K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"           "CD3(Cd112)Di"          
##  [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"          "IgD(Nd145)Di"          
## [10] "CD79b(Nd146)Di"         "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"          "IgM(Eu153)Di"          
## [16] "Kappa(Sm154)Di"         "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"           "Rag1(Dy164)Di"         
## [22] "PreBCR(Ho165)Di"        "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"          "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"   "pS6(Yb172)Di"   
##  [5] "cPARP(La139)Di"  "pPLCg2(Pr141)Di" "pSrc(Nd144)Di"   "Ki67(Sm152)Di"  
##  [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"   "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 713 845 522 617 923 956 542 854 805 440 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  713  435   96  559  145  498   71  320  428   242
##  [2,]  845  410   62  754  859  263  104  280  796   663
##  [3,]  522  110  751  565   33  397  501   69  898   700
##  [4,]  617   44  202  593   88  926  525  257  397   565
##  [5,]  923  765  466  202  925  350  138  504  267   869
##  [6,]  956  295  106  280  416  732  176  858  930   835
##  [7,]  542  560  629  656   11  819  335   58  771   868
##  [8,]  854  112  781  671  340  594  373  784   35   756
##  [9,]  805  757  639  866  927  957  806  367  662   958
## [10,]  440   36  229  180  397  483  593  889  267   705
## [11,]  874  172  724  560  338  771    7  656  901   804
## [12,]  150  925  536  282  278   64  301  427   88   547
## [13,]  103  742  695   59  330   84   34  533  164   518
## [14,]  941  464  701  953  948  860  883  673   39   762
## [15,]  673  953  313  762  178   14  460  733  464   146
## [16,]   88  904  207  601  681  185   64  654  593   101
## [17,]  207   88  151  382  547  885  469  282  904   476
## [18,]  562  857  283  310  856   73  583  767  798   568
## [19,]   98  858  194  280  849  879  845   41  564   802
## [20,]  629  407  724  542  656  936  417  107  777   997
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 2.45 3.45 3.64 3.14 2.81 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
##  [1,] 2.453201 2.974989 2.993984 3.167093 3.191709 3.255873 3.264745 3.343012
##  [2,] 3.450199 3.622264 3.624838 3.629024 3.704721 3.757948 3.763912 3.800639
##  [3,] 3.638902 3.709156 3.920126 4.029866 4.133649 4.134326 4.144389 4.192520
##  [4,] 3.135595 3.182555 3.319273 3.378801 3.435176 3.459564 3.497410 3.497890
##  [5,] 2.809595 3.084950 3.262967 3.310221 3.311277 3.340979 3.351861 3.394686
##  [6,] 3.301887 3.345912 3.351763 3.488228 3.561365 3.597586 3.605771 3.644124
##  [7,] 2.934984 3.764248 3.967805 4.012219 4.076537 4.215822 4.229107 4.233413
##  [8,] 4.062286 4.135165 4.456790 4.551161 4.552660 4.553719 4.818772 4.888683
##  [9,] 2.782334 2.822860 3.199358 3.286340 3.354150 3.360490 3.363290 3.380142
## [10,] 2.610518 3.067207 3.284541 3.341811 3.516643 3.555936 3.830086 3.853622
## [11,] 3.494201 3.797314 3.827327 3.904092 3.994113 4.050866 4.076537 4.093090
## [12,] 2.912934 3.012112 3.230329 3.238801 3.304815 3.340812 3.447265 3.567269
## [13,] 3.576371 3.866266 4.166911 4.269376 4.409877 4.592158 4.620142 4.681892
## [14,] 3.417577 3.473444 3.484612 3.582380 3.598714 3.619918 3.663096 3.670983
## [15,] 3.426378 3.571378 3.660410 3.703144 3.728955 3.791979 3.843100 3.868399
## [16,] 2.766007 2.799618 2.978875 3.048748 3.064958 3.222205 3.339832 3.405469
## [17,] 3.337121 3.419711 3.579958 3.624421 3.696849 3.855991 3.861370 3.907346
## [18,] 2.588691 2.701912 2.783561 2.862886 2.885986 2.887831 2.919410 2.931054
## [19,] 3.107219 3.376791 3.683455 3.694217 3.713090 3.766105 3.854338 3.867101
## [20,] 3.077660 3.318162 3.368151 3.518837 3.584649 3.644989 3.697669 3.729892
##           [,9]    [,10]
##  [1,] 3.343813 3.402697
##  [2,] 3.822214 3.824715
##  [3,] 4.238596 4.296554
##  [4,] 3.541882 3.542501
##  [5,] 3.397861 3.404432
##  [6,] 3.654163 3.661292
##  [7,] 4.295168 4.311736
##  [8,] 4.912399 4.958404
##  [9,] 3.467987 3.555936
## [10,] 3.854260 3.922177
## [11,] 4.104316 4.143719
## [12,] 3.604383 3.638785
## [13,] 4.765325 4.767480
## [14,] 3.729084 3.751466
## [15,] 3.955882 4.040735
## [16,] 3.405926 3.431967
## [17,] 3.915937 3.940176
## [18,] 2.956127 3.029521
## [19,] 3.941998 3.948060
## [20,] 3.819647 3.838092

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 × 34
##    `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
##                          <dbl>                      <dbl>                  <dbl>
##  1                       0.732                          1                  0.903
##  2                       0.859                          1                  0.903
##  3                       0.779                          1                  1    
##  4                       1                              1                  0.930
##  5                       0.799                          1                  0.808
##  6                       0.437                          1                  0.859
##  7                       0.779                          1                  0.734
##  8                       0.749                          1                  0.943
##  9                       0.875                          1                  0.903
## 10                       0.969                          1                  0.965
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹​`pCREB(Yb176)Di.IL7.qvalue`,
## #   ²​`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
##             <dbl>          <dbl>          <dbl>                    <dbl>
##  1       -0.313          -0.0154         0.0303                    0.120
##  2        0.771          -0.0114        -0.226                     0.760
##  3        0.272          -0.133          0.572                     0.471
##  4       -0.888          -0.810         -0.381                    -0.521
##  5       -0.645          -0.311         -0.677                    -0.544
##  6       -0.196          -0.0581        -0.0928                    0.957
##  7       -0.262          -0.0444        -0.140                    -1.74 
##  8       -0.0385         -0.224         -0.194                     0.227
##  9       -0.173          -0.127         -0.149                    -0.246
## 10       -0.00750        -0.589         -0.810                     0.738
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## #   `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## #   `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## #   `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## #   `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## #   `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.29 0.258 0.229 0.276 0.285 ...