Package ‘BASiCStan’

May 29, 2024

Title Stan implementation of BASiCS
Version 1.6.0
Date 2024-02-14

Description Provides an interface to infer the parameters of BASiCS using the variational inference (ADVI), Markov chain Monte Carlo (NUTS), and maximum a posteriori (BFGS) inference engines in the Stan programming language. BASiCS is a Bayesian hierarchical model that uses an adaptive Metropolis within Gibbs sampling scheme. Alternative inference methods provided by Stan may be preferable in some situations, for example for particularly large data or posterior distributions with difficult geometries.

License GPL-3
Encoding UTF-8

VignetteBuilder knitr
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.1
Biarch true

Depends R (>= 4.2), BASiCS, rstan (>= 2.18.1)
Imports methods, glmGamPoi, scran, scuttle, stats, utils,
 SingleCellExperiment, SummarizedExperiment, Rcpp (>= 0.12.0),
 RcppParallel (>= 5.0.1), rstantools (>= 2.1.1)

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
 RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)

SystemRequirements GNU make

biocViews ImmunoOncology, Normalization, Sequencing, RNASEq, Software,
 GeneExpression, Transcriptomics, SingleCell,
 DifferentialExpression, Bayesian, CellBiology

URL https://github.com/Alanocallaghan/BASiCStan

BugReports https://github.com/Alanocallaghan/BASiCStan/issues
Suggests testthat (>= 3.0.0), knitr, rmarkdown

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/BASiCStan

git_branch RELEASE_3_19

git_last_commit 83ee6f9

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Alan O'Callaghan [aut, cre], Catalina Vallejos [aut]

Maintainer Alan O'Callaghan <alan.ocallaghan@outlook.com>

Contents

BASiCStan-package .. 2
BASiCStan ... 3
Stan2BASiCS .. 4

Index 6

BASiCStan-package The 'BASiCStan' package.

Description

Provides an interface to infer the parameters of BASiCS using the variational inference (ADVI), Markov chain Monte Carlo (NUTS), and maximum a posteriori (BFGS) inference engines in the Stan programming language. BASiCS is a Bayesian hierarchical model that uses an adaptive Metropolis within Gibbs sampling scheme. Alternative inference methods provided by Stan may be preferable in some situations, for example for particularly large data or posterior distributions with difficult geometries. See also BASiCS_MCMC

References

BASiCStan

Stan implementation of BASiCS.

Description

The stan programming language enables the use of MAP, VB, and HMC inference. Only the regression mode featuring a joint prior between mean and overdispersion parameters is implemented

Usage

BASiCStan(
 Data,
 Method = c("vb", "sampling", "optimizing"),
 WithSpikes = length(altExpNames(Data)) > 0,
 Regression = TRUE,
 BatchInfo = Data$BatchInfo,
 L = 12,
 PriorMu = c("EmpiricalBayes", "uninformative"),
 NormFactorFun = scran::calculateSumFactors,
 ReturnBASiCS = TRUE,
 Verbose = TRUE,
 ...
)

Arguments

Data SingleCellExperiment object
Method Inference method. One of: "vb" for Variational Bayes, "sampling" for Hamiltonian Monte Carlo, "optimizing" for or maximum a posteriori estimation.
WithSpikes Do the data contain spike-in genes? See BASiCS for details. When WithSpikes=FALSE, the cell-specific scaling normalisation factors are fixed; use NormFactorFun to specify how size factors should be generated or extracted.
Regression Use joint prior for mean and overdispersion parameters? Included for compatibility with BASiCS_MCMC, but only TRUE is supported.
BatchInfo Vector describing which batch each cell is from.
L Number of regression terms (including slope and intercept) to use in joint prior for mu and delta.
PriorMu Type of prior to use for mean expression. Default is "EmpiricalBayes", but "uninformative" is the prior used in Eling et al. and previous work.
NormFactorFun Function that returns cell-specific scaling normalisation factors. See computeSumFactors for details on the default.
ReturnBASiCS Should the object be converted into a BASiCS_Chain object?
Verbose Should output of the stan commands be printed to the terminal?
... Passed to vb or sampling.
Stan2BASiCS

Value

An object of class `BASiCS_Chain`.

Examples

```r
library("BASiCS")
sce <- BASiCS_MockSCE(NGenes = 10, NCells = 10)

fit_spikes <- BASiCStan(sce, tol_rel_obj = 1)
## uses fixed scaling normalisation factors
fit_nospikes <- BASiCStan(sce, WithSpikes = FALSE, tol_rel_obj = 1)
```

Stan2BASiCS Convert Stan fits to BASiCS_Chain objects.

Description

Convert Stan fits to `BASiCS_Chain` objects.

Usage

```r
Stan2BASiCS(
  x,
  gene_names =attr(x, "gene_names"),
  cell_names =attr(x, "cell_names"),
  size_factors =attr(x, "size_factors")
)
```

Arguments

- `x` A stan object
- `gene_names, cell_names` Gene and cell names. The reason this argument exists is that by default, stan fit parameters are not named. NOTE: this must be the same order as the data supplied to `BASiCStan`.
- `size_factors` Cell-specific scaling normalisation factors, to be stored as part of the chain object when `WithSpikes=FALSE`.

Value

A `BASiCS_Chain` object.
Examples

```r
library("BASiCS")
sce <- BASiCS_MockSCE(NGenes = 10, NCells = 10)

fit_spikes <- BASiCStan(sce, ReturnBASiCS = FALSE, tol_rel_obj = 1)
summary(fit_spikes)
```
Index

BASiCS_Chain, 3, 4
BASiCS_MCMC, 2, 3
BASiCStan, 3, 4
BASiCStan-package, 2

computeSumFactors, 3

Stan2BASiCS, 4