Package ‘ASURAT’

April 15, 2024

Type Package

Title Functional annotation-driven unsupervised clustering for single-cell data

Version 1.6.0

Description ASURAT is a software for single-cell data analysis. Using ASURAT, one can simultaneously perform unsupervised clustering and biological interpretation in terms of cell type, disease, biological process, and signaling pathway activity. Inputting a single-cell RNA-seq data and knowledge-based databases, such as Cell Ontology, Gene Ontology, KEGG, etc., ASURAT transforms gene expression tables into original multivariate tables, termed sign-by-sample matrices (SSMs).

License GPL-3 + file LICENSE

biocViews GeneExpression, SingleCell, Sequencing, Clustering, GeneSignaling

Encoding UTF-8

LazyData TRUE

Depends R (>= 4.0.0)

Imports SingleCellExperiment, SummarizedExperiment, S4Vectors, Rcpp (>= 1.0.7), cluster, utils, plot3D, ComplexHeatmap, circlize, grid, grDevices, graphics

Suggests ggplot2, TENxPBMCData, dplyr, Rtsne, Seurat, AnnotationDbi, BiocGenerics, stringr, org.Hs.eg.db, knitr, rmarkdown, testthat (>= 3.0.0)

RoxygenNote 7.1.2

LinkingTo Rcpp

git_url https://git.bioconductor.org/packages/ASURAT

git_branch RELEASE_3_18

git_last_commit b1581b2
add_metadata

Add metadata of variables and samples.

Description

This function adds metadata of variables and samples.

Usage

add_metadata(sce = NULL, mitochondria_symbol = NULL)
Arguments

sce A SingleCellExperiment object.
mitochondria_symbol A string representing for mitochondrial genes. This function computes percents of reads that map to the mitochondrial genes. Examples are '^MT-', '^mt-', etc.

Value

A SingleCellExperiment object.

Examples

data(pbmc_eg)
pbmc <- add_metadata(sce = pbmc_eg, mitochondria_symbol = "^MT-")

Description

ASURAT is a software for single-cell data analysis. Using ASURAT, one can simultaneously perform unsupervised clustering and biological interpretation in terms of cell type, disease, biological process, and signaling pathway activity. Inputting a single-cell RNA-seq data and knowledge-based databases, such as Cell Ontology, Gene Ontology, KEGG, etc., ASURAT transforms gene expression tables into original multivariate tables, termed sign-by-sample matrices (SSMs).

bubble_sort

Perform bubble sorting, counting the number of steps.

Usage

bubble_sort(listdata)

Arguments

listdata A list of vector and integer. For example, in R code, listdata = list(vec = c(1, 0, 1, ...), cnt = 0). The integer (cnt = 0) is the initial number of steps for bubble sorting.
cluster_genesets

Value
A List.

Examples

```
bubble_sort(list(vec = c(1, 1, 0), cnt = 0))
```

Description

This function clusters each functional gene set into strongly, variably, and weakly correlated gene sets.

Usage

```
cluster_genesets(sce = NULL, cormat = NULL, th_posi = NULL, th_nega = NULL)
```

Arguments

- **sce** A SingleCellExperiment object.
- **cormat** A correlation matrix of gene expressions.
- **th_posi** A threshold of positive correlation coefficient.
- **th_nega** A threshold of negative correlation coefficient.

Value

A SingleCellExperiment object.

Examples

```
data(pbmc_eg)
data(human_GO_eg)
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg["BP"])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat,
                              th_posi = 0.24, th_nega = -0.20)
# The results are stored in metadata(pbmcs$GO)$sign.
```
compute_sepI_all
Compute separation indices for each cluster against the others.

Description

This function computes separation indices for each cluster versus the others.

Usage

```r
compute_sepI_all(sce = NULL, labels = NULL, nrand_samples = NULL)
```

Arguments

- `sce`: A SingleCellExperiment object.
- `labels`: A vector of labels of all the samples (cells).
- `nrand_samples`: An integer for the number of samples used for random sampling, which samples at least one sample per cluster.

Value

A SingleCellExperiment object.

Examples

```r
data(pbmcs_eg)
labels <- SummarizedExperiment::colData(pbmcs_eg$GO)$seurat_clusters
pbmcs_eg$GO <- compute_sepI_all(sce = pbmcs_eg$GO, labels = labels,
nrand_samples = 10)
# The results are stored in `metadata(pbmcs_eg$GO)$marker_signs`.
```

compute_sepI_clusters
Compute separation indices of sign scores for given two clusters.

Description

This function computes separation indices of sign scores for given two clusters.

Usage

```r
compute_sepI_clusters(
  sce = NULL,
  labels = NULL,
  nrand_samples = NULL,
  ident_1 = NULL,
  ident_2 = NULL
)
```
create_signs

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sce</td>
<td>A SingleCellExperiment object.</td>
</tr>
<tr>
<td>labels</td>
<td>A vector of labels of all the samples.</td>
</tr>
<tr>
<td>nrand_samples</td>
<td>An integer for the number of samples used for random sampling, which samples at least one sample per cluster.</td>
</tr>
<tr>
<td>ident_1</td>
<td>Label names identifying cluster numbers, e.g., ident_1 = 1, ident_1 = c(1, 3).</td>
</tr>
<tr>
<td>ident_2</td>
<td>Label names identifying cluster numbers, e.g., ident_2 = 2, ident_2 = c(2, 4).</td>
</tr>
</tbody>
</table>

Value

A SingleCellExperiment object.

Examples

```r
data(pbmcs_eg)
labels <- SummarizedExperiment::colData(pbmcs_eg$GO)$seurat_clusters
pbmcs_eg$GO <- compute_sepI_clusters(sce = pbmcs_eg$GO, labels = labels,
nrand_samples = 10, ident_1 = 1,
ident_2 = c(0, 2))
#
```

The results are stored in `metadata(pbmcs_eg$GO)$marker_signs`.

create_signs

Define signs for strongly and variably correlated gene sets.

Description

This function defines signs for strongly and variably correlated gene sets.

Usage

`create_signs(sce = NULL, min_cnt_strg = 2, min_cnt_vari = 2)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sce</td>
<td>A SingleCellExperiment object.</td>
</tr>
<tr>
<td>min_cnt_strg</td>
<td>An integer for the cutoff value for strongly correlated gene sets.</td>
</tr>
<tr>
<td>min_cnt_vari</td>
<td>An integer for the cutoff value for variably correlated gene sets.</td>
</tr>
</tbody>
</table>

Value

A SingleCellExperiment object.
Examples

data(pbmc_eg)
data(human_GO_eg)
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbm_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat,
 th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)
The results are stored in `metadata(pbmcs$GO)$sign_all`.

human_COMSig_eg

A list of small Cell Ontology and MSigDB databases for human.

Description

A list of small Cell Ontology and MSigDB databases for human.

Usage

human_COMSig_eg

Format

A list of dataframe.

human_GO_eg

A list of small Gene Ontology database for human.

Description

A list of small Gene Ontology database for human.

Usage

human_GO_eg

Format

A list of dataframe.
human_KEGG_eg

A list of small KEGG database for human.

Description
A list of small KEGG database for human.

Usage
human_KEGG_eg

Format
A list of dataframe.

makeSignMatrix

Create a new SingleCellExperiment object for sign-by-sample matrices.

Description
This function creates a new SingleCellExperiment object for sign-by-sample matrices (SSM) by concatenating SSMs for strongly and variably correlated gene sets.

Usage
makeSignMatrix(sce = NULL, weight_strg = 0.5, weight_vari = 0.5)

Arguments

sce A SingleCellExperiment object.
weight_strg A weight parameter for strongly correlated gene sets.
weight_vari A weight parameter for variably correlated gene sets.

Value
A SingleCellExperiment object.
Examples

```r
data(pbmc_eg)
data(human.GO_eg)
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbm_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human.GO_eg["BP"])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat,
  th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)
pbmcs$GO <- makeSignMatrix(sce = pbmcs$GO, weight_strg = 0.5,
  weight_vari = 0.5)
# The results can be check by, e.g., assay(pbmcs$GO, "counts").
```

pbmcs

A list of SingleCellExperiment objects made from sign-sample matrices.

Description

A list of SingleCellExperiment objects, consisting of small sign-by-sample matrices, pbmcs_eg$CM (using Cell Ontology and MSigDB databases), pbmcs_eg$GO (using Gene Ontology database), and pbmcs_eg$KG (KEGG). Here, pbmcs_eg$CM, pbmcs_eg$GO, and pbmcs_eg$KG include 87, 72, and 64 signs, respectively, and 50 cells.

Usage

pbmcs

pbmc

A SingleCellExperiment object made from a gene expression table.

Description

A SingleCellExperiment object, including 50 genes and 50 cells. The original data "4k PBMCs from a Healthy Donor" was downloaded from 10x Genomics database.

Usage

pbmc
plot_dataframe3D

Visualize a three-dimensional data with labels and colors.

Format

SingleCellExperiment object.

Source

https://support.10xgenomics.com/single-cell-gene-expression

Usage

plot_dataframe3D(
 dataframe3D = NULL,
 labels = NULL,
 colors = NULL,
 theta = 30,
 phi = 30,
 title = "",
 xlabel = "",
 ylabel = "",
 zlabel = ""
)

Arguments

dataframe3D A dataframe with three columns.
labels NULL or a vector of labels of all the samples, corresponding to colors.
colors NULL or a vector of colors of all the samples, corresponding to labels.
theta Angle of the plot.
phi Angle of the plot.
title Title.
xlabel x-axis label.
ylabel y-axis label.
zlabel z-axis label.

Value

A scatter3D object in plot3D package.
Examples

data(pbmcs_eg)
mat <- SingleCellExperiment::reducedDim(pbmcs_eg$CM, "UMAP")[, 1:3]
dataframe3D <- as.data.frame(mat)
labels <- SummarizedExperiment::colData(pbmcs_eg$CM)$seurat_clusters
plot_dataframe3D(dataframe3D = dataframe3D, labels = labels, colors = NULL,
 theta = 45, phi = 20, title = "PBMC (CO & MSigDB)",
 xlabel = "UMAP_1", ylabel = "UMAP_2", zlabel = "UMAP_3")

plot_multiheatmaps

Visualize multivariate data by heatmaps.

Description

This function visualizes multivariate data by heatmaps.

Usage

plot_multiheatmaps(
 ssm_list = NULL,
 gem_list = NULL,
 ssmlabel_list = NULL,
 gemlabel_list = NULL,
 nrand_samples = NULL,
 show_row_names = FALSE,
 title = NULL
)

Arguments

ssm_list A list of sign-by-sample matrices.
gem_list A list of gene-by-sample matrices.
ssmlabel_list NULL or a list of dataframes of sample (cell) labels and colors. The length of
the list must be as same as that of ssm_list, and the order of labels in each list
must be as same as those in ssm_list.
gemlabel_list NULL or a list of dataframes of sample (cell) annotations and colors. The length
of the list must be as same as that of gem_list, and the order of labels in each list
must be as same as those in gem_list.
nrand_samples Number of samples (cells) used for random sampling.
show_row_names TRUE or FALSE: if TRUE, row names are shown.
title Title.

Value

A ComplexHeatmap object.
Examples

data(pbmcs_eg)
mat_CM <- SummarizedExperiment::assay(pbmcs_eg$CM, "counts")
mat_GO <- SummarizedExperiment::assay(pbmcs_eg$GO, "counts")
mat_KG <- SummarizedExperiment::assay(pbmcs_eg$KG, "counts")
ssm_list <- list(SSM_COMSig = mat_CM, SSM_GO = mat_GO, SSM_KEGG = mat_KG)
se <- SingleCellExperiment::altExp(pbmcs_eg$CM, "logcounts")
mat <- SummarizedExperiment::assay(se, "counts")
se <- SingleCellExperiment::altExp(pbmcs_eg$CM, "logcounts")
gem_list <- list(GeneExpr = SummarizedExperiment::assay(se, "counts")
labels <- list(); ssmlabel_list <- list()
for (i in seq_along(pbmcs_eg)){
 fa <- SummarizedExperiment::colData(pbmcs_eg[[i]])$seurat_clusters
 labels[[i]] <- data.frame(label = fa)
 colors <- rainbow(length(unique(labels[[i]]$label)))[labels[[i]]$label]
 labels[[i]]$color <- colors
 ssmlabel_list[[i]] <- labels[[i]]
}
names(ssmlabel_list) <- c("Label_COMSig", "Label_GO", "Label_KEGG")
phases <- SummarizedExperiment::colData(pbmcs_eg$CM)$Phase
label_CC <- data.frame(label = phases, color = NA)
gemlabel_list <- list(CellCycle = label_CC)
plot_multiheatmaps(ssm_list = ssm_list, gem_list = gem_list,
 ssmlabel_list = ssmlabel_list,
 gemlabel_list = gemlabel_list, nrand_samples = 50,
 show_row_names = FALSE, title = "PBMC")

remove_samples

Remove samples based on expression profiles across variables.

Description

This function removes sample data by setting minimum and maximum threshold values for the metadata.

Usage

remove_samples(
 sce = NULL,
 min_nReads = NULL,
 max_nReads = NULL,
 min_nGenes = NULL,
 max_nGenes = NULL,
 min_percMT = NULL,
 max_percMT = NULL
)
remove_signs

Arguments

- **sce**: A SingleCellExperiment object.
- **min_nReads**: A minimum threshold value of the number of reads.
- **max_nReads**: A maximum threshold value of the number of reads.
- **min_nGenes**: A minimum threshold value of the number of non-zero expressed genes.
- **max_nGenes**: A maximum threshold value of the number of non-zero expressed genes.
- **min_percMT**: A minimum threshold value of the percent of reads that map to mitochondrial genes.
- **max_percMT**: A maximum threshold value of the percent of reads that map to mitochondrial genes.

Value

A SingleCellExperiment object.

Examples

```r
# Add metadata
data(pbmc_eg)
pbmc <- add_metadata(sce = pbmc_eg, mitochondria_symbol = "^MT-")
pbmc <- remove_samples(sce = pbmc, min_nReads = 0, max_nReads = 1e+10,
                       min_nGenes = 0, max_nGenes = 1e+10,
                       min_percMT = NULL, max_percMT = NULL)
```

Description

This function removes signs including too few or too many genes.

Usage

```r
remove_signs(sce = NULL, min_ngenes = 2, max_ngenes = 1000)
```

Arguments

- **sce**: A SingleCellExperiment object.
- **min_ngenes**: Minimum number of genes, which must be greater than one.
- **max_ngenes**: Maximum number of genes, which must be greater than one.

Value

A SingleCellExperiment object.
remove_signs_manually

Remove signs by specifying keywords.

Description

This function removes signs by specifying keywords.

Usage

```r
remove_signs_manually(sce = NULL, keywords = NULL)
```

Arguments

- `sce`: A SingleCellExperiment object.
- `keywords`: keywords separated by pipes `|`.

Value

A SingleCellExperiment object.

Examples

```r
data(pbmc_eg)
data(human.GO_eg)

# Create a list of GO terms
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human.GO_eg[["BP"]])

# Remove signs
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)

# The results are stored in `metadata(pbmcs$GO)$sign`.
```

```r

mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human.GO_eg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat, th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)

keywords <- "Covid19|foofoo|hogehoge"
pbmcs$GO <- remove_signs_manually(sce = pbmcs$GO, keywords = keywords)

# The results are stored in `metadata(pbmcs$GO)$sign_SCG`, `metadata(pbmcs$GO)$sign_VCG`, and `metadata(pbmcs$GO)$sign_all`.
```
remove_signs_redundant

Remove redundant signs using semantic similarity matrices.

Description

This function removes redundant signs using semantic similarity matrices.

Usage

```r
remove_signs_redundant(
  sce = NULL,
  similarity_matrix = NULL,
  threshold = NULL,
  keep_rareID = NULL
)
```

Arguments

- `sce`: A SingleCellExperiment object.
- `similarity_matrix`: A semantic similarity matrix.
- `threshold`: A threshold value of semantic similarity, used for regarding biological terms as similar ones.
- `keep_rareID`: If TRUE, biological terms with the larger ICs are kept.

Value

A SingleCellExperiment object.

Examples

```r
data(pbmc_eg)
data(human.GO_eg)
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human.GO_eg["BP"])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat,
  th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)
pbmcs$GO <- remove_signs_redundant(
  sce = pbmcs$GO, similarity_matrix = human.GO_eg$similarity_matrix$BP,
  threshold = 0.80, keep_rareID = TRUE)
# The results are stored in `metadata(pbmcs$GO)$sign_SCG`
# `metadata(pbmcs$GO)$sign_VCG`, `metadata(pbmcs$GO)$sign_all`
# and if there exist, `metadata(pbmcs$GO)$sign_SCG_redundant` and
```
remove_variables

Remove variables based on expression profiles across samples.

Description

This function removes low expressed variable data.

Usage

remove_variables(sce = NULL, min_nsamples = 0)

Arguments

sce A SingleCellExperiment object.
min_nsamples An integer. This function removes variables for which the numbers of non-zero expressing samples are less than this value.

Value

A SingleCellExperiment object.

Examples

data(pbmc_eg)
pbmc <- add_metadata(sce = pbmc_eg, mitochondria_symbol = "^MT-")pbmc <- remove_variables(sce = pbmc, min_nsamples = 10)

remove_variables_second

Remove variables based on the mean expression levels across samples.

Description

This function removes variable data such that the mean expression levels across samples are less than ‘min_meannReads’.

Usage

remove_variables_second(sce = NULL, min_meannReads = 0)
select_signs_manually

Arguments

sce A SingleCellExperiment object.
min_meanReads An integer. This function removes variables for which the mean read counts are less than this value.

Value

A SingleCellExperiment object.

Examples

data(pbmc_eg)
pbmc <- remove_variables_second(sce = pbmc_eg, min_meanReads = 0.01)

select_signs_manually Select signs by specifying keywords.

Description

This function selects signs by specifying keywords.

Usage

select_signs_manually(sce = NULL, keywords = NULL)

Arguments

sce An ASURAT object.
keywords Keywords separated by a pipe.

Value

An ASURAT object.

Examples

data(pbmc_eg)
data(human_GO_eg)
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat,
 th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)
keywords <- "cell|process"
swap_pass <- select_signs_manually(sce = pbmcs$GO, keywords = keywords)
The results are stored in `metadata(pbmcs$GO)$sign_SCG`,
`metadata(pbmcs$GO)$sign_VCG`, and `metadata(pbmcs$GO)$sign_all`.

Description

Perform one-shot adjacent swapping for each element.

Usage

```r
swap_pass(listdata)
```

Arguments

- `listdata` A list of vector and integer.

Value

A List.

Examples

```r
swap_pass(list(vec = c(1, 1, 0), cnt = 0))
```
Index

* datasets
 human_COMSig_eg, 7
 human_GO_eg, 7
 human_KEGG_eg, 8
 pbmc_eg, 9
 pbmcs_eg, 9

 add_metadata, 2
 ASURAT, 3
 bubble_sort, 3
 cluster_genesets, 4
 compute_sepI_all, 5
 compute_sepI_clusters, 5
 create_signs, 6
 human_COMSig_eg, 7
 human_GO_eg, 7
 human_KEGG_eg, 8
 makeSignMatrix, 8
 pbmc_eg, 9
 pbmcs_eg, 9
 plot_dataframe3D, 10
 plot_multiheatmaps, 11
 remove_samples, 12
 remove_signs, 13
 remove_signs_manually, 14
 remove_signs_redundant, 15
 remove_variables, 16
 remove_variables_second, 16
 select_signs_manually, 17
 swap_pass, 18