Package ‘ANF’

March 20, 2024

Type Package
Title Affinity Network Fusion for Complex Patient Clustering
Version 1.24.1
Author Tianle Ma, Aidong Zhang
Maintainer Tianle Ma <tianlema@buffalo.edu>
Description This package is used for complex patient clustering by integrating multi-omic data through affinity network fusion.
License GPL-3
VignetteBuilder knitr
Imports igraph, Biobase, survival, MASS, stats, RColorBrewer
Suggests ExperimentHub, SNFtool, knitr, rmarkdown, testthat
biocViews Clustering, GraphAndNetwork, Network
RoxygenNote 6.0.1
git_url https://git.bioconductor.org/packages/ANF
git_branch RELEASE_3_18
git_last_commit 360f3cd
git_last_commit_date 2024-02-16
Repository Bioconductor 3.18
Date/Publication 2024-03-20

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>affinity_matrix</td>
<td>2</td>
</tr>
<tr>
<td>ANF</td>
<td>2</td>
</tr>
<tr>
<td>eval_clu</td>
<td>3</td>
</tr>
<tr>
<td>kNN_graph</td>
<td>4</td>
</tr>
<tr>
<td>pod</td>
<td>5</td>
</tr>
<tr>
<td>spectral_clustering</td>
<td>6</td>
</tr>
</tbody>
</table>

Index 7
affinity_matrix
Generate a symmetric affinity matrix based on a distance matrix using 'local' Gaussian kernel

Description

Generate a symmetric affinity matrix based on a distance matrix using 'local' Gaussian kernel

Usage

affinity_matrix(D, k, alpha = 1/6, beta = 1/6)

Arguments

- **D**: distance matrix (need to be a square and non-negative matrix)
- **k**: the number of k-nearest neighbors
- **alpha**: coefficient for local diameters. Default value: 1/6. This default value should work for most cases.
- **beta**: coefficient for pair-wise distance. Default value: 1/6. This default value should work for most cases.

Value

an affinity matrix

Examples

D = matrix(runif(400), nrow=20)
A = affinity_matrix(D, 5)

ANF
Fuse affinity networks (i.e., matrices) through one-step or two-step random walk

Description

Fuse affinity networks (i.e., matrices) through one-step or two-step random walk

Usage

ANF(Wall, K = 20, weight = NULL, type = c("two-step", "one-step"),
 alpha = c(1, 1, 0, 0, 0, 0, 0), verbose = FALSE)
eval_clu

Evaluate clustering result

Description

Evaluate clustering result

Usage

eval_clu(true_class, w = NULL, d = NULL, k = 10, num_clu = NULL, surv = NULL, type_L = c("rw", "sym", "unnormalized"), verbose = TRUE)
kNN_graph

Calculate k-nearest-neighbor graph from affinity matrix and normalize it as transition matrix

Description

Calculate k-nearest-neighbor graph from affinity matrix and normalize it as transition matrix

Usage

kNN_graph(W, K)
Arguments

\(W \)
affinity matrix (its elements are non-negative real numbers)

\(K \)
the number of k nearest neighbors

Value

a transition matrix of the same shape as \(W \)

Examples

\[
D = \text{matrix}(\text{runif}(400), 20) \\
W = \text{affinity_matrix}(D, 5) \\
S = \text{kNN_graph}(W, 5)
\]

Description

Finding optimal discrete solutions for spectral clustering

Usage

\[
pod(Y, \ \text{verbose} = \text{FALSE})
\]

Arguments

\(Y \)
a matrix with \(N \) rows and \(K \) columns, with \(N \) being the number of objects (e.g., patients), \(K \) being the number of clusters. The \(K \) columns of \(Y \) should correspond to the first \(k \) eigenvectors of graph Laplacian matrix (of affinity matrix) corresponding to the \(k \) smallest eigenvalues

\(\text{verbose} \)
logical(1); if true, print some information

Value

class assignment matrix with the same shape as \(Y \) (i.e., \(N \times K \)). Each row contains all zeros except one 1. For instance, if \(X_{ij} = 1 \), then object (e.g., patient) \(i \) belongs to cluster \(j \).

References

spectral_clustering

Examples
D = matrix(runif(400), 20)
A = affinity_matrix(D, 5)
d = rowSums(A)
L = diag(d) - A
"NL" is graph Laplacian of affinity matrix "A"
NL = diag(1/d) %*% L
e = eigen(NL)
Here we select eigenvectors corresponding to three smallest eigenvalues
Y = Re(e$vectors[,-1:-17])
X = pod(Y)

spectral_clustering spectral_clustering

description
spectral_clustering

Usage
spectral_clustering(A, k, type = c("rw", "sym", "unnormalized"),
 verbose = FALSE)

Arguments
A affinity matrix
k the number of clusters
type choose one of three versions of graph Laplacian: "unnormalized": unnormalized graph Laplacian matrix (L = D - W); "rw": normalization closely related to random walk (L = I - D^(-1)*W); (default choice) "sym": normalized symmetric matrix (L = I - D^(-0.5) * W * D^(-0.5)) For more information: https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf
verbose logical(1); if true, print user-friendly information

Value
a numeric vector as class labels

Examples
D = matrix(runif(400), nrow = 20)
A = affinity_matrix(D, 5)
labels = spectral_clustering(A, k=2)
Index

affinity_matrix, 2
ANF, 2

eval_clu, 3
kNN_graph, 4
pod, 5
spectral_clustering, 6