The Double Life of RNA: Uncovering Non-Coding RNAs

Erik S. Wright

April 15, 2025

Contents

I	Introduction	1
2	Getting Started 2.1 Startup	1
3	Building a Non-Coding RNA Model 3.1 Importing the sequences	3
4	Finding Non-Coding RNAs	9
5	Session Information	13

1 Introduction

RNA leads a double life as both messenger (mRNA) and number of other roles in the cell (e.g., rRNA, tRNA, snRNA, tmRNA, etc.). RNAs that take on a life of their own are notoriously difficult to detect *ab initio* using bioinformatics. This is in part because their signature characteristic, that the sequence of RNA folds into a stable structure, can be found for sequences in many regions of the genome. The ubiquity of stable secondary structures makes life difficult because there is no clear signature that a genomic region contains a non-coding RNA in the way there are distinct signatures for protein coding regions. The most promising approach is to search for intergenic regions with high GC-content and a folded structure that is conserved across many genomes. But what do you do if you only have a single genome and want to find non-coding RNAs? That is exactly what this vignette shows you how to do!

Before we can have the time of our lives finding non-coding RNAs, we must first train models on examples of known RNAs. As a case study, this tutorial focuses on finding all known non-coding RNAs in the genome of *Chlamydia trachomatis*, an intracellular bacterial pathogen known for causing chlamydia. This genome was chosen because it is relatively small (only 1 Mbp) so the examples run quickly. *Chlamydia* harbors all of the standard non-coding RNAs that date back near the origin of life (i.e., rRNAs, tRNAs, etc.). It also has one small RNA (sRNA), named IhtA, that has only been found in Chlamydiae and is believed to play a role in regulating its life stages. We are going to find IhtA in the genome of *C. trachomatis*, then we are going to use the same approach to find all of the standard non-coding RNAs that are conserved across many forms of life.

2 Getting Started

2.1 Startup

To get started we need to load the DECIPHER package, which automatically loads a few other required packages.

```
> library (DECIPHER)
```

Searches for non-coding RNAs are performed by the function FindNonCoding. Help can be accessed via:

```
> ? FindNonCoding
```

Once DECIPHER is installed, the code in this tutorial can be obtained via:

```
> browseVignettes("DECIPHER")
```

3 Building a Non-Coding RNA Model

Before we can find a non-coding RNA, we need to create a multiple sequence alignment of some of its sequence representatives. This alignment will be the input to LearnNonCoding.

3.1 Importing the sequences

The first step is to set filepaths to the sequences (in FASTA format). In this case we are going to use the IhtA sequences included with DECIPHER, but you could follow along with your own set of homologous sequences. Be sure to change the path names to those on your system by replacing all of the text inside quotes labeled "<< path to ...>>" with the actual path on your system.

```
> # specify the path to your genome:
> fas_path <- "<<path to FASTA file>>"
> # OR use the example genome:
> fas_path <- system.file("extdata",
         "IhtA.fas",
         package="DECIPHER")
> # read the sequences into memory
> rna <- readRNAStringSet(fas path)</pre>
RNAStringSet object of length 27:
     width seq
                                                             names
       103 AAGAUGAUAUUCUGCGCCAUGGA...UGAUUGUUGUUUUCUUGGCUUU KE360988.1/6443-6...
 [1]
       105 AAGAUGAUAUUCUCCGCCGUGGA...AACUUUAUGUUUUCUUGGCUUU AE002161.1/54676-...
 [3]
       107 AAGUUGGUAUUCUAACGCCAUGG...UAUCUCCGGUUCUCUUGGCUUU AE001273.1/773281...
       107 AAGUUGGUAUUCUAACGCCAUGG...UGUCUCCAGUUCUCUUGGCUUU AE002160.2/53054-...
 [4]
 [5]
      103 AAGAUGAUAUUCUACGCCAUGGA...UGAUUGUUGUUUUCUUGGCUUU AE015925.1/52097-...
       107 AAGUUGGUAUUCUAACGCCAUGG...UAUCUCCGGUUCUCUUGGCUUU CP006674.1 Chlamy...
[23]
       103 AAGAUGAUAUUCUGCGCCAUGGA...UGAUUGUUGUUUUCUUGGCUUU KE356008.1 Chlamy...
[24]
       108 AAGUUGGUAUUCUAACGCCAUGG...UAUCUCCGGUUCUCUUGGCUUU CVNC01000001.1 Ch...
[25]
       103 AAGAUGAUAUUCUGCGCCAUGGA...UGAUUGUUGUUUUCUUGGCUUU AP006861.1 Chlamy...
[26]
       101 AAGAUGAUAUUCUACGCCAUGGA...AUGAUGUUGUUUUCUUGGCUUU CP015840.1 Chlamy...
[27]
```

Ideally we would start with a few thousand diverse sequence representatives, yet only 27 representatives of IhtA are known. That's life, so we will have to make due with what we have available.

3.2 Aligning the sequences

Next we need to align the sequences with AlignSeqs. Note that non-coding RNA alignments are more accurate if we provide the sequences as a *RNAStringSet* rather than the equivalent *DNAStringSet*, because AlignSeqs will use conserved secondary structure to improve the alignment. Alignment is fast, so hold on for dear life! (Consider adding processors=NULL if you want it to go even faster with multiple processors.)

> RNA <- AlignSeqs(rna) Predicting structures based on free energies:
Time difference of 0.76 secs
Determining distance matrix based on shared 7-mers:
Time difference of 0 secs
Clustering into groups by similarity:
Time difference of 0.01 secs
Aligning Sequences:
Time difference of 0.12 secs
Iteration 1 of 2:
Determining distance matrix based on alignment:
Time difference of 0 secs
Reclustering into groups by similarity:
Time difference of 0.01 secs
Realigning Sequences:
Time difference of 0.07 secs
Iteration 2 of 2:
Determining distance matrix based on alignment:
Time difference of 0 secs

```
Reclustering into groups by similarity:
______
Time difference of 0.01 secs
Realigning Sequences:
Time difference of 0.01 secs
> RNA
RNAStringSet object of length 27:
    width seq
                                                        names
 [1]
     114 AAGAUGAUAUUCUG-CGCCAUGG...GA-UUGUUGUUUUCUUGGCUUU KE360988.1/6443-6...
      114 AAGAUGAUAUUCUC-CGCCGUGG...AACUUUAUGUUUUCUUGGCUUU AE002161.1/54676-...
 [2]
      114 AAGUUGGUAUUCUAACGCCAUGG...---UCCGGUUCUCUUGGCUUU AE001273.1/773281...
 [4] 114 AAGUUGGUAUUCUAACGCCAUGG...---UCCAGUUCUCUUGGCUUU AE002160.2/53054-...
 [5] 114 AAGAUGAUAUUCUA-CGCCAUGG...GA-UUGUUGUUUUCUUGGCUUU AE015925.1/52097-...
      . . . . . .
     114 AAGUUGGUAUUCUAACGCCAUGG...---UCCGGUUCUCUUGGCUUU CP006674.1 Chlamy...
[23]
[24] 114 AAGAUGAUAUUCUG-CGCCAUGG...GA-UUGUUGUUUUCUUGGCUUU KE356008.1 Chlamy...
    114 AAGUUGGUAUUCUAACGCCAUGG...---UCCGGUUCUCUUGGCUUU CVNC01000001.1 Ch...
[25]
      114 AAGAUGAUAUUCUG-CGCCAUGG...GA-UUGUUGUUUUCUUGGCUUU AP006861.1 Chlamy...
[26]
      114 AAGAUGAUAUUCUA-CGCCAUGG...GA--UGUUGUUUUCUUGGCUUU CP015840.1 Chlamy...
[27]
```

We can see from the alignment that the sequences have both conserved and variable regions. But if we really want to bring the sequences to life we need to look at their predicted secondary structures. The IhtA is believed to form three back-to-back hairpin loops based on its minimum free energy structure. We can use PredictDBN (Predict Dot-Bracket Notation) to predict the secondary structures of the sequences.

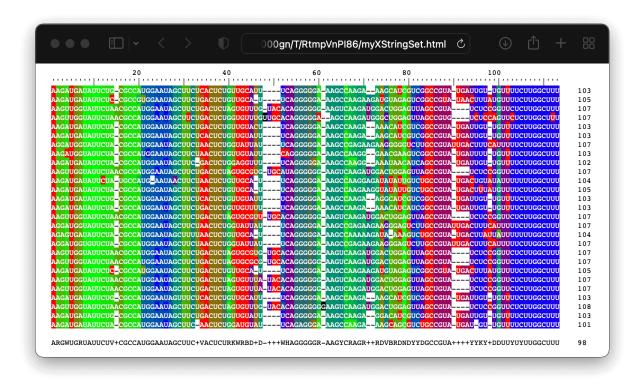


Figure 1: Predicted secondary structure of IhtA

In this color scheme, blue regions pair to green regions and red regions are unpaired. There is clear evidence for a hairpin loop near the 3'-end if IhtA, and weaker evidence for conserved secondary structure elsewhere in the sequences (Fig. 1).

We can also visualize the secondary structure through a dot plot (Fig. 2). The top half of the dot plot shows the probabilities of pairing, and the bottom half shows the pairs selected for the predicted structure. This view reveals the level of ambiguity in the secondary structure based on the (low) amount of available information.

```
> evidence <- PredictDBN(RNA, type="evidence", threshold=0, verbose=FALSE)
> pairs <- PredictDBN(RNA, type="pairs", verbose=FALSE)
> dots <- matrix(0, width(RNA)[1], width(RNA)[1])
> dots[evidence[, 1:2]] <- evidence[, 3]
> dots[pairs[, 2:1]] <- 1
> image(dots, xaxt="n", yaxt="n", col=gray(seq(1, 0, -0.01)))
> abline(a=0, b=1)
> cons <- toString(ConsensusSequence(RNA, threshold=0.2))
> cons <- strsplit(cons, "")[[1]]
> at <- seq(0, 1, length.out=length(cons))
> axis(1, at, cons, tick=FALSE, cex.axis=0.3, gap.axis=0, line=-1)
> axis(2, at, cons, tick=FALSE, cex.axis=0.3, gap.axis=0, line=-1)
```

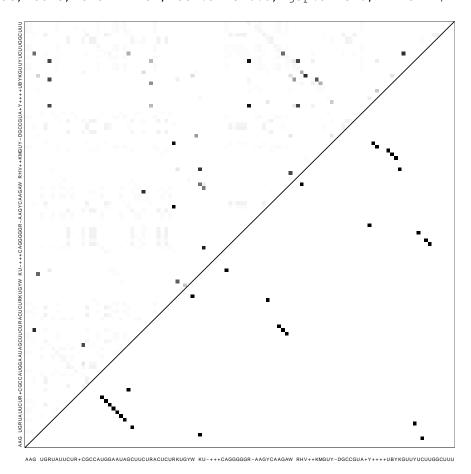


Figure 2: Secondary Structure Dot Plot.

Two considerations are important at this stage: (i) that we have a clearly defined boundary representing the true beginning and end of every sequence, and (ii) that the sequences are a diverse sample of what we hope to find. Here we don't have any partial sequences, but if we did they could be identified by counting gaps ("-") at their ends with TerminalChar. Any partial sequences should be removed before proceeding, for example by using:

Rather than remove partial sequences, it would have been possible to shorten the alignment to the region shared by all sequences using subseq.

3.3 Learning sequence patterns

Now we need to build a model capturing the essential characteristics of the non-coding RNA. The function LearnNonCoding takes an alignment as input and outputs an object of class *NonCoding* that describes the sequences.

```
> y <- LearnNonCoding(RNA)
> y
NonCoding object with 16 motifs, 5 hairpins, and 2-mer frequencies.
```

The output object is a list containing patterns of three types: "motifs", "hairpins", and "kmers". Motifs are short regions of the sequence that can be used to identify the sequences. Each row stores information about where the motif is expected relative to the ncRNA, as well as its position weight matrix (pwm) and associated scores.

```
> y[["motifs"]]
   begin low begin high end low end high
                                                     motif
                                                                     pwm
                       0
1
            0
                               96
                                        100
                                                   AAGATGr 0.946800....
2
           7
                       7
                               89
                                         93
                                                   TATTCTA 0.017733....
3
          14
                      15
                               82
                                         86
                                                   CGCCATG 0.018053....
4
          21
                      22
                               81
                                         85
                                                         G 0.017733....
5
                      23
                               72
          22
                                         76
                                                 AATAGCTTC 0.908696....
                                             rACTCTGkTGyw 0.446377....
6
          31
                      33
                               59
                                         63
7
          44
                      46
                               56
                                         60
                                                        TT 0.041726....
8
          46
                      51
                               48
                                         52
                                                  CAGGGGA 0.085348....
                      59
9
           54
                               47
                                         51
                                                         A 0.946800....
10
           55
                      60
                               34
                                         38 AGCCAAGAarrhr 0.946800....
11
           69
                      75
                               27
                                         31
                                                     kmGTC 0.221530....
          74
12
                      80
                               20
                                         24
                                                   dGCCGTA 0.275894....
13
          82
                      86
                               19
                                         20
                                                         A 0.946800....
14
          84
                      88
                               18
                                         18
                                                         T 0.017733....
15
          85
                      89
                                8
                                          8
                                               TkytGTTTTC 0.018053....
16
           95
                      99
                                0
                                          0
                                                  TTGGCTTT 0.017733....
       minscore
                   prevalence
                                 background
   0, 2.082.... 0.035714.... 0.970011....
1
   0, 5.871.... 0.035714.... 0.977774....
   0, 6.119.... 0.035714.... 0.983434....
4
         0, Inf 0.057263.... 0.550452....
5
   0, 8.018.... 0.057263.... 0.985521....
   0, 6.540.... 0.035714.... 0.976631....
```

```
7 0.756512... 0.123059... 0.708078... 8 5.040460... 0.131007... 0.997916... 9 0, Inf 0.035714... 0.258942... 10 0, 9.459... 0.061810... 0.981447... 11 2.460447... 0.206663... 0.904872... 12 4.220658... 0.021254... 0.989102... 13 0, Inf 0.112712... 0.582480... 14 0, Inf 0.281062... 0.670569... 15 0, 3.463... 0.035714... 0.990812... 16 0, Inf 0.035714... 0.990812...
```

Note that some of the motifs contain ambiguity codes (see <code>IUPAC_CODE_MAP</code>) that represent multiple nucleotides. Motifs are defined by their distance from each end of the non-coding RNA, and their prevalence across sequence representatives when allowing for a certain degree of distance.

```
> y[["hairpins"]]
  begin_low begin_high end_low end_high width_low width_high length_low
1
          -4
                              52
                                        58
                                                               57
                                                                            6
                      1
                                                   46
2
           7
                       7
                              77
                                        81
                                                   19
                                                               20
                                                                            8
3
          23
                     29
                              35
                                        40
                                                   39
                                                               46
                                                                            5
4
          34
                     38
                              40
                                        44
                                                   22
                                                               29
                                                                            5
5
                                                                            7
          49
                     54
                              -4
                                        15
                                                   38
                                                               58
  length high
                          dG
                               prevalence
                                              background
            15 -Inf, -4.... 0.107097.... 0.090727....
1
             8 -Inf, -3.... 0.743057.... 0.008820....
2
             9 -Inf, -4.... 0.255296.... 0.088102....
3
             9 -Inf, -2.... 0.195755.... 0.112149....
            26 -Inf, -2.... 0.139890.... 0.000105....
```

Hairpins are defined similarly, but allow for ambiguity in the form of varying free energy (dG). As we saw in the predicted structures, the IhtA sequences end in a prominent hairpin that is both long and has a low free energy.

```
> head(y[["kmers"]])
[1] 184 109 183 162 78 84
> tail(y[["kmers"]])
[1] 236 222 216 218 155 339
```

Finally, the sequences are identifiable by their k-mer frequencies, which are stored in a vector as shown above. In general, non-coding RNAs have higher GC-content than protein coding regions of genomes. Note that the value of "k" is set automatically depending on the amount of information in the input sequence alignment.

4 Finding Non-Coding RNAs

Now that we have captured the life force of the sequences, our next goal is to find homologous non-coding RNAs in a genome. You can either use your own genome or follow along with the example *C. trachomatis* genome.

The function FindNonCoding finds matches to *NonCoding* models in a genome. Let's search for the IhtA model in the *Chlamydia* genome:

And there it is! The output tells us that the IhtA gene is found on the forward strand of the first sequence ("Index") in the genome. This match had a high score to first (and only) model in y (i.e., "Gene" is -1). Values in the "Gene" column are negative to signify that these rows are predicted non-coding RNAs and not protein coding genes. In this manner, non-coding and coding genes can be combined in the same *Genes* object.

Life's too short to build models for every non-coding RNA, so we can load a set of pre-built models for our bacterial genome. Replace "Bacteria" with "Archaea" or "Eukarya" for genomes from organisms belonging to other domains of life.

```
> data(NonCodingRNA_Bacteria)
> x <- NonCodingRNA_Bacteria
> names(x)
 [1] "tRNA-Ala"
 [2] "tRNA-Arg"
 [3] "tRNA-Asn"
 [4] "tRNA-Asp"
 [5] "tRNA-Cys"
 [6] "tRNA-Gln"
 [7] "tRNA-Glu"
 [8] "tRNA-Gly"
 [9] "tRNA-His"
[10] "tRNA-Ile"
[11] "tRNA-Leu"
[12] "tRNA-Lys"
[13] "tRNA-Met"
[14] "tRNA-Phe"
[15] "tRNA-Pro"
[16] "tRNA-Ser"
[17] "tRNA-Thr"
[18] "tRNA-Trp"
[19] "tRNA-Tyr"
[20] "tRNA-Val"
```

```
[21] "tRNA-Sec"
[22] "rRNA_5S-RF00001"
[23] "rRNA 16S-RF00177"
[24] "rRNA 23S-RF02541"
[25] "tmRNA-RF00023"
[26] "tmRNA_Alpha-RF01849"
[27] "RNase_P_class_A-RF00010"
[28] "RNase_P_class_B-RF00011"
[29] "SsrS-RF00013"
[30] "Intron_Gp_I-RF00028"
[31] "Intron_Gp_II-RF00029"
[32] "SmallSRP-RF00169"
[33] "Cyclic-di-GMP_Riboswitch-RF01051"
[34] "Cyclic-di-AMP_Riboswitch-RF00379"
[35] "T-box Leader-RF00230"
[36] "Ribosomal Protein L10 Leader-RF00557"
[37] "Cobalamin_Riboswitch-RF00174"
[38] "TPP_Riboswitch-RF00059"
[39] "SAM_Riboswitch-RF00162"
[40] "Fluoride_Riboswitch-RF01734"
[41] "FMN Riboswitch-RF00050"
[42] "Glycine_Riboswitch-RF00504"
[43] "HEARO-RF02033"
[44] "Flavo_1-RF01705"
[45] "Acido_Lenti_1-RF01687"
[46] "5'_ureB-RF02514"
```

What a life saver! Our new dataset (x) is a list of models, including tRNAs (by amino acid), transfer-messenger RNA, RNase P, SsrS (6S RNA), group I and II introns, the signal recognition particle, and three rRNAs (5S, 16S, and 23S). Let's add the model we built of IhtA into the list:

```
> x[[length(x) + 1]] <- y
> names(x)[length(x)] <- "IhtA"</pre>
```

Now we can search for them all at once with FindNonCoding:

Time difference of 60.27 secs > rnas

Genes object of size 47 specifying:
47 non-coding RNAs from 72 to 2,938 nucleotides.

```
Index Strand Begin
                        End TotalScore Gene
1
            1 20663 21082
                                 88.31
                                       -25
2
     1
            1 42727 42801
                                 69.82
                                        -3
     1
            1 68920 68995
                                 78.58 -15
            0 158662 158736
4
     1
                                 55.72
                                       -17
5
                                       -19
     1
            0 158744 158827
                                 52.24
            1 202339 202414
                                 68.58 -10
     1
```

... with 41 more rows.

```
> class(rnas)
[1] "Genes"
```

Wow! That has to be one of life's simplest pleasures. FindNonCoding returned an object of class *Genes*. By convention, the starting position of non-coding RNAs on the forward (0) Strand is at Begin, while those on the reverse (1) Strand start at End. We can take a look at which RNAs were found:

```
> annotations <- attr(rnas, "annotations")</pre>
> m <- match(rnas[, "Gene"], annotations)</pre>
> sort(table(names(annotations)[m]))
                    IhtA RNase_P_class_A-RF00010
                                                           SmallSRP-RF00169
                       1
                                                                            1
                tRNA-Asn
                                          tRNA-Asp
                                                                    tRNA-Cys
                       1
                tRNA-Gln
                                          tRNA-Glu
                                                                    tRNA-His
                       1
                tRNA-Ile
                                          tRNA-Lys
                                                                    tRNA-Phe
                                                                            1
                       1
                                                  1
                tRNA-Trp
                                          tRNA-Tyr
                                                              tmRNA-RF00023
                       1
                                                  1
       rRNA 16S-RF00177
                                 rRNA 23S-RF02541
                                                            rRNA 5S-RF00001
                tRNA-Ala
                                          tRNA-Gly
                                                                    tRNA-Pro
                                                                            2
                       2
                                                  2
                tRNA-Val
                                          tRNA-Arg
                                                                    tRNA-Met
                       2
                                                  3
                                                                            3
                                                                    tRNA-Leu
                tRNA-Thr
                                          tRNA-Ser
                                                                            5
                        3
                                                  4
```

We see that the *C. trachomatis* genome has multiple tRNA genes, two copies of each ribosomal RNA gene, and the RNaseP and tmRNA genes. Finally, it is possible to extract the non-coding RNAs from the genome:

```
> ExtractGenes(rnas, genome, type="RNAStringSet")
RNAStringSet object of length 47:
    width seq
 [1]
       420 GGGGGUGUAAAGGUUUCGACUUAGAAAUGAAGC...AGGACGAGAGUUCGACUCUCCCACCUCCAUAG
 [2]
        75 UCCGGAGUAGCUCAGCGGUAGAGCAGUGGACUG...UGGUCGUUGGUUCGAACCCAUCCUCCGGAGUCU
 [3]
        76 CGGAGUAUAGCGCAGCCUGGUUAGCGCGGUUGC...AUAGGUCGGGGGUUCGAAUCCCUCUACUCCGAU
 [4]
        75 GCUGGAGUAGCUCAAUUGGCAGAGCAUUCGAUU...ACGGUUGAGGGUUCAAUUCCUUUCUCCAGCAUC
        84 GGGGGUGUCGCAUAGCGGUCAAUUGCAUCGGAC...CGGAUACGUUGGUUCAAAUCCAGCCACCCCCAG
 [5]
        72 GGUGGCAUCGCCAAGCGGUAAGGCCGAGGCCUG...CUCUAUCCCCGGUUCGAUUCCGGGUGCCACCUU
[43]
        74 UGGGGUGGCCAAGCGGUAAGGCAGCGGUUUU...CGCAUCGGAGGUUCGAAUCCUUCCACCCAGAG
[44]
[45]
        75 GGGGUAUUAGCUCAGUUGGUUAGAGCGUCACGU...GAAGGUCAGCUGUUCAAGUCAGCUAUAUCCCAA
        88 GGAAGAAUGGCAGAGCGGUUUAAUGCACCUGUC...GGUCCGGGGGUUCGAAUCCCUCUUCUUCCGCAU
[46]
[47]
        85 GCCCAGGUGGUGAAAUUGGUAGACACGCUGGAU...GGCAUGUAGGUUCAAGUCCUAUCCUGGGCAUAG
```

You'll be the life of the party now that you know how to build models for non-coding RNAs and find them in a genome.

5 Session Information

All of the output in this vignette was produced under the following conditions:

- R version 4.5.0 beta (2025-04-02 r88102), x86_64-pc-linux-gnu
- Running under: Ubuntu 24.04.2 LTS
- Matrix products: default
- BLAS:/home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
- LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
- Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils
- Other packages: BiocGenerics 0.55.0, Biostrings 2.77.0, DECIPHER 3.5.0, GenomeInfoDb 1.45.0, IRanges 2.43.0, S4Vectors 0.47.0, XVector 0.49.0, generics 0.1.3
- Loaded via a namespace (and not attached): DBI 1.2.3, GenomeInfoDbData 1.2.14, KernSmooth 2.23-26, R6 2.6.1, UCSC.utils 1.5.0, compiler 4.5.0, crayon 1.5.3, httr 1.4.7, jsonlite 2.0.0, tools 4.5.0