1 Introduction

Since read counts are summed across cells in a pseudobulk approach, modeling continuous cell-level covariates also requires a collapsing step. Here we summarize the values of a variable from a set of cells using the mean, and store the value for each cell type. Including these variables in a regression formula uses the summarized values from the corresponding cell type.

We demonstrate this feature on a lightly modified analysis of PBMCs from 8 individuals stimulated with interferon-β (Kang, et al, 2018, Nature Biotech).

2 Standard processing

Here is the code from the main vignette:

library(dreamlet)
library(muscat)
library(ExperimentHub)
library(scater)

# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]

# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[, colData(sce)$multiplets == "singlet"]

# compute QC metrics
qc <- perCellQCMetrics(sce)

# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]

# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus <- sce$stim

In many datasets, continuous cell-level variables could be mapped reads, gene count, mitochondrial rate, etc. There are no continuous cell-level variables in this dataset, so we can simulate two from a normal distribution:

sce$value1 <- rnorm(ncol(sce))
sce$value2 <- rnorm(ncol(sce))

3 Pseudobulk

Now compute the pseudobulk using standard code:

sce$id <- paste0(sce$StimStatus, sce$ind)

# Create pseudobulk
pb <- aggregateToPseudoBulk(sce,
  assay = "counts",
  cluster_id = "cell",
  sample_id = "id",
  verbose = FALSE
)

The means per variable, cell type, and sample are stored in the pseudobulk SingleCellExperiment object:

metadata(pb)$aggr_means
## # A tibble: 128 × 5
## # Groups:   cell [8]
##    cell    id       cluster   value1  value2
##    <fct>   <fct>      <dbl>    <dbl>   <dbl>
##  1 B cells ctrl101     3.96  0.176   -0.0463
##  2 B cells ctrl1015    4.00 -0.0144  -0.0274
##  3 B cells ctrl1016    4     0.00912  0.200 
##  4 B cells ctrl1039    4.04  0.141    0.185 
##  5 B cells ctrl107     4     0.0927  -0.0197
##  6 B cells ctrl1244    4     0.00735  0.106 
##  7 B cells ctrl1256    4.01  0.116   -0.0602
##  8 B cells ctrl1488    4.02 -0.0521  -0.0856
##  9 B cells stim101     4.09  0.0595   0.156 
## 10 B cells stim1015    4.06 -0.0205   0.0973
## # ℹ 118 more rows

4 Analysis

Including these variables in a regression formula uses the summarized values from the corresponding cell type. This happens behind the scenes, so the user doesn’t need to distinguish bewteen sample-level variables stored in colData(pb) and cell-level variables stored in metadata(pb)$aggr_means.

Variance partition and hypothesis testing proceeds as ususal:

form <- ~ StimStatus + value1 + value2

# Normalize and apply voom/voomWithDreamWeights
res.proc <- processAssays(pb, form, min.count = 5)

# run variance partitioning analysis
vp.lst <- fitVarPart(res.proc, form)

# Summarize variance fractions genome-wide for each cell type
plotVarPart(vp.lst, label.angle = 60)

# Differential expression analysis within each assay
res.dl <- dreamlet(res.proc, form)

# dreamlet results include coefficients for value1 and value2
res.dl
## class: dreamletResult 
## assays(8): B cells CD14+ Monocytes ... Megakaryocytes NK cells
## Genes:
##  min: 164 
##  max: 5262 
## details(7): assay n_retain ... n_errors error_initial
## coefNames(4): (Intercept) StimStatusstim value1 value2

5 Details

A variable in colData(sce) is handled according to if the variable is

  • continuous: the mean per donor/cell type is stored in metadata(pb)$aggr_means
  • discrete
    • [constant within each donor/cell type] it is stored in colData(pb)
    • [varies within each donor/cell type] there is no good way to summarize it. The variable is dropped.

6 Session Info

## R version 4.5.0 (2025-04-11)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] muscData_1.23.0             scater_1.37.0              
##  [3] scuttle_1.19.0              ExperimentHub_2.99.0       
##  [5] AnnotationHub_3.99.0        BiocFileCache_2.99.0       
##  [7] dbplyr_2.5.0                muscat_1.23.0              
##  [9] dreamlet_1.7.1              SingleCellExperiment_1.31.0
## [11] SummarizedExperiment_1.39.0 Biobase_2.69.0             
## [13] GenomicRanges_1.61.0        GenomeInfoDb_1.45.0        
## [15] IRanges_2.43.0              S4Vectors_0.47.0           
## [17] BiocGenerics_0.55.0         generics_0.1.3             
## [19] MatrixGenerics_1.21.0       matrixStats_1.5.0          
## [21] variancePartition_1.39.0    BiocParallel_1.43.0        
## [23] limma_3.65.0                ggplot2_3.5.2              
## [25] BiocStyle_2.37.0           
## 
## loaded via a namespace (and not attached):
##   [1] bitops_1.0-9              httr_1.4.7               
##   [3] RColorBrewer_1.1-3        doParallel_1.0.17        
##   [5] Rgraphviz_2.53.0          numDeriv_2016.8-1.1      
##   [7] tools_4.5.0               sctransform_0.4.1        
##   [9] backports_1.5.0           utf8_1.2.4               
##  [11] R6_2.6.1                  metafor_4.8-0            
##  [13] mgcv_1.9-3                GetoptLong_1.0.5         
##  [15] withr_3.0.2               prettyunits_1.2.0        
##  [17] gridExtra_2.3             cli_3.6.5                
##  [19] sandwich_3.1-1            labeling_0.4.3           
##  [21] sass_0.4.10               KEGGgraph_1.69.0         
##  [23] SQUAREM_2021.1            mvtnorm_1.3-3            
##  [25] blme_1.0-6                mixsqp_0.3-54            
##  [27] zenith_1.11.0             dichromat_2.0-0.1        
##  [29] parallelly_1.43.0         invgamma_1.1             
##  [31] RSQLite_2.3.9             shape_1.4.6.1            
##  [33] gtools_3.9.5              dplyr_1.1.4              
##  [35] Matrix_1.7-3              metadat_1.4-0            
##  [37] ggbeeswarm_0.7.2          abind_1.4-8              
##  [39] lifecycle_1.0.4           multcomp_1.4-28          
##  [41] yaml_2.3.10               edgeR_4.7.0              
##  [43] mathjaxr_1.6-0            gplots_3.2.0             
##  [45] SparseArray_1.9.0         grid_4.5.0               
##  [47] blob_1.2.4                crayon_1.5.3             
##  [49] lattice_0.22-7            beachmat_2.25.0          
##  [51] msigdbr_10.0.2            annotate_1.87.0          
##  [53] KEGGREST_1.49.0           magick_2.8.6             
##  [55] pillar_1.10.2             knitr_1.50               
##  [57] ComplexHeatmap_2.25.0     rjson_0.2.23             
##  [59] boot_1.3-31               estimability_1.5.1       
##  [61] corpcor_1.6.10            future.apply_1.11.3      
##  [63] codetools_0.2-20          glue_1.8.0               
##  [65] data.table_1.17.0         vctrs_0.6.5              
##  [67] png_0.1-8                 Rdpack_2.6.4             
##  [69] gtable_0.3.6              assertthat_0.2.1         
##  [71] cachem_1.1.0              zigg_0.0.2               
##  [73] xfun_0.52                 rbibutils_2.3            
##  [75] S4Arrays_1.9.0            Rfast_2.1.5.1            
##  [77] coda_0.19-4.1             reformulas_0.4.0         
##  [79] survival_3.8-3            iterators_1.0.14         
##  [81] tinytex_0.57              statmod_1.5.0            
##  [83] TH.data_1.1-3             nlme_3.1-168             
##  [85] pbkrtest_0.5.3            bit64_4.6.0-1            
##  [87] filelock_1.0.3            progress_1.2.3           
##  [89] EnvStats_3.1.0            bslib_0.9.0              
##  [91] TMB_1.9.17                irlba_2.3.5.1            
##  [93] vipor_0.4.7               KernSmooth_2.23-26       
##  [95] colorspace_2.1-1          rmeta_3.0                
##  [97] DBI_1.2.3                 DESeq2_1.49.0            
##  [99] tidyselect_1.2.1          emmeans_1.11.0           
## [101] curl_6.2.2                bit_4.6.0                
## [103] compiler_4.5.0            httr2_1.1.2              
## [105] graph_1.87.0              BiocNeighbors_2.3.0      
## [107] DelayedArray_0.35.1       bookdown_0.43            
## [109] scales_1.4.0              caTools_1.18.3           
## [111] remaCor_0.0.18            rappdirs_0.3.3           
## [113] stringr_1.5.1             digest_0.6.37            
## [115] minqa_1.2.8               rmarkdown_2.29           
## [117] aod_1.3.3                 XVector_0.49.0           
## [119] RhpcBLASctl_0.23-42       htmltools_0.5.8.1        
## [121] pkgconfig_2.0.3           lme4_1.1-37              
## [123] sparseMatrixStats_1.21.0  mashr_0.2.79             
## [125] fastmap_1.2.0             rlang_1.1.6              
## [127] GlobalOptions_0.1.2       UCSC.utils_1.5.0         
## [129] DelayedMatrixStats_1.31.0 farver_2.1.2             
## [131] jquerylib_0.1.4           zoo_1.8-14               
## [133] jsonlite_2.0.0            BiocSingular_1.25.0      
## [135] RCurl_1.98-1.17           magrittr_2.0.3           
## [137] GenomeInfoDbData_1.2.14   Rcpp_1.0.14              
## [139] babelgene_22.9            viridis_0.6.5            
## [141] EnrichmentBrowser_2.39.0  stringi_1.8.7            
## [143] MASS_7.3-65               plyr_1.8.9               
## [145] listenv_0.9.1             parallel_4.5.0           
## [147] ggrepel_0.9.6             Biostrings_2.77.0        
## [149] splines_4.5.0             hms_1.1.3                
## [151] circlize_0.4.16           locfit_1.5-9.12          
## [153] reshape2_1.4.4            ScaledMatrix_1.17.0      
## [155] BiocVersion_3.22.0        XML_3.99-0.18            
## [157] evaluate_1.0.3            RcppParallel_5.1.10      
## [159] BiocManager_1.30.25       nloptr_2.2.1             
## [161] foreach_1.5.2             tidyr_1.3.1              
## [163] purrr_1.0.4               future_1.40.0            
## [165] clue_0.3-66               scattermore_1.2          
## [167] ashr_2.2-63               rsvd_1.0.5               
## [169] broom_1.0.8               xtable_1.8-4             
## [171] fANCOVA_0.6-1             viridisLite_0.4.2        
## [173] truncnorm_1.0-9           tibble_3.2.1             
## [175] lmerTest_3.1-3            glmmTMB_1.1.11           
## [177] memoise_2.0.1             beeswarm_0.4.0           
## [179] AnnotationDbi_1.71.0      cluster_2.1.8.1          
## [181] globals_0.17.0            GSEABase_1.71.0