Package ‘AWFisher’

May 1, 2024

Type Package

Title An R package for fast computing for adaptively weighted fisher's method

Version 1.18.0

Date 2020-02-08

Author Zhiguang Huo

Maintainer Zhiguang Huo <zhuo@ufl.edu>

biocViews StatisticalMethod, Software

VignetteBuilder knitr

Description Implementation of the adaptively weighted fisher's method, including fast p-value computing, variability index, and meta-pattern.

License GPL-3

Depends R (>= 3.6)

Imports edgeR, limma, stats

BugReports https://github.com/Caleb-Huo/AWFisher/issues

Suggests knitr, tightClust

RoxygenNote 6.1.1

NeedsCompilation no

git_url https://git.bioconductor.org/packages/AWFisher

git_branch RELEASE_3_19

git_last_commit 3b4e8a8

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-04-30
Description

R package for fast computing for adaptively weighted fisher’s method

Usage

```
AWFisher_pvalue(p.values)
```

Arguments

- **p.values**

 Input G by K p-value matrix. Each row represent a gene and each column represent a study. Note that K has to be >=2 and <=100.

Details

fast computing for adaptively weighted fisher’s method

Value

A list consisting of AWFisher pvalues and AWweight.

- **pvalues**

 AWFisher pvalues.

- **weights**

 G by K binary weight matrix W. $W_{gk} = 1$ represents for gene g, study k contributes to the meta-analysis result. $W_{gk} = 0$ otherwise.

Author(s)

Zhiguang Huo
Examples

\begin{verbatim}
K <- 40
G <- 10000
p.values = matrix(rbeta(K*G, 1,1), ncol=K)
res = AWFisher_pvalue(p.values)
hist(res$pvalues, breaks=40)
table(rowSums(res$weights))
pvalues=res$pvalues[order(res$pvalues)]
plot(-log10((1:NROW(pvalues))/(1+NROW(pvalues))),
 -log10(pvalues),xlab='theoretical quantile', ylab='observed quantile')
lines(c(0,100), c(0,100), col=2)
\end{verbatim}

biomarkerCategorization

biomarker categorization

Description

biomarker categorization

Usage

biomarkerCategorization(studies, afunction, B = 10, DEindex = NULL,
fdr = NULL, silence = FALSE)

Arguments

- **studies**: a list of K studies. Each element (kth study) of the list is another list consisting of gene expression matrix and label information.
- **afunction**: A function for DE analysis. Options can be function_limma or function_edgeR. Default option is function_limma. However, user could define their own function. The input of afunction should be list(data, label) which is consistent with one element of the studies list/argument. The return of afunction should be list(pvalue=apvalue, effectSize=aeffectsize)
- **B**: number of permutation should be used. B=1000 is suggested.
- **DEindex**: If NULL, BH method will be applied to p-values and FDR 0.05 will be used. User could specify a logical vector as DEindex.
- **fdr**: Default is 0.05. The co-membership matrix calculation will base on genes with this specified fdr.
- **silence**: If TRUE, will print out the bootstrapping procedure.

Details

biomarker categorization via bootstrap AW weight.
Value

A list consisting of biomarker categorization result.

- **varibility**: Variability index for all genes
- **dissimilarity**: Dissimilarity matrix of genes of DEindex==TRUE
- **DEindex**: DEindex for Dissimilarity

Author(s)

Zhiguang Huo

Examples

```r
N0 = 10
G <- 1000
GDEp <- 50
GDEn <- 50
K = 4

studies <- NULL
set.seed(15213)
for(k in seq_len(K)){
  astudy <- matrix(rnorm(N0*2*G),nrow=G,ncol=N0*2)
  ControlLabel <- seq_len(N0)
  caseLabel <- (N0 + 1):(2*N0)


  alabel = c(rep(0,length(ControlLabel)),rep(1,length(caseLabel)))

  studies[[k]] <- list(data=astudy, label=alabel)
}

result <- biomarkerCategorization(studies,function_limma,B=100,DEindex=NULL)
sum(result$DEindex)
head(result$varibility)
print(result$dissimilarity[1:4,1:4])
```

data_mouseMetabolism
Mouse metabolism microarray data

Description

The purpose of the multi-tissue mouse metabolism transcriptomic data is to study how the gene expression changes with respect to the energy deficiency using mouse models. Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency was found to be associated with energy metabolism.
disorder in children. Two genotypes of the mouse model - wild type (VLCAD +/+) and VLCAD-
deficient (VLCAD -/-) - were studied for three types of tissues (brown fat, liver, heart) with 3 to 4
mice in each genotype group. The sample size information is available in the table below. A total
of 6,883 genes are available in this example dataset.

Usage

data_mouseMetabolism

Format

A list of data.frame with 6,883 genes (rows) and 3 - 4 mouse samples in each genotype group
(columns).

brown data for the brown fat tissue
heart data for the heart tissue
liver data for the liver tissue

Source

https://projecteuclid.org/download/pdfview_1/euclid.aoas/1310562214

Examples

data(data_mouseMetabolism)

function_edgeR

use edgeR function to get pvalue

Description

use edgeR function to get pvalue

Usage

function_edgeR(astudy)

Arguments

astudy A list contains a data matrix and a vector of group label

Details

use edgeR function to get pvalue

Value

A list of pvalue and effect size
Author(s)
Zhiguang Huo

Examples
NØ = 10
G <- 1000
GDEp <- 50
GDEn <- 50
set.seed(15213)

astudy <- matrix(rpois(NØ*2*G,10),nrow=G,ncol=NØ*2)
ControlLabel <- 1:NØ
caseLabel <- (NØ + 1):(2*NØ)

alabel <- c(rep(0,length(ControlLabel)),rep(1,length(caseLabel)))
Study <- list(data=astudy, label=alabel)

result <- function_edgeR(Study)
fdr <- p.adjust(result$pvalue)
sum(fdr<=0.05)

function_limma

Description
use limma function to get pvalue

Usage
function_limma(astudy)

Arguments
astudy A list contains a data matrix and a vector of group label

Details
use limma function to get pvalue

Value
A list of pvalue and effect size
variabilityIndex

Author(s)
Zhiguang Huo

Examples
N0 = 10
G <- 1000
GDEp <- 50
GDeN <- 50

set.seed(15213)

astudy <- matrix(rnorm(N0*2*G),nrow=G,ncol=N0*2)
ControlLabel <- 1:N0
caseLabel <- (N0 + 1):(2*N0)

alabel <- c(rep(0,length(ControlLabel)),rep(1,length(caseLabel)))
Study <- list(data=astudy, label=alabel)

result <- function_limma(Study)
fdr <- p.adjust(result$pvalue)
sum(fdr<=0.05)

variabilityIndex Variability Index

Description
Variability Index

Usage
variabilityIndex(studies, afunction, B = 10, silence = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>studies</td>
<td>a list of K studies. Each element (kth study) of the list is another list consisting gene expression matrix and and label information.</td>
</tr>
<tr>
<td>afunction</td>
<td>A function for DE analysis. Options can be function_limma or function_edgeR. Default option is function_limma. However, use could define their own function. The input of afunction should be list(data, label) which is consistent with one element of the studies list/argument. The return of afunction should be list(pvalue=apvalue, effectsize=aeffectsize)</td>
</tr>
<tr>
<td>B</td>
<td>number of permutation should be used. B=1000 is suggested.</td>
</tr>
<tr>
<td>silence</td>
<td>If TRUE, will print out the bootstrapping procedure.</td>
</tr>
</tbody>
</table>
Details

Variability Index via bootstrap AW weight.

Value

A list consisting of biomarker categorization result.

| variability | Variability index for all genes |

Author(s)

Zhiguang Huo

Examples

```r
N0 = 10
G <- 1000
GDEp <- 50
GDen <- 50
K = 4

studies <- NULL
set.seed(15213)
for(k in 1:K){
  astudy <- matrix(rnorm(N0*2*G),nrow=G,ncol=N0*2)
  ControlLabel <- 1:N0
  caseLabel <- (N0 + 1):(2*N0)


  alabel = c(rep(0,length(ControlLabel)),rep(1,length(caseLabel)))

  studies[[k]] <- list(data=astudy, label=alabel)
}

result <- variabilityIndex(studies,function_limma,B=100)
head(result)
```
Index

* datasets
 data_mouseMetabolism, 4
 AWFisher_pvalue, 2
 biomarkerCategorization, 3
 data_mouseMetabolism, 4
 function_edgeR, 5
 function_limma, 6
 variabilityIndex, 7