Package ‘LBE’

June 5, 2019

Type Package
Title Estimation of the false discovery rate.
Version 1.53.0
Date 2007-01-10
Author Cyril Dalmasso
Maintainer Cyril Dalmasso <dalmasso@vjf.inserm.fr>
Description LBE is an efficient procedure for estimating the proportion of true null hypotheses, the false discovery rate (and so the q-values) in the framework of estimating procedures based on the marginal distribution of the p-values without assumption for the alternative hypothesis.

Depends stats
Imports graphics, grDevices, methods, stats, utils
License GPL-2
Suggests qvalue
biocViews MultipleComparison

git_url https://git.bioconductor.org/packages/LBE
git_branch master
git_last_commit 49bcbf6
git_last_commit_date 2019-05-02
Date/Publication 2019-06-04

R topics documented:

LBE-package .. 2
golub.pval .. 2
hedenfalk.pval .. 3
LBE .. 4
LBEa .. 6
LBEplot .. 7
LBEsummary .. 8
LBEwrite ... 9

Index 10
LBE-package

Estimation of the proportion of true null hypotheses, the false discovery rate and the q-values.

Description

The package LBE allows estimating the proportion of true null hypotheses and the false discovery rate.

Details

- **Package:** LBE
- **Type:** Package
- **Version:** 1.13.2
- **Date:** 2007-1-10
- **License:** GPL-2

Author(s)

Cyril Dalmasso
Maintainer: Cyril Dalmasso <dalmasso@vjf.inserm.fr>

References

See Also

LBE is an alternative method to the one proposed by Storey and Tibshirani (2003) for estimating the q-values, this latter method being implemented in the package `qvalue`.

golub.pval

p-values corresponding to the gene expression data from Golub et al. (1999).

Description

The aim of the study of Golub et al. *Golub* was to identify differentially expressed genes between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). The samples were assayed using Affymetrix Hgu6800 chips and the data on the expression of 7129 genes are available in the Bioconductor package *golubEsets*. The p-values provided here were calculated from a two-sample t-test analysis. The variance-stabilizing method included in the *vsn* package was applied for normalizing the data.
Usage

data(golub.pval)

Format

The format is: num [1:3051] 0.0170 0.2552 0.9130 0.7867 0.2431 ...

References

Description

The aim of the study of Hedenfalk et al. (2001) was to examine breast-cancer tissues from patients with BRCA1-BRCA2 related cancer and cases of sporadic breast cancer to determine global gene expression patterns in the different classes of tumours. Here, we focus on the comparison of BRCA1 and BRCA2. The p-values provided here are the same as those provided with the package qvalue. They were obtained from a two-sample t-test analysis on a subset of 3,170 genes, as described in Storey and Tibshirani (2003).

Usage

data(hedenfalk.pval)

Format

The format is: num [1:3170] 0.0121 0.0750 0.9949 0.0418 0.8458 ...

References

Estimation of the false discovery rate.

Description

LBE is an efficient procedure for estimating the proportion of true null hypotheses, the false discovery rate and the q-values.

Usage

LBE(pval, a = NA, l = 0.05, ci.level = 0.95, qvalues = TRUE, plot.type = "main", FDR.level = 0.05, n.significant = NA)

Arguments

- **pval**: Numerical vector of p-values (only necessary input).
- **a**: Real value used in \([-\ln(1 - \pi_i)^a]\) (see details). If a == NA (default), then the value of a is automatically calculated as the greatest value such that the upper bound of the asymptotic standard deviation of the estimator of pi0 is smaller than the threshold l. If a >= 1, the value of a is used in \([-\ln(1 - \pi_i)^a]\) (see details). If a < 1, the identity function is used for transforming the p-values.
- **l**: Threshold for the upper bound of the asymptotic standard deviation (only used if a == NA).
- **ci.level**: Level for the confidence interval of pi0.
- **qvalues**: Logical value for estimating the qvalues and the FDR. If qvalues = FALSE, only the proportion pi0 of true null hypotheses is estimated.
- **plot.type**: If plot.type = "none", no graphic is displayed. If plot.type = "main", the estimated q-values versus the p-values are plotted together with the histogram of the p-values. If plot.type = "multiple", several graphics are displayed: 1. The histogram of the p-values 2. The estimated q-values versus the p-values are plotted together with the histogram of the p-values. 3. The number of significant tests versus each qvalue cutoff 4. The number of expected false positives versus the number of significant tests.
- **FDR.level**: Level at which to control the FDR (only used if n.significant == NA).
- **n.significant**: If specified, the FDR is estimated for the rejection region defined by the "n.significant" smallest p-values.

Details

The procedure LBE is based on the expectation of a particular transformation of the p-values leading to a straightforward estimation of the key quantity pi0 that is the proportion of true null hypotheses:

\[
pi0(a) = \{ (1/m) \ast \sum_{i=1}^{n} [-\ln(1 - \pi_i)^a] / \Gamma(a + 1) \},
\]

where a belongs to the interval [1; inf].

Value

A list containing:

- **call**: Function call.
LBE

FDR Level at which to control the FDR (if n.significant == NA) or estimated FDR (if n.significant != NA).

pi0 Estimated value of pi0, the proportion of true null hypotheses.

pi0.ci Confidence interval for pi0.

ci.level Level for the confidence interval of pi0.

a Value used in \[-\ln(1 - \pi)\]^a (see details).

l Upper bound of the asymptotic standard deviation for pi0.

qvalues Vector of the estimated q-values.

pvalues Vector of the original p-values.

significant Indicator of wether the null hypothesis is rejected.

n.significant Number of rejected null hypotheses.

Note

LBE is an alternative method to the one proposed by Storey and Tibshirani (2003) for estimating the q-values, this latter method being implemented in the package qvalue.

Author(s)

Cyril Dalmasso

References

See Also

LBEplot, LBEsummary, LBEwrite, LBEa

Examples

start
data(hedenfalk.pval)
res=LBE(hedenfalk.pval)
data(golub.pval)
res=LBE(golub.pval)
end
LBEa

Optimal setting for the parameter a

Description

The LBEa function is called by the main function LBE for choosing the greatest value of a such that the upper bound of the asymptotic standard deviation is less than a threshold l. A plot illustrating the relation between a and l for a fixed number of tested hypotheses can also be displayed.

Usage

LBEa(m, l = 0.05, fig = TRUE, a.rng = NA)

Arguments

m
Total number of tested hypotheses.

l
Threshold for the upper bound of the asymptotic standard deviation (default value is 0.05).

fig
Logical value for plotting the standard deviation versus a.

a.rng
Range of values of a to consider. If a.rng == NA, a.rng is set such that the standard deviation is less than 0.5.

Details

The procedure LBE is based on the expectation of a particular transformation of the p-values leading to a straightforward estimation of the key quantity \(\pi_0 \) that is the proportion of true null hypotheses:

\[
\pi_0(a) = \frac{1}{m} \sum_{i=1}^{m} \left[-\ln(1 - \pi_i)^a \right] / \Gamma(a + 1)
\]

where a belongs to the interval \([1; \infty)\). As there is a balance between bias (decreasing as a increase) and variance (increasing as a increase), for a specified number \(m \) of tested hypotheses, we have proposed to choose the greatest value of a such that the upper bound of the asymptotic standard deviation of the estimator of \(\pi_0 \) is smaller than the threshold l. The function LBEa allows to plot the standard deviation versus a in order to help for the choice of the threshold l (for a specific number \(m \) of tested hypotheses).

Value

a
Greatest value of a such that the the upper bound of the asymptotic standard deviation of the estimator of \(\pi_0 \) is smaller than the threshold l.

Author(s)

Cyril Dalmasso

References

LBEplot

Graphical display of LBE objects.

Description
Graphical display of LBE objects.

Usage
LBEplot(LBEobj, rng = c(0, 0.1), plot.type = c("multiple", "main"), legend = TRUE)

Arguments
- **LBEobj**: LBE object.
- **rng**: Range of q-values to consider.
- **plot.type**: If plot.type == "main", The estimated q-values versus the p-values are plotted together with the histogram of the p-values.
 If plot.type == "multiple" (default value), several graphics are displayed.
- **legend**: Logical value for displaying the legend on the plot (when plot.type == "main").

Details
If plot.type == "multiple", the following graphics are displayed: 1. The histogram of the p-values. 2. The estimated q-values versus the p-values. 3. The number of significant tests versus each q-value cutoff. 4. The number of expected false positives versus the number of significant tests.

Note
The function LBEplot is analogous to the function qplot from the package qvalue.

Author(s)
Cyril Dulmasso

See Also
LBE, LBEsummary, LBEwrite, LBEa
Examples

```r
## start
data(hedenfalk.pval)
res=LBE(hedenfalk.pval,plot.type="none")
LBEplot(res)
LBEplot(res,plot.type="main")
LBEplot(res,plot.type="main",legend=FALSE)
## end
```

LBEsummary
Display LBE object

Description
Display summary information for an LBE object.

Usage

```r
LBEsummary(LBEobj, cuts = c(1e-04, 0.001, 0.01, 0.025, 0.05, 0.1, 1), digits = getOption("digits"),
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBEobj</td>
<td>LBE object.</td>
</tr>
<tr>
<td>cuts</td>
<td>Vector of significance value to use for table.</td>
</tr>
<tr>
<td>digits</td>
<td>Significant digits to display.</td>
</tr>
<tr>
<td>...</td>
<td>Any other arguments.</td>
</tr>
</tbody>
</table>

Details
LBEsummary shows the original call, estimated proportion of true null hypotheses, confidence interval for the proportion of true null hypotheses and a table comparing the number of significant calls for the p-values and for the estimated q-values using a set of cutoffs given by the argument cuts.

Value
Invisibly returns the original object.

Note
The function LBEsummary is analogous to the function qsummary from the package qvalue.

Author(s)
Cyril Dalmasso

See Also
LBE, LBEplot, LBEwrite, LBEa
LBEwrite 9

Examples

start
data(hedenfalk.pval)
res<-LBE(hedenfalk.pval)
print(res)
LBEsummary(res)
end

LBEwrite

Write the results of an LBE object to a file.

Description
Write the results of an LBE object to a file.

Usage
LBEwrite(LBEobj, filename = "LBE-results.txt")

Arguments

 LBEobj LBE object
 filename Output filename (optional)

Details
The output file lists the estimate of pi0, which is the proportion of true null hypotheses. It also lists each p-value and corresponding q-value, one per line. If an FDR significance level was specified in the call to qvalue, the significance level is printed below the estimate of pi0, and an indicator of significance is included as a third column for each p-value and q-value.

Note
The function LBEwrite is analogous to the function qwrite from the package qvalue.

Author(s)
Cyril Dalmasso

See Also
LBE, LBEplot, LBEsummary, LBEa

Examples
start
data(hedenfalk.pval)
res<-LBE(hedenfalk.pval)
LBEwrite(res,filename="myresults.txt")
end
Index

*Topic** datasets
 - golub.pval, 2
 - hedenfalk.pval, 3

*Topic** htest
 - LBE, 4
 - LBEplot, 7
 - LBEsummary, 8
 - LBEwrite, 9

*Topic** misc
 - LBEa, 6

*Topic** package
 - LBE-package, 2

<table>
<thead>
<tr>
<th>datasets</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>golub.pval</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>hedenfalk.pval</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>package</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LBE-package</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

qvalue, 2