, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1343140 0.6599720 0.09547148 0.3514792
## [2,] 0.6603176 0.7309788 0.58810805 0.1736083
## [3,] 0.4906256 0.7822839 0.39146361 0.7067947
##
## , , 1, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1556616 0.7648665 0.1106455 0.4073426
## [2,] 0.7652671 0.8471590 0.6815807 0.2012012
## [3,] 0.5686046 0.9066184 0.4536820 0.8191311
##
## , , 2, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07185481 0.3530694 0.05107498 0.18803304
## [2,] 0.35325426 0.3910563 0.31462385 0.09287631
## [3,] 0.26247308 0.4185033 0.20942374 0.37811837
##
## , , 3, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1176455 0.5780686 0.08362334 0.3078602
## [2,] 0.5783713 0.6402634 0.51512305 0.1520633
## [3,] 0.4297383 0.6852014 0.34288245 0.6190805
##
## , , 1, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02808706 0.1380100 0.01996451 0.07349955
## [2,] 0.13808226 0.1528586 0.12298216 0.03630408
## [3,] 0.10259714 0.1635872 0.08186088 0.14780130
##
## , , 2, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02923317 0.1436416 0.02077917 0.07649874
## [2,] 0.14371679 0.1590961 0.12800053 0.03778549
## [3,] 0.10678368 0.1702625 0.08520126 0.15383243
##
## , , 3, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0529668 0.2602603 0.03764923 0.13860601
## [2,] 0.2603966 0.2882619 0.23192070 0.06846251
## [3,] 0.1934785 0.3084941 0.15437387 0.27872483
##
## , , 1, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05411009 0.2658780 0.03846189 0.14159783
## [2,] 0.26601726 0.2944840 0.23692673 0.06994028
## [3,] 0.19765471 0.3151529 0.15770604 0.28474112
##
## , , 2, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08287002 0.4071943 0.05890468 0.2168582
## [2,] 0.40740750 0.4510046 0.36285513 0.1071141
## [3,] 0.30270973 0.4826591 0.24152803 0.4360832
##
## , , 3, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0466280 0.2291137 0.03314356 0.12201835
## [2,] 0.2292337 0.2537642 0.20416562 0.06026927
## [3,] 0.1703240 0.2715751 0.13589920 0.24536847
##
## , , 1, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03050656 0.1498986 0.02168431 0.07983101
## [2,] 0.14997706 0.1660263 0.13357620 0.03943142
## [3,] 0.11143515 0.1776791 0.08891261 0.16053333
##
## , , 2, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02047166 0.1005905 0.01455142 0.05357119
## [2,] 0.10064322 0.1114131 0.08963730 0.02646075
## [3,] 0.07477939 0.1192329 0.05966547 0.10772709
##
## , , 3, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1330637 0.6538284 0.09458275 0.3482074
## [2,] 0.6541708 0.7241743 0.58263345 0.1719922
## [3,] 0.4860585 0.7750018 0.38781954 0.7002152
##
## , , 1, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09199412 0.4520269 0.06539016 0.2407345
## [2,] 0.45226360 0.5006608 0.40280595 0.1189075
## [3,] 0.33603847 0.5358005 0.26812058 0.4840966
##
## , , 2, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01354984 0.06657916 0.009631334 0.03545786
## [2,] 0.06661403 0.07374246 0.059329397 0.01751392
## [3,] 0.04949520 0.07891821 0.039491553 0.07130272
##
## , , 3, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03505307 0.1722385 0.02491601 0.09172853
## [2,] 0.17232872 0.1907698 0.15348357 0.04530803
## [3,] 0.12804276 0.2041593 0.10216360 0.18445823
##
## , , 1, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07045523 0.3461924 0.05008015 0.18437058
## [2,] 0.34637365 0.3834394 0.30849568 0.09106729
## [3,] 0.25736069 0.4103518 0.20534464 0.37075347
##
## , , 2, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0784754 0.3856006 0.05578094 0.2053581
## [2,] 0.3858026 0.4270876 0.34361281 0.1014338
## [3,] 0.2866569 0.4570636 0.22871972 0.4129576
##
## , , 3, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07377669 0.3625128 0.05244106 0.19306231
## [2,] 0.36270265 0.4015158 0.32303901 0.09536045
## [3,] 0.26949337 0.4296969 0.21502514 0.38823180
##
## , , 1, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1549323 0.7612832 0.1101271 0.4054342
## [2,] 0.7616818 0.8431901 0.6783875 0.2002586
## [3,] 0.5659407 0.9023709 0.4515565 0.8152934
##
## , , 2, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03389146 0.1665308 0.02409032 0.08868876
## [2,] 0.16661796 0.1844479 0.14839732 0.04380658
## [3,] 0.12379958 0.1973937 0.09877803 0.17834552
##
## , , 3, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05678802 0.2790365 0.04036538 0.14860557
## [2,] 0.27918258 0.3090582 0.24865234 0.07340166
## [3,] 0.20743674 0.3307500 0.16551099 0.29883309
##
## , , 1, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1173941 0.5768336 0.08344469 0.3072025
## [2,] 0.5771357 0.6388955 0.51402255 0.1517384
## [3,] 0.4288203 0.6837376 0.34214992 0.6177579
##
## , , 2, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07218378 0.3546858 0.05130881 0.18889392
## [2,] 0.35487157 0.3928467 0.31606430 0.09330153
## [3,] 0.26367476 0.4204194 0.21038255 0.37984952
##
## , , 3, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1334068 0.6555142 0.09482661 0.3491051
## [2,] 0.6558575 0.7260414 0.58413565 0.1724356
## [3,] 0.4873117 0.7769999 0.38881945 0.7020206
##
## , , 1, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08167134 0.4013044 0.05805265 0.2137214
## [2,] 0.40151453 0.4444810 0.35760659 0.1055647
## [3,] 0.29833117 0.4756777 0.23803443 0.4297755
##
## , , 2, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03626273 0.1781823 0.02577584 0.09489401
## [2,] 0.17827565 0.1973531 0.15878017 0.04687158
## [3,] 0.13246141 0.2112047 0.10568918 0.19082374
##
## , , 3, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1215732 0.5973680 0.08641519 0.3181384
## [2,] 0.5976808 0.6616392 0.53232096 0.1571400
## [3,] 0.4440856 0.7080776 0.35432993 0.6397491
##
## , , 1, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01918036 0.09424558 0.01363356 0.05019207
## [2,] 0.09429493 0.10438552 0.08398323 0.02479168
## [3,] 0.07006251 0.11171201 0.05590194 0.10093196
##
## , , 2, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1037093 0.5095912 0.0737174 0.2713914
## [2,] 0.5098580 0.5644184 0.4541021 0.1340500
## [3,] 0.3788319 0.6040331 0.3022649 0.5457448
##
## , , 3, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.009499421 0.04667683 0.006752265 0.02485853
## [2,] 0.046701274 0.05169882 0.041594218 0.01227853
## [3,] 0.034699729 0.05532740 0.027686448 0.04998838
##
## , , 1, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09063675 0.4453573 0.06442533 0.2371825
## [2,] 0.44559047 0.4932735 0.39686257 0.1171530
## [3,] 0.33108024 0.5278948 0.26416447 0.4769538
##
## , , 2, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09804192 0.4817437 0.06968899 0.2565607
## [2,] 0.48199597 0.5335748 0.42928692 0.1267246
## [3,] 0.35813006 0.5710247 0.28574716 0.5159217
##
## , , 3, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0897036 0.4407721 0.06376204 0.2347406
## [2,] 0.4410029 0.4881951 0.39277669 0.1159469
## [3,] 0.3276716 0.5224599 0.26144478 0.4720433
##
## , , 1, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.008714118 0.04281813 0.006194065 0.02280351
## [2,] 0.042840547 0.04742495 0.038155684 0.01126348
## [3,] 0.031831153 0.05075356 0.025397649 0.04585592
##
## , , 2, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08301382 0.4079009 0.0590069 0.2172345
## [2,] 0.40811448 0.4517872 0.3634848 0.1073000
## [3,] 0.30323503 0.4834967 0.2419472 0.4368400
##
## , , 3, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0885099 0.4349067 0.06291355 0.2316169
## [2,] 0.4351344 0.4816986 0.38754995 0.1144039
## [3,] 0.3233112 0.5155075 0.25796570 0.4657618
##
## , , 1, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1696975 0.8338341 0.1206224 0.4440724
## [2,] 0.8342708 0.9235469 0.7430384 0.2193434
## [3,] 0.6198754 0.9883677 0.4945902 0.8929917
##
## , , 2, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01209713 0.05944107 0.008598738 0.03165634
## [2,] 0.05947219 0.06583637 0.052968565 0.01563621
## [3,] 0.04418871 0.07045722 0.035257578 0.06365820
##
## , , 3, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08171553 0.4015215 0.05808406 0.2138371
## [2,] 0.40173178 0.4447215 0.35780008 0.1056218
## [3,] 0.29849259 0.4759351 0.23816323 0.4300080
##
## , , 1, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06529211 0.3208226 0.04641016 0.17085947
## [2,] 0.32099057 0.3553401 0.28588839 0.08439366
## [3,] 0.23850069 0.3802803 0.19029650 0.34358378
##
## , , 2, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08841591 0.4344449 0.06284674 0.2313709
## [2,] 0.43467235 0.4811870 0.38713840 0.1142825
## [3,] 0.32296791 0.5149600 0.25769176 0.4652671
##
## , , 3, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05213654 0.2561807 0.03705907 0.13643335
## [2,] 0.25631486 0.2837434 0.22828534 0.06738936
## [3,] 0.19044569 0.3036584 0.15195406 0.27435581
##
## , , 1, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07018903 0.3448843 0.04989093 0.1836740
## [2,] 0.34506491 0.3819906 0.30733006 0.0907232
## [3,] 0.25638828 0.4088013 0.20456876 0.3693526
##
## , , 2, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1334885 0.6559158 0.0948847 0.3493190
## [2,] 0.6562592 0.7264861 0.5844935 0.1725413
## [3,] 0.4876102 0.7774759 0.3890576 0.7024506
##
## , , 3, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06009384 0.2952801 0.04271518 0.15725638
## [2,] 0.29543471 0.3270495 0.26312721 0.07767461
## [3,] 0.21951231 0.3500040 0.17514592 0.31622914
##
## , , 1, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1507915 0.7409367 0.1071838 0.3945983
## [2,] 0.7413247 0.8206546 0.6602566 0.1949064
## [3,] 0.5508151 0.8782537 0.4394880 0.7935035
##
## , , 2, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1640027 0.8058520 0.1165745 0.4291701
## [2,] 0.8062740 0.8925541 0.7181033 0.2119826
## [3,] 0.5990734 0.9551997 0.4779926 0.8630243
##
## , , 3, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02071430 0.1017828 0.01472389 0.05420617
## [2,] 0.10183614 0.1127337 0.09069976 0.02677438
## [3,] 0.07566574 0.1206461 0.06037268 0.10900396
##
## , , 1, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07718737 0.3792717 0.0548654 0.20198754
## [2,] 0.37947031 0.4200778 0.3379730 0.09976894
## [3,] 0.28195199 0.4495617 0.2249657 0.40617966
##
## , , 2, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1125785 0.5531713 0.0800217 0.2946007
## [2,] 0.5534610 0.6126874 0.4929368 0.1455139
## [3,] 0.4112296 0.6556899 0.3281146 0.5924168
##
## , , 3, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0655718 0.3221969 0.04660897 0.17159138
## [2,] 0.3223656 0.3568623 0.28711306 0.08475518
## [3,] 0.2395224 0.3819093 0.19111167 0.34505560
DelayedTensor::einsum('ij,klm->ijklm', darrC, darrE)
## <3 x 4 x 3 x 4 x 5> HDF5Array object of type "double":
## ,,1,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.10981597 0.53959725 0.07805808 0.28737161
## [2,] 0.53987981 0.59765285 0.48084081 0.14194321
## [3,] 0.40113859 0.63960021 0.32006309 0.57787972
##
## ,,2,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.01867339 0.09175449 0.01327319 0.04886540
## [2,] 0.09180254 0.10162641 0.08176340 0.02413639
## [3,] 0.06821063 0.10875925 0.05442434 0.09826414
##
## ,,3,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.02802593 0.13770963 0.01992106 0.07333959
## [2,] 0.13778174 0.15252590 0.12271451 0.03622507
## [3,] 0.10237385 0.16323121 0.08168272 0.14747963
##
## ...
##
## ,,1,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.07718737 0.37927171 0.05486540 0.20198754
## [2,] 0.37947031 0.42007778 0.33797303 0.09976894
## [3,] 0.28195199 0.44956171 0.22496571 0.40617966
##
## ,,2,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.1125785 0.5531713 0.0800217 0.2946007
## [2,] 0.5534610 0.6126874 0.4929368 0.1455139
## [3,] 0.4112296 0.6556899 0.3281146 0.5924168
##
## ,,3,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.06557180 0.32219689 0.04660897 0.17159138
## [2,] 0.32236561 0.35686225 0.28711306 0.08475518
## [3,] 0.23952236 0.38190928 0.19111167 0.34505560
If there is a vanishing subscript on the left or right side of ->, the summation is done for that subscript.
einsum::einsum('i->', arrA)
## [1] 2.061645
DelayedTensor::einsum('i->', darrA)
## <1> HDF5Array object of type "double":
## [1]
## 2.061645
einsum::einsum('ij->', arrC)
## [1] 7.335186
DelayedTensor::einsum('ij->', darrC)
## <1> HDF5Array object of type "double":
## [1]
## 7.335186
einsum::einsum('ijk->', arrE)
## [1] 25.69469
DelayedTensor::einsum('ijk->', darrE)
## <1> HDF5Array object of type "double":
## [1]
## 25.69469
einsum::einsum('ij->i', arrC)
## [1] 1.579192 2.739220 3.016773
DelayedTensor::einsum('ij->i', darrC)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 1.579192 2.739220 3.016773
einsum::einsum('ij->j', arrC)
## [1] 1.635198 2.764948 1.367749 1.567291
DelayedTensor::einsum('ij->j', darrC)
## <4> HDF5Array object of type "double":
## [1] [2] [3] [4]
## 1.635198 2.764948 1.367749 1.567291
einsum::einsum('ijk->i', arrE)
## [1] 9.214263 7.745161 8.735270
DelayedTensor::einsum('ijk->i', darrE)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 9.214263 7.745161 8.735270
einsum::einsum('ijk->j', arrE)
## [1] 4.843887 6.407946 7.162408 7.280454
DelayedTensor::einsum('ijk->j', darrE)
## <4> HDF5Array object of type "double":
## [1] [2] [3] [4]
## 4.843887 6.407946 7.162408 7.280454
einsum::einsum('ijk->k', arrE)
## [1] 4.836544 3.619611 6.032223 5.000578 6.205739
DelayedTensor::einsum('ijk->k', darrE)
## <5> HDF5Array object of type "double":
## [1] [2] [3] [4] [5]
## 4.836544 3.619611 6.032223 5.000578 6.205739
These are the same as what the modeSum
function does.
einsum::einsum('ijk->ij', arrE)
## [,1] [,2] [,3] [,4]
## [1,] 1.713622 2.323052 1.805644 3.371946
## [2,] 1.863878 2.067469 2.372235 1.441579
## [3,] 1.266387 2.017425 2.984530 2.466929
DelayedTensor::einsum('ijk->ij', darrE)
## <3 x 4> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 1.713622 2.323052 1.805644 3.371946
## [2,] 1.863878 2.067469 2.372235 1.441579
## [3,] 1.266387 2.017425 2.984530 2.466929
einsum::einsum('ijk->jk', arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9159148 0.6453908 1.303265 0.7747301 1.204586
## [2,] 0.7235464 1.0744598 1.437300 1.6290706 1.543569
## [3,] 1.1772232 1.0769984 1.890080 1.0547373 1.963369
## [4,] 2.0198592 0.8227624 1.401577 1.5420402 1.494215
DelayedTensor::einsum('ijk->jk', darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9159148 0.6453908 1.3032652 0.7747301 1.2045857
## [2,] 0.7235464 1.0744598 1.4373003 1.6290706 1.5435687
## [3,] 1.1772232 1.0769984 1.8900802 1.0547373 1.9633689
## [4,] 2.0198592 0.8227624 1.4015770 1.5420402 1.4942153
einsum::einsum('ijk->jk', arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9159148 0.6453908 1.303265 0.7747301 1.204586
## [2,] 0.7235464 1.0744598 1.437300 1.6290706 1.543569
## [3,] 1.1772232 1.0769984 1.890080 1.0547373 1.963369
## [4,] 2.0198592 0.8227624 1.401577 1.5420402 1.494215
DelayedTensor::einsum('ijk->jk', darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9159148 0.6453908 1.3032652 0.7747301 1.2045857
## [2,] 0.7235464 1.0744598 1.4373003 1.6290706 1.5435687
## [3,] 1.1772232 1.0769984 1.8900802 1.0547373 1.9633689
## [4,] 2.0198592 0.8227624 1.4015770 1.5420402 1.4942153
If we take the diagonal elements of a matrix
and add them together, we get trace
.
einsum::einsum('ii->', arrB)
## [1] 1.790953
DelayedTensor::einsum('ii->', darrB)
## <1> HDF5Array object of type "double":
## [1]
## 1.790953
By changing the order of the indices on the left and right side of ->, we can get a sorted array or DelayedArray.
einsum::einsum('ij->ji', arrB)
## [,1] [,2] [,3]
## [1,] 0.3780281 0.5924883 0.3340864
## [2,] 0.6587618 0.7056558 0.7423077
## [3,] 0.5698973 0.5796130 0.7072691
DelayedTensor::einsum('ij->ji', darrB)
## <3 x 3> DelayedArray object of type "double":
## [,1] [,2] [,3]
## [1,] 0.3780281 0.5924883 0.3340864
## [2,] 0.6587618 0.7056558 0.7423077
## [3,] 0.5698973 0.5796130 0.7072691
einsum::einsum('ijk->jki', arrD)
## , , 1
##
## [,1] [,2] [,3]
## [1,] 0.16432989 0.9839553 0.09591816
## [2,] 0.04142506 0.9049522 0.98766482
## [3,] 0.98114267 0.6965892 0.41655311
##
## , , 2
##
## [,1] [,2] [,3]
## [1,] 0.7362322 0.7543466 0.05567971
## [2,] 0.9876986 0.3101542 0.59095474
## [3,] 0.1627663 0.1396324 0.66372065
##
## , , 3
##
## [,1] [,2] [,3]
## [1,] 0.3582187 0.9924773 0.65948144
## [2,] 0.7542827 0.4013092 0.41661109
## [3,] 0.9048116 0.5855557 0.06343364
DelayedTensor::einsum('ijk->jki', darrD)
## <3 x 3 x 3> DelayedArray object of type "double":
## ,,1
## [,1] [,2] [,3]
## [1,] 0.16432989 0.98395534 0.09591816
## [2,] 0.04142506 0.90495219 0.98766482
## [3,] 0.98114267 0.69658920 0.41655311
##
## ,,2
## [,1] [,2] [,3]
## [1,] 0.73623217 0.75434664 0.05567971
## [2,] 0.98769857 0.31015423 0.59095474
## [3,] 0.16276626 0.13963242 0.66372065
##
## ,,3
## [,1] [,2] [,3]
## [1,] 0.35821875 0.99247731 0.65948144
## [2,] 0.75428267 0.40130923 0.41661109
## [3,] 0.90481165 0.58555567 0.06343364
Some examples of combining Multiplication and Summation are shown below.
Inner Product first calculate Hadamard Product and collapses it to 0D tensor (norm).
einsum::einsum('i,i->', arrA, arrA)
## [1] 1.4723
DelayedTensor::einsum('i,i->', darrA, darrA)
## <1> HDF5Array object of type "double":
## [1]
## 1.4723
einsum::einsum('ij,ij->', arrC, arrC)
## [1] 5.565181
DelayedTensor::einsum('ij,ij->', darrC, darrC)
## <1> HDF5Array object of type "double":
## [1]
## 5.565181
einsum::einsum('ijk,ijk->', arrE, arrE)
## [1] 15.04834
DelayedTensor::einsum('ijk,ijk->', darrE, darrE)
## <1> HDF5Array object of type "double":
## [1]
## 15.04834
The inner product is an operation that eliminates all subscripts, while the outer product is an operation that leaves all subscripts intact. In the middle of the two, the operation that eliminates some subscripts while keeping others by summing them is called contracted product.
einsum::einsum('ijk,ijk->jk', arrE, arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.4518175 0.1523539 0.5672789 0.3840141 0.5067792
## [2,] 0.3129264 0.4098954 0.9717873 0.8860532 0.9025925
## [3,] 0.7656744 0.6525612 1.2598462 0.5068676 1.7144416
## [4,] 1.4805497 0.3381770 0.7795943 1.2198400 0.7852871
DelayedTensor::einsum('ijk,ijk->jk', darrE, darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.4518175 0.1523539 0.5672789 0.3840141 0.5067792
## [2,] 0.3129264 0.4098954 0.9717873 0.8860532 0.9025925
## [3,] 0.7656744 0.6525612 1.2598462 0.5068676 1.7144416
## [4,] 1.4805497 0.3381770 0.7795943 1.2198400 0.7852871
Matrix Multiplication is considered a contracted product.
einsum::einsum('ij,jk->ik', arrC, t(arrC))
## [,1] [,2] [,3]
## [1,] 0.948960 1.114109 1.404982
## [2,] 1.114109 2.179325 2.021293
## [3,] 1.404982 2.021293 2.436896
DelayedTensor::einsum('ij,jk->ik', darrC, t(darrC))
## <3 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.948960 1.114109 1.404982
## [2,] 1.114109 2.179325 2.021293
## [3,] 1.404982 2.021293 2.436896
Some examples of combining Multiplication and Permutation are shown below.
einsum::einsum('ij,ij->ji', arrC, arrC)
## [,1] [,2] [,3]
## [1,] 0.02920138 0.70577542 0.3896380
## [2,] 0.70503685 0.86490887 0.9905800
## [3,] 0.01475394 0.55985429 0.2480525
## [4,] 0.19996780 0.04878672 0.8086252
DelayedTensor::einsum('ij,ij->ji', darrC, darrC)
## <4 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.02920138 0.70577542 0.38963795
## [2,] 0.70503685 0.86490887 0.99058001
## [3,] 0.01475394 0.55985429 0.24805247
## [4,] 0.19996780 0.04878672 0.80862521
einsum::einsum('ijk,ijk->jki', arrE, arrE)
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 4.129787e-01 0.02701527 0.1699899 0.01259825 0.1459883
## [2,] 2.515822e-02 0.10026586 0.8220167 0.28132302 0.1687078
## [3,] 4.525079e-05 0.03187008 0.4719428 0.00260042 0.7786646
## [4,] 8.297734e-01 0.28981226 0.2284210 0.98616035 0.2040277
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0119410587 0.02926500 0.21089373 0.368325630 0.2677056
## [2,] 0.0008580819 0.23517519 0.03933482 0.329170033 0.6102170
## [3,] 0.1478414897 0.01435167 0.17843329 0.235992105 0.9210830
## [4,] 0.1768105916 0.00628731 0.04503161 0.005011427 0.4340177
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0268978 0.09607359 0.1863953 0.003090231 0.09308529
## [2,] 0.2869101 0.07445438 0.1104359 0.275560141 0.12366776
## [3,] 0.6177877 0.60633943 0.6094701 0.268275101 0.01469391
## [4,] 0.4739657 0.04207739 0.5061417 0.228668244 0.14724172
DelayedTensor::einsum('ijk,ijk->jki', darrE, darrE)
## <4 x 5 x 3> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 4.129787e-01 2.701527e-02 1.699899e-01 1.259825e-02 1.459883e-01
## [2,] 2.515822e-02 1.002659e-01 8.220167e-01 2.813230e-01 1.687078e-01
## [3,] 4.525079e-05 3.187008e-02 4.719428e-01 2.600420e-03 7.786646e-01
## [4,] 8.297734e-01 2.898123e-01 2.284210e-01 9.861604e-01 2.040277e-01
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0119410587 0.0292649986 0.2108937314 0.3683256301 0.2677056235
## [2,] 0.0008580819 0.2351751945 0.0393348156 0.3291700328 0.6102170215
## [3,] 0.1478414897 0.0143516737 0.1784332893 0.2359921051 0.9210830284
## [4,] 0.1768105916 0.0062873098 0.0450316146 0.0050114269 0.4340177475
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.026897804 0.096073593 0.186395289 0.003090231 0.093085286
## [2,] 0.286910117 0.074454375 0.110435857 0.275560141 0.123667761
## [3,] 0.617787671 0.606339433 0.609470106 0.268275101 0.014693908
## [4,] 0.473965737 0.042077391 0.506141698 0.228668244 0.147241717
Some examples of combining Summation and Permutation are shown below.
einsum::einsum('ijk->ki', arrE)
## [,1] [,2] [,3]
## [1,] 1.718893 0.9435583 2.174092
## [2,] 1.197875 0.8551098 1.566626
## [3,] 2.483865 1.2921819 2.256176
## [4,] 1.686691 1.7372134 1.576674
## [5,] 2.126939 2.9170976 1.161702
DelayedTensor::einsum('ijk->ki', darrE)
## <5 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 1.7188935 0.9435583 2.1740918
## [2,] 1.1978751 0.8551098 1.5666264
## [3,] 2.4838647 1.2921819 2.2561761
## [4,] 1.6866912 1.7372134 1.5766736
## [5,] 2.1269386 2.9170976 1.1617024
Finally, we will show a more complex example, combining Multiplication, Summation, and Permutation.
einsum::einsum('i,ij,ijk,ijk,ji->jki',
arrA, arrC, arrE, arrE, t(arrC))
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 6.578111e-03 0.0004303114 0.002707676 2.006706e-04 0.002325368
## [2,] 9.675245e-03 0.0385598320 0.316127785 1.081900e-01 0.064880937
## [3,] 3.641703e-07 0.0002564847 0.003798111 2.092771e-05 0.006266553
## [4,] 9.050859e-02 0.0316116416 0.024915311 1.075667e-01 0.022254579
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0054397676 0.0133317150 0.096072963 0.1677913061 0.12195371
## [2,] 0.0004790381 0.1312903627 0.021959298 0.1837645042 0.34066354
## [3,] 0.0534247288 0.0051861915 0.064479532 0.0852792693 0.33284710
## [4,] 0.0055677650 0.0001979874 0.001418045 0.0001578098 0.01366722
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.009125427 0.03259421 0.06323701 0.001048401 0.031580384
## [2,] 0.247463150 0.06421772 0.09525215 0.237673670 0.106664812
## [3,] 0.133431360 0.13095874 0.13163491 0.057942742 0.003173628
## [4,] 0.333710090 0.02962588 0.35636456 0.161000879 0.103670039
DelayedTensor::einsum('i,ij,ijk,ijk,ji->jki',
darrA, darrC, darrE, darrE, t(darrC))
## <4 x 5 x 3> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 6.578111e-03 4.303114e-04 2.707676e-03 2.006706e-04 2.325368e-03
## [2,] 9.675245e-03 3.855983e-02 3.161278e-01 1.081900e-01 6.488094e-02
## [3,] 3.641703e-07 2.564847e-04 3.798111e-03 2.092771e-05 6.266553e-03
## [4,] 9.050859e-02 3.161164e-02 2.491531e-02 1.075667e-01 2.225458e-02
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0054397676 0.0133317150 0.0960729631 0.1677913061 0.1219537077
## [2,] 0.0004790381 0.1312903627 0.0219592981 0.1837645042 0.3406635392
## [3,] 0.0534247288 0.0051861915 0.0644795322 0.0852792693 0.3328470994
## [4,] 0.0055677650 0.0001979874 0.0014180454 0.0001578098 0.0136672175
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.009125427 0.032594205 0.063237006 0.001048401 0.031580384
## [2,] 0.247463150 0.064217722 0.095252149 0.237673670 0.106664812
## [3,] 0.133431360 0.130958741 0.131634911 0.057942742 0.003173628
## [4,] 0.333710090 0.029625875 0.356364561 0.161000879 0.103670039
einsum
By using einsum
and other DelayedTensor functions,
it is possible to implement your original tensor calculation functions.
It is intended to be applied to Delayed Arrays,
which can scale to large-scale data
since the calculation is performed internally by block processing.
For example, kronecker
can be easily implmented by eimsum
and other DelayedTensor functions4 https://stackoverflow.com/
questions/56067643/speeding-up-kronecker-products-numpy
(the kronecker
function inside DelayedTensor
has a more efficient implementation though).
darr1 <- DelayedArray(array(1:6, dim=c(2,3)))
darr2 <- DelayedArray(array(20:1, dim=c(4,5)))
mykronecker <- function(darr1, darr2){
stopifnot((length(dim(darr1)) == 2) && (length(dim(darr2)) == 2))
# Outer Product
tmpdarr <- DelayedTensor::einsum('ij,kl->ikjl', darr1, darr2)
# Reshape
DelayedTensor::unfold(tmpdarr, row_idx=c(2,1), col_idx=c(4,3))
}
identical(as.array(DelayedTensor::kronecker(darr1, darr2)),
as.array(mykronecker(darr1, darr2)))
## [1] TRUE
## R version 4.5.0 RC (2025-04-03 r88103 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows Server 2022 x64 (build 20348)
##
## Matrix products: default
## LAPACK version 3.12.1
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] einsum_0.1.2 DelayedRandomArray_1.17.0
## [3] HDF5Array_1.37.0 h5mread_1.1.0
## [5] rhdf5_2.53.0 DelayedArray_0.35.0
## [7] SparseArray_1.9.0 S4Arrays_1.9.0
## [9] abind_1.4-8 IRanges_2.43.0
## [11] S4Vectors_0.47.0 MatrixGenerics_1.21.0
## [13] matrixStats_1.5.0 BiocGenerics_0.55.0
## [15] generics_0.1.3 Matrix_1.7-3
## [17] DelayedTensor_1.15.0 BiocStyle_2.37.0
##
## loaded via a namespace (and not attached):
## [1] dqrng_0.4.1 sass_0.4.10 lattice_0.22-7
## [4] digest_0.6.37 evaluate_1.0.3 grid_4.5.0
## [7] bookdown_0.43 fastmap_1.2.0 jsonlite_2.0.0
## [10] BiocManager_1.30.25 codetools_0.2-20 jquerylib_0.1.4
## [13] cli_3.6.4 rlang_1.1.6 crayon_1.5.3
## [16] XVector_0.49.0 cachem_1.1.0 yaml_2.3.10
## [19] tools_4.5.0 beachmat_2.25.0 parallel_4.5.0
## [22] BiocParallel_1.43.0 Rhdf5lib_1.31.0 rsvd_1.0.5
## [25] R6_2.6.1 lifecycle_1.0.4 BiocSingular_1.25.0
## [28] irlba_2.3.5.1 ScaledMatrix_1.17.0 rTensor_1.4.8
## [31] bslib_0.9.0 Rcpp_1.0.14 xfun_0.52
## [34] knitr_1.50 rhdf5filters_1.21.0 htmltools_0.5.8.1
## [37] rmarkdown_2.29 compiler_4.5.0