The segment function to fit a piecewise constant
curve

Wolfgang Huber

April 15, 2025

Contents
1 A simple example 1

2 More testing of the change-point estimates on simulated
data 4

3 Model selection on simulated data 4

1 A simple example

The problem of segmenting a series of numbers into piecewise constant seg-
ments occurs in multiple application areas. Two examples are

e arrayCGH data, where the segments correspond to regions of copy
number gain, loss, or no change.

e tiling microarray data for transcription profiling, where the segments
correspond to transcripts. Here we assume that the probe effects
(which lead to different fluorescence intensities even for the same mRNA
abundance) have been normalized away, so that all probes for the same
unique target sequence have approximately, and in expectation, the
same fluorescence.

To demonstrate the algorithm, let us generate simulated data:

> genData = function(lenx, nrSeg, nrRep=1, stddev=0.1) {
+ x = matrix(as.numeric(NA), nrow=lenx, ncol=nrRep)
+ cp = sort(sample(1:floor(lenx/15), nrSeg-1) * 15)

cpb = ¢c(1, cp, lenx+1)
s =0
for (j in 2:length(cpb)) {
sel = cpb[j-1]:(cpbl[jl-1)
s = (.5+runif(1))#*sign(rnorm(1))+s
x[sel,] = rnorm(length(sel)*nrRep, mean=s, sd=stddev)
}
return(list(x=x, cp=cp))

}

+ + + + + + + + +

set.seed(4711)

lenx = 1000

nrSeg = 10

gd = genData(lenx, nrSeg)
plot(gd$x, pch=".")
abline(v=gd$cp, col="blue')

vV V VvV Vv Vv Vv

gds$x

T T T T T T
0 200 400 600 800 1000

Index

Figure 1: A simulated data example with 10 segments. Their estimated
locations are shown with blue vertical lines

The result is shown in Figure 1. We can use the function segment to recon-
struct the change-points from the data in gd$x alone.

> library("tilingArray")

> maxseg = 12

> maxk = 500

> seg = segment(gd$x, maxk=maxk, maxseg=maxseg)
> seg

Object of class 'segmentation':

Data matrix: 1000 x 1

Change point estimates for number of segments S = 1:12
Selected S = NA

> seg@breakpoints[nrSeg+(-1:1)]

[[1]]
estimate
[1,] 75
[2,] 255
[3,] 345
[4,] 420
(5,1 660
[6,] 750
[7,] 810
(8,1 900

[[2]]
estimate
[1,] 75
[2,] 105
[3,] 255
[4,] 345
[5,] 420
[6,] 660
[7,] 750
[8,] 810
[9,] 900

[[3]1]
estimate
[1,] 75
[2,] 105

[3,1] 255

(4,] 344

(5,1 345

(6,] 420

(7,1 660

(s,1] 750

[9,1] 810
[10,] 900
> gd$cp

[11 75 105 255 345 420 660 750 810 900

We see that the 10-th element of the list segbreakpoints exactly recon-
structs the change-points gd$cp that were used in the simulation.

The parameters maxseg and maxk are the maximum number of segments
and the maximum length per segment. The algorithm finds for each value
of k£ from 1 to maxseg the best segmentation under the restriction that no
individual segment be longer than maxk. In the paper of Picard et al. [1]
and in their software, maxk is implicitely set to the number of data points
length(x). I have introduced this parameter to reduce the algorithm’s com-
plexity. The complexity of Picard’s software is length(x)#*length(x) in
memory and length(x)*length(x)#*maxcp in time, the complexity of the
segment function is length (x) *maxk in memory and length (x) *maxk*maxcp
in time. As I am applying it to data with length(x) ~ 10° and maxk = 250,
the difference can be substantial.

2 More testing of the change-point estimates on
simulated data

Here is a little for-loop that generates data using random parameters and
checks whether segment can reconstruct them.

> for(i in 1:20){
+ gd = genData(lenx, nrSeg)

seg = segment (gd$x, maxk=maxk, maxseg=maxseg)

stopifnot (seg@breakpoints[[nrSegl][, "estimate"] == gd$cp)
}

+ + +

3 Model selection on simulated data

In this section we show that the BIC works pretty well for finding the correct
number of segments (parameter S in the paper) if the data are generated
by the model.

> nrSeg = 22
> gd = genData(lenx, nrSeg, nrRep=2, stddev=1/3)
> s = segment (gd$x, maxk=lenx, maxseg=as.integer(nrSeg * 2.5))

Plot the segmented data (Figure 2a)

> par(mai=c(1,1,0.1,0.01))
> plot(row(gd$x), gd$x, pch=".")

and the log likelihoods and the penalized log likelihoods. This is similar to
what is done in the segmentation.Rnw vignette for real data. and call it it:

> par(mai=c(1,1,0.1,0.01))
> plotPenLL(s)

The result is shown in Figure 2b.

> which.max(logLik(s, penalty="AIC"))
[1] 25

> which.max(logLik(s, penalty="BIC"))

[1] 22

References

[1] A statistical —approach for CGH microarray data analy-
sis. Franck Picard, Stephane Robin, Marc Lavielle, Chris-
tian Vaisse, Gilles Celeux, Jean-Jacques Daudin. Rapport de
recherche No. 5139, Mars 2004, Institut National de Recherche
en Informatique et en Automatique (INRIA), ISSN 0249-6399.
http://www.inapg.fr/ens rech/mathinfo/recherche/mathematique/outil.html

gd$x

(penalized) log likelihood

-900 -800 -700

-1000

200

400 600 800 100C

row(gd$x)

—e— log L
—o— log Lac
—— logLec

°
°
L[] \g
° o’, e
. .0 ,
MO
1o !
e |
1 \
q 3
1"
® o%%,
o 1 %,
s ° | o,
ﬁ * ! o,
4 ° ! ..'o
Be
qde ! '..
N -
de 1 %o,
J’ ./
T T T T T
10 20 30 40 50
S

Figure 2: a) simulated data example with nrSeg=22 segments and verti-
cal lines representing the fitted model with S =22, selected by maximum
log Lpic. b) log-likelihood log L, penalized likelihoods log La1c and log Lpic.

