Package ‘DMRcate’

May 24, 2024

Title Methylation array and sequencing spatial analysis methods
Version 3.1.0
Date 2024-04-24
Author Tim Peters

Description
De novo identification and extraction of differentially methylated regions (DMRs) from the human genome using Whole Genome Bisulfite Sequencing (WGBS) and Illumina Infinium Array (450K and EPIC) data. Provides functionality for filtering probes possibly confounded by SNPs and cross-hybridisation. Includes GRanges generation and plotting functions.

Depends R (>= 4.3.0)
Imports AnnotationHub, ExperimentHub, bsseq, GenomeInfoDb, limma, edgeR, minfi, missMethyl, GenomicRanges, plyr, Gviz, IRanges, stats, utils, S4Vectors, methods, graphics, SummarizedExperiment, biomaRt, grDevices
biocViews DifferentialMethylation, GeneExpression, Microarray, MethylationArray, Genetics, DifferentialExpression, GenomeAnnotation, DNAMethylation, OneChannel, TwoChannel, MultipleComparison, QualityControl, TimeCourse, Sequencing, WholeGenome, Epigenetics, Coverage, Preprocessing, DataImport

License file LICENSE
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/DMRcate
git_branch devel
git_last_commit 5d83c68
git_last_commit_date 2024-04-30
Repository Bioconductor 3.20
Date/Publication 2024-05-24
Maintainer Tim Peters <t.peters@garvan.org.au>
Description

De novo identification and extraction of differentially methylated regions (DMRs) in the human genome using Illumina array and bisulfite sequencing data. *DMRcate* extracts and annotates differentially methylated regions (DMRs) using a kernel-smoothed estimate. Functions are provided for filtering probes possibly confounded by SNPs and cross-hybridisation. Includes GRanges generation and plotting functions.

Author(s)

Tim J. Peters <t.peters@garvan.org.au>

References

Examples

```r
library(ExperimentHub)
library(limma)
eh <- ExperimentHub()
FlowSorted.Blood.EPIC <- eh[["EH1136"]]
tcell <- FlowSorted.Blood.EPIC[,colData(FlowSorted.Blood.EPIC)$CD4T==100 |
colData(FlowSorted.Blood.EPIC)$CD8T==100]
```
changeFDR

```r
changeFDR <- function(annot, FDR) {
  detach(annotate)
  tcell <- minfi::detectionP(tcell)
  remove <- apply(detP, 1, function (x) any(x > 0.01))
  tcell <- tcell[!remove]
  tcell <- minfi::preprocessFunnorm(tcell)
  # Subset to chr2 only
  tcell <- tcell[seqnames(tcell) == "chr2",]
  tcellms <- minfi::getM(tcell)
  tcellms.noSNPs <- rmSNPandCH(tcellms, dist=2, mafcut=0.05)
  tcell$Replicate[tcell$Replicate=="" ] <- tcell$Sample_Name[tcell$Replicate=="" ]
  tcellms.noSNPs <- avearrays(tcellms.noSNPs, tcell$Replicate)
  tcell <- tcell[,!duplicated(tcell$Replicate)]
  tcell <- tcell[rownames(tcellms.noSNPs),]
  colnames(tcellms.noSNPs) <- colnames(tcell)
  assays(tcell)[["M" ]] <- tcellms.noSNPs
  assays(tcell)[["Beta" ]] <- minfi::ilogit2(tcellms.noSNPs)
  type <- factor(tcell$CellType)
  design <- model.matrix(~type)
  myannotation <- cpg.annotate("array", tcell,
    arraytype = "EPICv1", analysis.type="differential",
    design=design, coef=2)
  dmroutput <- dmrcreate(myannotation, lambda=1000, C=2)
  results.ranges <- extractRanges(dmroutput, genome = "hg19")
  groups <- c(CD8T="magenta", CD4T="forestgreen")
  cols <- groups[as.character(type)]
  DMR.plot(results.ranges, dmr=1,
    CpGs=minfi::getBeta(tcell), what="Beta",
    arraytype = "EPICv1", phen.col=cols, genome="hg19")
}
```

Description

Change the individual CpG FDR thresholding for a CpGannotated object.

Takes a `CpGannotated-class` object and a specified FDR > 0 and < 1, and re-indexes the object in order to call DMRs at the specified rate.

Usage

```r
changeFDR(annot, FDR)
```

Arguments

- **annot**
 - A `CpGannotated-class` object, created by `cpg.annotate` or `sequencing.annotate`.

- **FDR**
 - The desired individual CpG FDR, which will index the rate at which DMRs are called.
Details

The number of CpG sites called as significant by this function will set the post-smoothing threshold for DMR constituents in `dmrCate`.

Value

A re-indexed `CpGannotated-class` object.

Author(s)

Tim Peters <t.peters@garvan.org.au>

Examples

```r
library(GenomicRanges)
stats <- rt(1000, 2)
fdrs <- p.adjust(2*pt(-abs(stats), 100), "BH")
annotated <- GRanges(rep("chr1", 1000), IRanges(1:1000, 1:1000), stat = stats,
diff = 0, ind.fdr = fdrs, is.sig = fdrs < 0.05)
names(annotated) <- paste0("CpG", 1:1000)
myannotation <- new("CpGannotated", ranges=annotated)
changeFDR(myannotation, 0.1)
```

Description

Annotate Illumina CpGs with their chromosome position and test statistic

Usage

```r
cpg.annotate(datatype = c("array", "sequencing"), object,
what = c("Beta", "M"), arraytype = c("EPICv2", "EPICv1", "EPIC",
"450K"), epicv2Remap = TRUE, analysis.type = c("differential",
"variability", "ANOVA", "diffVar"), design, contrasts = FALSE,
cont.matrix = NULL, fdr = 0.05, coef, varFitcoef = NULL,
topVarcoef = NULL, ...)
```

Arguments

datatype Character string representing the type of data being analysed.
object Either:
 - A matrix of M-values, with unique Illumina probe IDs as rownames and unique sample IDs as column names or,
 - A GenomicRatioSet, appropriately annotated.
what Does the data matrix contain Beta or M-values? Not needed if object is a GenomicRatioSet.

arraytype Is the data matrix sourced from EPIC or 450K data? Not needed if object is a GenomicRatioSet.

epicv2Remap Logical indicating whether to remap 11,878 cross-hybridising EPICv2 probes to their more likely CpG target (see Peters et al. 2024).

analysis.type "differential" for dmrcate() to return DMRs; "variability" to return VMRs; "ANOVA" to return "whole experiment" DMRs, incorporating all possible contrasts from the design matrix using the moderated F-statistics; "diffVar" to return differentially variable methylated regions, using the missMethyl package to generate t-statistics.

design Study design matrix. Identical context to differential analysis pipeline in limma. Must have an intercept if contrasts=FALSE. Applies only when analysis.type %in% c("differential", "ANOVA", "diffVar").

contrasts Logical denoting whether a limma-style contrast matrix is specified. Only applicable when datatype="array" and analysis.type %in% c("differential", "diffVar").

cont.matrix Limma-style contrast matrix for explicit contrasting. For each call to cpg.annotate, only one contrast will be fit. Only applicable when datatype="array" and analysis.type %in% c("differential", "diffVar").

fdr FDR cutoff (Benjamini-Hochberg) for which CpG sites are individually called as significant. Used to index default thresholding in dmrcate(). Highly recommended as the primary thresholding parameter for calling DMRs. Not used when analysis.type == "variability".

coef The column index in design corresponding to the phenotype comparison. Corresponds to the comparison of interest in design when contrasts=FALSE, otherwise must be a column name in cont.matrix. Only applicable when analysis.type == "differential".

varFitcoef The columns of the design matrix containing the comparisons to test for differential variability. If left NULL, will test all columns. Identical context to missMethyl::varFit(). Only applicable when analysis.type %in% "diffVar".

topVarcoef Column number or column name specifying which coefficient of the linear model fit is of interest. It should be the same coefficient that the differential variability testing was performed on. Default is last column of fit object. Identical context to missMethyl::topVar(). Only applicable when analysis.type %in% "diffVar".

... Extra arguments passed to the limma function lmFit() (analysis.type="differential").

Value

A CpGannotated-class.

Author(s)

Tim J. Peters <t.peters@garvan.org.au>
References

Examples

```r
library(AnnotationHub)
ah <- AnnotationHub()
EPICv2manifest <- ah[["AH116484"]]
object <- minfi::logit2(matrix(rbeta(10000, 3, 1), 1000, 10))
rownames(object) <- sample(rownames(EPICv2manifest), 1000)
type <- rep(c("Ctrl", "Treat"), each=5)
design <- model.matrix(~type)
myannotation <- cpg.annotate("array", object, what = "M", arraytype = "EPICv2", analysis.type="differential", design=design, coef=2)
```

CpGannotated-class

An object summarising individual CpG sites fitted to a given model

Description

An S4 class that stores output from either `cpg.annotate` or `sequencing.annotate`.

Slots

- `ranges`: A GRanges object, containing CpG-level information to be passed to `dmrcate`. Mcols of this object include:
 - `stat`: Per-CpG test statistic; `t` if from `limma` or Wald if from DSS if using differential mode. Variance if using variability mode, sqrt(F) if using ANOVA mode, `t` if using diffVar mode.
 - `diff`: Methylation difference/coefficient. In beta space for `cpg.annotate` output and output passed from DSS::DMLtest(). In logit space for when a BSseq object is passed from `sequencing.annotate`. Not available for output passed from DSS::DMLtest.multiFactor(). Not applicable in variability, ANOVA or diffVar modes.
 - `ind.fdr`: False discovery rate as calculated on individual CpG sites.
 - `is.sig`: Logical determining whether a CpG site is individually significant or not. Can be adjusted using `changeFDR`.

Methods

CpGannotate objects have a show method that describes the data therein.

Author(s)

Tim Peters <t.peters@garvan.org.au>

Description

Plots an individual DMR (in context of possibly other DMRs) as found by dmrcate. Heatmaps are shown as well as proximal coding regions, smoothed methylation values (with an option for smoothed group means) and chromosome ideogram.

Usage

DMR.plot(ranges, dmr, CpGs, what = c("Beta", "M"),
 arraytype = c("EPICv2", "EPICv1", "450K"), phen.col,
 genome = c("hg19", "hg38", "mm10"), labels = names(ranges),
 group.means = FALSE, extra.ranges = NULL,
 extra.title = names(extra.ranges))

Arguments

ranges A GRanges object (ostensibly created by extractRanges()) describing DMR coordinates.
dmr Index of ranges (one integer only) indicating which DMR to be plotted.
CpGs Either:
- A matrix of beta values for plotting, with unique Illumina probe IDs as row-names.
- A GenomicRatioSet, annotated with the appropriate array and data types
- A BSseq object containing per-CpG methylation and coverage counts for the samples to be plotted
what Does CpGs (if a matrix) contain Beta or M-values? Not needed if object is a GenomicRatioSet or BSseq object.
arraytype Is CpGs (if a matrix) sourced from EPIC or 450K data? Not needed if object is a GenomicRatioSet or BSseq object.
phen.col Vector of colors denoting phenotypes of all samples described in CpGs. See vignette for worked example.
genome Reference genome for annotating DMRs. Can be one of "hg19", "hg38" or "mm10"
labels Vector of DMR names to be displayed. Defaults to names(ranges).
dmrcate

DMR identification

Description

The main function of this package. Computes a kernel estimate against a null comparison to identify significantly differentially (or variable) methylated regions.

Usage

```r
dmrcate(object,
    lambda = 1000,
    C=NULL,
    pcutoff = "fdr",
    consec = FALSE,
    group.means = FALSE,
    extra.ranges = NULL,
    extra.title = NULL,
    extra.plot = FALSE)
```

Arguments

- `object`: GRanges object.
- `lambda`: smoothing parameter.
- `C`: centering parameter.
- `pcutoff`: significance level for differential methylation.
- `consec`: whether to consider consecutive probes.
- `group.means`: whether to plot smoothed methylation by individual sample (FALSE) or by groups defined in phen.col (TRUE).
- `extra.ranges`: Optional GRanges object. Will plot any range overlapping a DMR.
- `extra.title`: Vector of names for ranges from extra.ranges. Defaults to names(extra.ranges).

Value

A plot to the current device.

Author(s)

Tim J. Peters <t.peters@garvan.org.au>, Aaron Statham <a.statham@garvan.org.au>
conseclambda = 10,
betacutoff = NULL,
min.cpgs = 2
)

Arguments

object A CpGannotated-class, created from cpg.annotate or sequencing.annotate.
lambda Gaussian kernel bandwidth for smoothed-function estimation. Also informs DMR
bookend definition; gaps >= lambda between significant CpG sites will be in separate DMRs. Support is truncated at 5*lambda. Default is 1000 nucleotides. See details for further info.
C Scaling factor for bandwidth. Gaussian kernel is calculated where lambda/C =
sigma. Empirical testing shows for both Illumina and bisulfite sequencing data
that, when lambda=1000, near-optimal prediction of sequencing-derived DMRs
is obtained when C is approximately 2, i.e. 1 standard deviation of Gaussian
kernel = 500 base pairs. Cannot be < 0.2.
pcutoff Threshold to determine DMRs. Default implies indexing at the rate of individu-
ally significant CpGs and can be set on the CpGannotated-class object using
cpg.annotate, sequencing.annotate or changeFDR. Default highly recom-
mended unless you are comfortable with the risk of Type I error. If manually
specified, this value will be set on the highly permissive kernel-smoothed FDR
values.
consec Use DMRcate in consecutive mode. Treats CpG sites as equally spaced.
conseclambda Bandwidth in CpGs (rather than nucleotides) to use when consec=TRUE. When
specified the variable lambda simply becomes the minimum distance separating
DMRs.
betacutoff Optional filter; removes any region from the results where the absolute mean
beta shift is less than the given value. Only available for Illumina array data and
results produced from DSS::DMLtest().
min.cpgs Minimum number of consecutive CpGs constituting a DMR.

Details

The values of lambda and C should be chosen with care. For array data, we currently recommend
that half a kilobase represent 1 standard deviation of support (lambda=1000 and C=2). If lambda
is too small or C too large then the kernel estimator will not have enough support to significantly
differentiate the weighted estimate from the null distribution. If lambda is too large then DMRcate
will report very long DMRs spanning multiple gene loci, and the large amount of support will likely
give Type I errors. If you are concerned about Type I errors we highly recommend using the default
value of pcutoff, although this will return no DMRs if no DM CpGs are returned by limma/DSS
either.

Value

A DMResults object.
Author(s)
Tim J. Peters <t.peters@garvan.org.au>, Mike J. Buckley <Mike.Buckley@csiro.au>, Tim Triche Jr. <tim.triche@usc.edu>

References

Examples

```r
library(AnnotationHub)
library(GenomicRanges)
ah <- AnnotationHub()
EPICv2manifest <- ah[["AH116484"]]
chr21probes <- rownames(EPICv2manifest)[EPICv2manifest$CHR=="chr21"]
coords <- EPICv2manifest[chr21probes, "MAPINFO"]
stats <- rt(length(chr21probes), 2)
fdrs <- p.adjust(2*pt(-abs(stats), 100), "BH")
annotated <- GRanges(rep("chr21", length(stats)), IRanges(coords, coords), stat = stats,
diff = 0, ind.fdr = fdrs, is.sig = fdrs < 0.05)
names(annotated) <- chr21probes
myannotation <- new("CpGannotated", ranges=annotated)
dmrcoutput <- dmrcate(myannotation, lambda=1000, C=2)
```

DMRcate-internal

Internal DMRcate objects and functions

Description

Internal DMRcate objects and functions
DMResults-class
Initial storage object for called DMRs - class

Description
An S4 class that stores DMR information as output from `dmrcate`.

Slots
This class has eight slots, summarising DMR information to be passed to `extractRanges`:
- `coord`: DMR coordinates in UCSC style.
- `no.cpgs`: Number of constituent CpG sites of DMR.
- `min_smoothed_fdr`: Minimum FDR of the smoothed estimate.
- `Stouffer`: Stouffer summary transform of the individual CpG FDRs.
- `HMFDR`: Harmonic mean of the individual CpG FDRs.
- `Fisher`: Fisher combined probability transform of the individual CpG FDRs.
- `maxdiff`: Maximum differential/coefficient within the DMR.
- `meandiff`: Mean differential/coefficient across the DMR.

Methods
`DMResults` objects have a `show` method describing the number of DMRs called.

Author(s)
Tim Peters <t.peters@garvan.org.au>

extractRanges
Create a GRanges object from dmrcate output.

Description
Takes a DMResults object and produces the corresponding GRanges object.

Usage
```
extractRanges(dmrcoutput, genome = c("hg19", "hg38", "mm10"))
```

Arguments
- **dmrcoutput**: A DMResults object.
- **genome**: Reference genome for annotating DMRs with promoter overlaps. Can be one of "hg19", "hg38" or "mm10". Ranges are assumed to map to the reference stated; there is no liftover.
Value

A GRanges object.

Author(s)

Tim Triche Jr. <tim.triche@usc.edu>, Tim Peters <t.peters@garvan.org.au>

Examples

```r
library(AnnotationHub)
library(GenomicRanges)
ah <- AnnotationHub()
EPICv2manifest <- ah[["AH116484"]]
chr21probes <- rownames(EPICv2manifest)[EPICv2manifest$CHR=="chr21"]
coords <- EPICv2manifest[chr21probes, "MAPINFO"]
stats <- rt(length(chr21probes), 2)
fdrs <- p.adjust(2*pt(-abs(stats), 100), "BH")
annotated <- GRanges(rep("chr21", length(stats)), IRanges(coords, coords),
  stat = stats, diff = 0, ind.fdr = fdrs, is.sig = fdrs < .05)
names(annotated) <- chr21probes
myannotation <- new("CpGannotated", ranges=annotated)
dmrcoutput <- dmrcate(myannotation, lambda=1000, C=2)
extractRanges(dmrcoutput, genome = "hg38")
```

rmPosReps

Filter out position replicates from an EPICv2 beta- or M-matrix

Description

Given a beta-value or M-value matrix with EPICv2 probe IDs as rownames, returns a truncated matrix with a 1-to-1 mapping of probe ID to CpG locus. Values returned depend on the filtering strategy selected. Replicate probes are averaged by default, but the user may optionally select individual probes per replicate group based on maximum sensitivity to methylation change or maximum precision, as per empirical cross-platform consensus testing against EPICv1 and WGBS data (Peters et al. 2024).

Usage

```r
rmPosReps(object, filter.strategy= c("mean", "sensitivity",
                "precision","random"))
```

Arguments

- **object**: A matrix of beta- or M-values, with unique EPICv2 Illumina probe IDs as rownames.
Description

Filter probes

Usage

```r
rmSNPandCH(object, dist = 2, mafcut = 0.05, and = TRUE, rmcrosshyb = TRUE, rmXY = FALSE)
```
Arguments

object A matrix of M-values or beta values, with unique Illumina probe IDs as row-names.
dist Maximum distance (from CpG to SNP/variant) of probes to be filtered out. See details for when Illumina occasionally lists a CpG-to-SNP distance as being < 0.
mafcut Minimum minor allele frequency of probes to be filtered out.
and If TRUE, the probe must have at least 1 SNP binding to it that satisfies both requirements in dist and mafc cut for it to be filtered out. If FALSE, it will be filtered out if either requirement is satisfied. Default is TRUE.
rmcrosshyb If TRUE, filters out probes found by Peters et al. (2024) (EPICv2), Pidsley and Zotenko et al. (2016) (EPICv1) or Chen et al. (2013) (450K) to be cross-reactive with areas of the genome not at the site of interest. Default is TRUE.
rmXY If TRUE, filters out probe hybridising to sex chromosomes. Or-operator applies when combined with other 2 filters.

Details

Probes in -1:dist will be filtered out for any integer specification of dist. When a probe is listed as being “-1” nucleotides from a SNP, that SNP is immediately adjacent to the end of the probe, and is likely to confound the measurement, in addition to those listed as 0, 1 or 2 nucleotides away. See vignette for further details.

Value

A matrix, attenuated from object, with rows corresponding to probes matching user input filtered out.

Author(s)

Tim Peters <t.peters@garvan.org.au>

References

sequencing.annotate

Examples

```r
library(ExperimentHub)
eh <- ExperimentHub()
ALLbetas <- eh["EH9451"]
ALLbetas <- ALLbetas[1:1000,]
ALLMs <- minfi::logit2(ALLbetas)
ALLMs.noSNPs <- rmSNPandCH(ALLMs, rmcrosshyb = FALSE)
```

sequencing.annotate Annotate a bisulfite sequencing experiment (WGBS or RRBS) with probe weights and chromosomal position.

Description

Either: - Annotate a BSseq object with chromosome position and test statistic, or - Parse output from DSS::DMLtest() or DSS::DMLtest.multiFactor() into a CpGannotated object.

Usage

```r
sequencing.annotate(obj, methdesign, all.cov=FALSE, contrasts = FALSE,
cont.matrix = NULL, fdr = 0.05, coef, ...)
```

Arguments

- **obj**: A BSseq object or data.frame output from DSS::DMLtest() or DSS::DMLtest.multiFactor().
- **methdesign**: Methylation study design matrix describing samples and groups. **Use of edgeR::modelMatrixMeth() to make this matrix is highly recommended**, since it transforms a regular model.matrix (as one would construct for a microarray or RNA-Seq experiment) into a “two-channel” matrix representing methylated and unmethylated reads for each sample. Only applicable when obj is a BSseq object.
- **all.cov**: If TRUE, only CpG sites where all samples have > 0 coverage will be retained. If FALSE, CpG sites for which some (not all) samples have coverage=0 will be retained.
- **contrasts**: Logical denoting whether a limma-style contrast matrix is specified. Only applicable when obj is a BSseq object.
- **cont.matrix**: Limma-style contrast matrix for explicit contrasting. For each call to sequencing.annotate, only one contrast will be fit. Only applicable when obj is a BSseq object.
- **fdr**: FDR cutoff (Benjamini-Hochberg) for which CpG sites are individually called as significant. Used to index default thresholding in dmrcate(). **Highly recommended as the primary thresholding parameter for calling DMRs**. Only applicable when obj is a BSseq object.
- **coef**: The column index in design corresponding to the phenotype comparison. Corresponds to the comparison of interest in design when contrasts=FALSE, otherwise must be a column name in cont.matrix. Only applicable when obj is a BSseq object.
- **...**: Extra arguments passed to the limma function lmFit(). Only applicable when obj is a BSseq object.
Value

A CpGannotated-class.

Author(s)

Tim J. Peters <t.peters@garvan.org.au>

References

Examples

```r
library(ExperimentHub)
library(SummarizedExperiment)
library(bsseq)
library(GenomeInfoDb)
eh = ExperimentHub()
bis_1072 <- eh[["EH1072"]]
pData(bis_1072) <- data.frame(replicate=gsub(".*-", ", colnames(bis_1072)),
                             tissue=substr(colnames(bis_1072), 1, nchar(colnames(bis_1072))=3),
                             row.names=colnames(bis_1072))
colData(bis_1072)$tissue <- gsub("-", ", colData(bis_1072)$tissue
bis_1072 <- renameSeqlevels(bis_1072, mapSeqlevels(seqlevels(bis_1072), "UCSC"))
bis_1072 <- bis_1072[seqnames(bis_1072)=="chr19",]
bis_1072 <- bis_1072[240201:240300,]
tissue <- factor(pData(bis_1072)$tissue)
tissue <- relevel(tissue, "Liver_Treg")
design <- model.matrix(~tissue)
colnames(design) <- gsub("tissue", "", colnames(design))
colnames(design)[1] <- "Intercept"
rownames(design) <- colnames(bis_1072)
methdesign <- edgeR::modelMatrixMeth(design)
cont.mat <- limma::makeContrasts(treg_vs_tcon=Lymph_N_Treg-Lymph_N_Tcon,
                                 fat_vs_ln=Fat_Treg-Lymph_N_Treg,
                                 skin_vs_ln=Skin_Treg-Lymph_N_Treg,
                                 fat_vs_skin=Fat_Treg-Skin_Treg,
                                 levels=methdesign)
seq_annot <- sequencing.annotate(bis_1072, methdesign, all.cov = TRUE,
                                 contrasts = TRUE, cont.matrix = cont.mat,
                                 coef = "treg_vs_tcon", fdr=0.05)
```
Index

* classes
 - CpGannotated-class, 6
 - DMResults-class, 11

* internal
 - DMRcate-internal, 10

changeFDR, 3, 6, 9

cpg.annotate, 3, 4, 6, 9

CpGannotated-class, 6

DMR.plot, 7

DMRcate (DMRcate-package), 2
dmrcate, 4, 6, 8, 11

DMRcate-internal, 10

DMRcate-package, 2

DMResults-class, 11

extractCoords (DMRcate-internal), 10

extractRanges, 11, 11

fitParallel (DMRcate-internal), 10

KernelSums (DMRcate-internal), 10

KernelTest (DMRcate-internal), 10

plot (DMR.plot), 7

rmPosReps, 12

rmSNPandCH, 13

Segment (DMRcate-internal), 10

sequencing.annotate, 3, 6, 9, 15

SparseDeltas (DMRcate-internal), 10