Package ‘BGmix’

November 5, 2016

Type Package
Title Bayesian models for differential gene expression
Version 1.34.0
Author Alex Lewin, Natalia Bochkina
Maintainer Alex Lewin <a.m.lewin@imperial.ac.uk>
Description Fully Bayesian mixture models for differential gene expression
License GPL-2
Depends R (>= 2.3.1), KernSmooth
biocViews Microarray, DifferentialExpression, MultipleComparison
NeedsCompilation yes

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGmix-package</td>
<td>2</td>
</tr>
<tr>
<td>BGmix</td>
<td>3</td>
</tr>
<tr>
<td>calcFDR</td>
<td>5</td>
</tr>
<tr>
<td>ccParams</td>
<td>6</td>
</tr>
<tr>
<td>ccPred</td>
<td>7</td>
</tr>
<tr>
<td>ccSummary</td>
<td>8</td>
</tr>
<tr>
<td>ccTrace</td>
<td>9</td>
</tr>
<tr>
<td>EstimatePi0</td>
<td>10</td>
</tr>
<tr>
<td>FDRforTailPP</td>
<td>11</td>
</tr>
<tr>
<td>FDRplotTailPP</td>
<td>12</td>
</tr>
<tr>
<td>histTailPP</td>
<td>13</td>
</tr>
<tr>
<td>plotBasic</td>
<td>14</td>
</tr>
<tr>
<td>plotCompare</td>
<td>15</td>
</tr>
<tr>
<td>plotFDR</td>
<td>16</td>
</tr>
<tr>
<td>plotMixDensity</td>
<td>17</td>
</tr>
<tr>
<td>plotPredChecks</td>
<td>17</td>
</tr>
<tr>
<td>plotTrace</td>
<td>18</td>
</tr>
<tr>
<td>readBGX</td>
<td>19</td>
</tr>
<tr>
<td>Simulated example data</td>
<td>19</td>
</tr>
<tr>
<td>Simulated gene expression data</td>
<td>20</td>
</tr>
<tr>
<td>TailPP</td>
<td>20</td>
</tr>
</tbody>
</table>

Index 22
Description

BGmix uses a C++ routine to fit the chosen model via an MCMC algorithm. Files are written to a sub-directory in the working directory. The package includes R functions for reading the results into R, and several plotting functions and functions for estimating error rates.

Details

Package: BGmix
Type: Package
Version: 1.0
Date: 2007-02-01
License: GPL

See Vignette for details of how to use this package (use openVignette()).

Author(s)

Alex Lewin and Natalia Bochkina
Maintainer: Alex Lewin <a.m.lewin@imperial.co.uk>

References

Examples

Note this is a very short MCMC run!
For good analysis need proper burn-in period.
data(ybar,ss)
outdir <- BGmix(ybar, ss, c(8,8), nburn=0, niter=100, nthin=1,trace.pred=1)

Basic plot of parameters
params <- ccParams(outdir)
plotBasic(params,ybar,ss)

plots of FDR and related quantities
fdr <- calcFDR(params)
par(mfrow=c(1,2))
plotFDR(fdr)

plots of Bayesian p-values
for predictive checks of mixture prior
pred <- ccPred(outdir,q.trace=TRUE)
plotPredChecks(pred$pval.ybar.mix2,params$pc,probz=0.5)
plots of predictive density superimposed on data

```r
plotMixDensity(params,pred,ybar,ss)
```

BGmix

Fit the BGmix differential expression model.

Description

This is the main function of the BGmix package. It calls the C++ code which performs the MCMC to fit the BGmix model.

Usage

```r
BGmix(ybar, ss, nreps, neffects = 2, xx = matrix(c(1, 1, -0.5, 0.5),
ncol = 2, byrow = T), ntau = NULL, indtau = NULL, jstar = 1, niter =
10000, nburn = 10000, nthin = 10, seed = 12345, move.choice.bz = 4,
move.choice.aa = 1, move.choice.lam = 0, move.choice.tau = 1,
move.choice.eta = 1, trace.out = 1, trace.pred = 0, sig.aa = 0.1,
tau.eps = 50, lambda.up.init=1.5, lambda.down.init=1.5,
datafilename.ybar = NULL, xfilename = NULL, itfilename =
NULL, rundir=".")
```

Arguments

- `ybar`: matrix no. genes x no. experimental conditions. Mean log gene expression for each gene in each condition.
- `ss`: matrix no. genes x no. experimental conditions. Sample variance of log gene expression for each gene in each condition.
- `nreps`: vector containing the number of replicate arrays in each experimental condition.
- `neffects`: number of effect parameters per gene (e.g., 2 for unpaired differential expression).
- `xx`: design matrix: no. effects x no. experimental conditions. See Vignette for specification of design matrix. Default is for unpaired differential expression.
- `ntau`: number of variances per gene.
- `indtau`: label for each condition indicating which variance grouping that condition belongs to. See Vignette for more detail.
- `jstar`: Label of the effect parameter which has the mixture prior. Labels start at 0, as in C++. If no parameter has a mixture prior, set `jstar=-1`.
- `niter`: no. MCMC iterations after burn-in. This must be at least 100 for the function to work (or else set to zero).
- `nburn`: no. MCMC iterations for burn-in. This must be at least 100 for the function to work (or else set to zero).
- `nthin`: thinning parameter for MCMC iterations.
- `seed`: initial value for random seed.
- `move.choice.bz`: indicates choice of mixture prior: 1 for point mass null + Uniform alternatives, 4 for point mass null + Gamma alternatives, 5 for small Normal null + Gamma alternatives.
- `move.choice.aa`: if this is 1, hyperparameter a for gene variances is updated, if this is 0 it is fixed.
move.choice.lam
 if this is 1, hyperparameter lambda for mixture prior is updated, if this is 0 it is fixed.
move.choice.tau
 indicates choice of prior on gene variances: 1 for Inverse Gamma, 2 for log Normal.
move.choice.eta
 if this is 1, hyperparameter eta for mixture prior is updated, if this is 0 it is fixed.
trace.out
 if this is 1, output trace of model parameters, if this is 0, no output.
trace.pred
 if this is 1, output trace of predictive quantities, if this is 0, no output.
sig.aa
 step-size in random walk update for a (hyperparameter for gene variances distribution)
tau.eps
 Value of epsilon used in the small Normal null mixture component.
lambda.up.init
 init or fixed value of lambda+ (parameter of Gamma mixture component)
lambda.down.init
 init or fixed value of lambda- (parameter of Gamma mixture component)
datafilename.ybar
 character. Name describing the data set (by default this is taken from the name of the ybar argument).
xfilename
 character. Name describing the design matrix.
itfilename
 character. Name describing the indtau parameter.
rundir
 character. Path for saving output files. A new sub-directory is created in the rundir directory.

Details

The C++ code writes a count down on the screen, to give an indication of how long the code has to run. Output is written to a sub-directory of the working directory. This sub-directory is created automatically, and its name is printed by the C++ code to the screen.

Value

The output directory is returned (character).

Author(s)

Alex Lewin

References

Examples

Note this is a very short MCMC run!
For good analysis need proper burn-in period.
data(ybar, ss)
BGmix(ybar, ss, c(8,8), nburn=0, niter=1000, nthin=1)
calcFDR

Estimate the FDR (false discovery rate) and related quantities for BGmix output.

Description

Given a threshold on the posterior probabilities, genes are declared as null or differentially expressed. For any given threshold, the FDR (false discovery rate) and FNR (false non-discovery rate) can be estimated using the posterior probabilities. Estimated numbers of false positives and false negatives are also output.

Usage

calcFDR(res, pcut = seq(0.01,0.5,0.01), true.z = NULL, q.print = F)

Arguments

res list object output from ccParams (this includes the posterior classification probabilities)
pcut scalar or vector of thresholds for which to estimate FDR etc.
true.z vector of true classifications (if known, eg. for simulated data)
q.print Print FDR etc. when pcut is a vector?

Details

If the true classification is known, it can be given as true.z, and the true FDR etc. for the threshold probability can be calculated.

Value

fdr.est, fnr.est scalars or vectors of estimated FDR, FNR
fp.est, fn.est scalars or vectors of estimated no. false positives, no. false negatives
fdr.true, fnr.true scalars or vectors of true FDR, FNR
fp.true, fn.true scalars or vectors of true no. false positives, no. false negatives
npos, nneg scalars or vectors of no. declared positives, no. declared negatives
prob.class posterior classification probabilities (from the ‘res’ object input to this function)
true.z argument to function is output
pcut argument to function is output

Author(s)

Alex Lewin
Examples

```r
## Note this is a very short MCMC run!
## For good analysis need proper burn-in period.
data(ybar, ss)
outdir <- BGmix(ybar, ss, c(8,8), nburn=0, niter=100, nthin=1)
params <- ccParams(outdir)
fdr <- calcFDR(params)
```

ccParams

Read posterior means and classification probabilities from BGmix

Description

Reads output files containing posterior means from BGmix AND reads posterior probabilities of each gene being classified in the null mixture component.

Usage

```r
ccParams(filedir, q.beta = T, q.sig = T, q.z = T, quiet = T)
```

Arguments

- `filedir` character. The name of the output directory created by BGmix.
- `q.beta` logical. Read beta values?
- `q.sig` logical. Read gene variance parameters?
- `q.z` logical. Read z values?
- `quiet` logical. Parameter passed to 'scan'. (If false, 'scan' prints details of number of items read in.)

Value

- `mbeta` matrix no. genes x no. effects. Posterior means of gene effect parameters (usually gene means and log fold changes).
- `msig2` matrix no. genes x no. variances. Posterior means of gene variances.
- `mbb` vector of hyperparameters (b) for gene variances (posterior means).
- `maa` vector of hyperparameters (a) for gene variances (posterior means).
- `mtau` matrix no. genes x no. conditions. Posterior means of gene precisions.
- `mwtc` vector of posterior mean mixture weights
- `mzg` vector of posterior mean allocation for each gene
- `meta` vector of mixture parameters (eta)
- `mlambda` vector of mixture parameters (lambda)
- `pc` matrix no. genes x no. mixture components. Posterior probability for each gene of being classified into each mixture component.

Author(s)

Alex Lewin
Examples

Note this is a very short MCMC run!
For good analysis need proper burn-in period.
data(ybar, ss)
outdir <- BGmix(ybar, ss, c(8,8), nburn=0, niter=100, nthin=1)
params <- ccParams(outdir)

ccPred

Read predictive quantities output from BGmix.

Description

Reads predictive p-values from files output from BGmix. Also (optionally) reads posterior predictive distributions of data.

Usage

ccPred(filedir, q.partial = T, q.trace = F, quiet = T)

Arguments

filedir character. The name of the output directory created by BGmix.
q.partial logical. Read partial predictive p-values?
q.trace logical. Read posterior predictive distributions of data?
quiet logical. Parameter passed to 'scan'. (If false, 'scan' prints details of number of items read in.)

Value

pval.ss.post matrices no. genes x no. conditions. Posterior predictive p-values for sum of squares for each gene in each condition.
pval.ss.mix matrices no. genes x no. conditions. Mixed predictive p-values for sum of squares for each gene in each condition.
pval.ss.part matrices no. genes x no. conditions. Partial predictive p-values for sum of squares for each gene in each condition.
pval.ybar.post matrices no. genes x no. mixture components. Posterior predictive p-values for ybar for each gene in each mixture component.
pval.ybar.mix2 matrices no. genes x no. mixture components. Mixed predictive p-values for ybar for each gene in each mixture component.
pval.ybar.part matrices no. genes x no. mixture components. Partial predictive p-values for ybar for each gene in each mixture component.
ybar.pred1 Posterior predictive distribution of ybar.
ybar.pred3 Mixed predictive distribution of ybar.
ss.pred1 Posterior predictive distribution of sums of squares.
ss.pred2 Mixed predictive distribution of sums of squares.
Note
Additional output: pval.ybar.mix1 and pval.ybar.mix3 are alternative versions of mixed predictive
p-values (currently not used). Also, ybar.pred2 and ybar.pred4 are the corresponding alternative
mixed predictive distributions for ybar.

Author(s)
Alex Lewin

Examples
Note this is a very short MCMC run!
For good analysis need proper burn-in period.
data(ybar, ss)
outdir <- BGmix(ybar, ss, c(8,8), nburn=0, niter=100, nthin=1)
pred <- ccPred(outdir)

ccSummary
Read summary of BGmix output

Description
Reads the summary.txt file output by BGmix, containing information about data sets used and model
options. This function is called by ccParams, ccTrace and ccPred, therefore users will not in general
need to call it directly.

Usage
ccSummary(filedir)

Arguments
filedir character. The name of the output directory created by BGmix.

Value
A list of scalar values, as follows:
ngen,ncond,neffect,ncomps,ntau
nos. genes, conditions, effects, mixture components, gene variances
jstar label of effect with mixture prior (labels start at 0)
move.choice.bz,move.choice.cut,move.choice.aa, move.choice.eta,move.choice.lam,move.choice.tau,
model choice options (see BGmix help for details
lambda.up.init,lambda.down.init, eta.up.init,eta.down.init
initial values for eta and lambda (parameters of mixture components)

Author(s)
Alex Lewin
Examples

Note this is a very short MCMC run!
For good analysis need proper burn-in period.
data(ybar, ss)
outdir <- BGmix(ybar, ss, c(8,8), nburn=0, niter=100, nthin=1)
summ <- ccSummary(outdir)

ccTrace

Read trace files from BGmix

Description

Reads output files containing whole posterior distributions from BGmix. Also calls `ccSummary`, and outputs model options.

Usage

cctrace(filedir, q.beta = T, q.sig = T, q.z = T, quiet = T)

Arguments

filedir character. The name of the output directory created by BGmix.
q.beta logical. Read beta values?
q.sig logical. Read gene variances?
q.z logical. Read z values?
quiet logical. Parameter passed to 'scan'. (If false, 'scan' prints details of number of items read in.)

Value

summ list object output by 'ccSummary'
eta matrix (no. components -1) x no. MCMC samples. Posterior of mixture component parameters (eta).
lambda matrix (no. components -1) x no. MCMC samples. Posterior of mixture component parameters (lambda).
aa matrix no. MCMC samples x no. variances. Posterior of variance hyperparameters (a).
bb matrix no. MCMC samples x no. variances. Posterior of variance hyperparameters (b).
wtc matrix no. MCMC samples x no. mixture components. Posterior of mixture weights.
beta matrix no. effects x no. genes x no. MCMC samples. Posterior of gene effects.
sig2 matrix no. variances x no. genes x no. MCMC samples. Posterior of gene variances.
zg matrix no. MCMC samples x no. genes. Posterior of gene allocations.

Author(s)

Alex Lewin
Examples

```r
## Note this is a very short MCMC run!
## For good analysis need proper burn-in period.
data(ybar, ss)
outdir <- BGmix(ybar, ss, c(8,8), nburn=0, niter=100, nthin=1)
tr <- ccTrace(outdir)
```

EstimatePi0

Proportion of the variables under the null hypothesis

Description

Estimate of the proportion of the variables under the null hypothesis using tail posterior probabilities

Usage

```r
EstimatePi0(tpp, pp0, plot = T)
```

Arguments

- `tpp`: observed tail posterior probability
- `pp0`: a vector of tail posterior probability under H0
- `plot`: if True, estimated pi0 at different locations and the median estimate is plotted

Details

Use Storey (2002) approach to estimate pi0

Value

- estimate of pi0 = proportion of non-differentially expressed genes

Author(s)

Natalia Bochkina

References

See Also

`TailPP, FDRplotTailPP, histTailPP`
Examples

```r
data(ybar, ss)
nreps <- c(8,8)

## Note this is a very short MCMC run!
## For good analysis need proper burn-in period.
outdir <- BGmix(ybar, ss, nreps, jstar=-1, nburn=0, niter=100, nthin=1)

params <- ccParams(outdir)
res <- ccTrace(outdir)

tpp.res <- TailPP(res, nreps, params, plots = FALSE)
pi0 <- EstimatePi0(tpp.res$tpp, tpp.res$pp0)
```

FDRforTailPP
FDR for tail posterior probability

Description

Calculate the false discovery rate (FDR) for the tail posterior probability

Usage

```r
FDRforTailPP(tpp, a1, a2 = NULL, n.rep1, n.rep2 = NULL, prec = 0.05, p.cut = 0.7, N = 10000, pp0=NULL, plot = T)
```

Arguments

- `tpp`: vector of tail posterior probabilities
- `a1`: posterior mean of the shape parameter of the inverse gamma distribution - prior for the variance in condition 1
- `a2`: posterior mean of the shape parameter of the inverse gamma distribution - prior for the variance in condition 2
- `n.rep1`: number of replicates in condition 1
- `n.rep2`: number of replicates in condition 2
- `prec`: precision of the estimate of the cumulative distribution function of tail posterior probability under H0 (at points 1 - k*prec, k =1,2,...)
- `p.cut`: to save time, calculate FDR only for cutoffs on tail posterior probability > p.cut
- `N`: simulation size for tail posterior probability under H0
- `pp0`: a vector of simulated tail posterior probabilities under H0
- `plot`: if True, the estimated pi0 at different locations and the median estimate is plotted

Value

- `pi0`: estimate of pi0 - proportion of non-differentially expressed genes
- `FDR`: estimate of FDR for all (distinct) cutoffs > p.cut
Author(s)

Natalia Bochkina

References

See Also

TailPP, FDRplotTailPP, histTailPP, EstimatePi0

Examples

data(ybar, ss)
nreps <- c(8,8)

Note this is a very short MCMC run!
For good analysis need proper burn-in period.
outdir <- BGmix(ybar, ss, nreps, jstar=-1, nburn=0, niter=100, nthin=1)

params <- ccParams(outdir)
res <- ccTrace(outdir)

tpp.res <- TailPP(res, nreps, params, plots = FALSE)
FDR.res = FDRforTailPP(tpp.res$tpp, a1 = params$maa[1],
a2 = params$maa[2], n.rep1=nreps[1], n.rep2=nreps[2], p.cut = 0.8)

FDRplotTailPP

Plot of FDR for tail posterior probability

Description

Plots smoothed FDR vs tail posterior probability or vs the number of differentially expressed (DE) genes

Usage

FDRplotTailPP(tpp.res, nmax = sum(! is.na(tpp.res$FDR)), plot.TP = F)

Arguments

tpp.res output of TailPP

nmax maximum size of the list of DE genes

plot.TP logical. If TRUE FDR is plotted, otherwise the number of false positives is plotted vs the number of differentially expressed genes
histTailPP

Author(s)
Natalia Bochkina

References

See Also
TailPP, histTailPP, EstimatePi0

Examples

```r
data(ybar, ss)
nreps <- c(8,8)

## Note this is a very short MCMC run!  
## For good analysis need proper burn-in period.
outdir <- BGmix(ybar, ss, nreps, jstar=-1, nburn=0, niter=100, nthin=1)

params <- ccParams(outdir)
res <- ccTrace(outdir)

tpp.res <- TailPP(res, nreps, params, plots = FALSE)
FDRplotTailPP(tpp.res, plot.TP = TRUE)
```

histTailPP

Histogram plot for tail posterior probability

Description
Plots a histogram of tail posterior probability with its density under the null hypothesis.

Usage

```r
histTailPP(tpp.res, bw=0.05, xlim=c(0,1), nc=10)
```

Arguments

- `tpp.res`: output of TailPP
- `bw`: bandwidth for kernel estimate of the null density
- `xlim`: limits on the x axis
- `nc`: number of bins of the histogram

Author(s)
Natalia Bochkina
References

See Also

TailPP, FDRplotTailPP, EstimatePi0

Examples

data(ybar, ss)
nreps <- c(8,8)

Note this is a very short MCMC run!
For good analysis need proper burn-in period.
outdir <- BGmix(ybar, ss, nreps, jstar=-1, nburn=0, niter=100, nthin=1)

params <- ccParams(outdir)
res <- ccTrace(outdir)

tpp.res <- TailPP(res, nreps, params, plots = FALSE)
histTailPP(tpp.res, bw=0.04, xlim=c(0,1), nc=10)

plotBasic

Basic plots of BGmix parameters and data.

Description

Plots gene effects and variances versus their corresponding data sufficient statistics (to show the effect of smoothing and shrinkage). Also plots "volcano plots": posterior probabilities of being classified in each mixture component versus the log fold change parameters.

Usage

plotBasic(res, ybar, ss, q.mean = T, q.diff = T, q.sig = T, q.volcano = T)

Arguments

res list object output from 'ccParams'
ybar ybar data (see BGmix help for details)
ss ss data (see BGmix help for details)
q.mean logical. Include mean plot?
q.diff logical. Include log fold change plot?
q.sig logical. Include variance plot?
q.volcano logical. Include volcano plot (posterior classification v. fold change)?
Details

Note this plotting function is designed for model output from the unpaired differential expression design.

Value

No value is returned to R. Results from BGmix model are output to files.

Author(s)

Alex Lewin

Examples

Note this is a very short MCMC run!
For good analysis need proper burn-in period.
data(ybar, ss)
outdir <- BGmix(ybar, ss, c(8,8), nburn=0, niter=100, nthin=1)
params <- ccParams(outdir)
plotBasic(params, ybar, ss)

plotCompare Scatter plot with equal axes.

Description

Plots a scatter plot of two variables with equal scales for the axes.

Usage

plotCompare(var1, var2, limi = 0, xlab = substitute(var1), ylab = substitute(var2), log = "", title = "")

Arguments

var1 data to plot (x co-ordinate)
var2 data to plot (y co-ordinate)
limi limits of axes. If not specified, axes limits are determined from input data.
xlab x-axis label
ylab y-axis label
log specifies if axes are on the log scale (as argument to 'par')
title title of plot
... other parameters input to plot

Value

Outputs the limits used in the plot (the input 'limi' argument if specified).

Author(s)

Alex Lewin
Examples

```r
x <- runif(100)
y <- rbeta(100, 0.5, 0.5)
plotCompare(x, y)
```

plotFDR

Plot estimated FDR etc. for BGmix output.

Description

Given a threshold on the posterior probabilities, genes are declared as null or differentially expressed. For any given threshold, the FDR (false discovery rate) and FNR (false non-discovery rate) can be estimated using the posterior probabilities. This function plots these quantities twice, once versus the threshold probabilities, and once versus the number of declared positives.

Usage

```r
plotFDR(res, ylim = NULL, q.plotfnr = FALSE, q.plotpcut = TRUE, q.plotnpos = TRUE, ...
```

Arguments

- `res` list object output from `calcFDR`
- `ylim` optional argument specifying limit for y-axis
- `q.plotfnr` Include FNR in plots?
- `q.plotpcut` Include the plot of error rates v. threshold on posterior probabilities?
- `q.plotnpos` Include the plot of error rates v. no. positives.
- `...` arguments passed to `plot`

Value

No value is returned to R. Results from BGmix model are output to files.

Author(s)

Alex Lewin

Examples

```r
## Note this is a very short MCMC run!
## For good analysis need proper burn-in period.
data(ybar, ss)
outdir <- BGmix(ybar, ss, c(8,8), nburn=0, niter=100, nthin=1)
params <- ccParams(outdir)
fdr <- calcFDR(params)
par(mfrow=c(1,2))
plotFDR(fdr)
```
plotMixDensity

Plot predictive density of data.

Description

Plot predictive density of data superimposed on histograms of observed data. Separate plots for ybar and sums of squares.

Usage

plotMixDensity(res, predres, ybar, ss)

Arguments

res list object output from ‘ccParams’
predres list object output from ‘ccPred’ (need q.trace=T in ‘ccPred’) ybar ybar data (see BGmix help for details) ss ss data (see BGmix help for details)

Details

Note that this function is written for the unpaired differential expression design.

Author(s)

Alex Lewin

Examples

Note this is a very short MCMC run!
For good analysis need proper burn-in period.
data(ybar,ss) outdir <- BGmix(ybar,ss,c(8,8)200, nburn=0, nthin=1, trace.pred=1) pred <- ccPred(outdir,q.trace=TRUE) params <- ccParams(outdir) plotMixDensity(params,pred,ybar,ss)

plotPredChecks

Plots of predictive checks for mixture prior.

Description

Histograms and q-q plots of predictive p-values for the mixture prior. Separate plots are given for each mixture component, using only genes with high posterior probability of being classified into the relevant component.

Usage

plotPredChecks(pvals, pc, probz = 0.8, label = "", breaks = 20)
plotTrace

Arguments

- `pvals`: matrix of predictive p-values output by `ccPred` (NB, not the whole list object, just the matrix of p-values)
- `pc`: matrix of posterior classification probabilities output by `ccParams` (NB, not the whole list object, just the matrix of probabilities)
- `probz`: threshold on posterior probabilities for including genes in each mixture component plot
- `label`: title used on histograms
- `breaks`: argument input to histogram

Author(s)

Alex Lewin

Examples

```r
## Note this is a very short MCMC run!
## For good analysis need proper burn-in period.
data(ybar,ss)
outdir <- BGmix(ybar, ss, c(8,8), nburn=0, niter=100, nthin=1)
params <- ccParams(outdir)
pred <- ccPred(outdir)
plotPredChecks(pred$pval.ybar.mix2,params$pc,probz=0.5)
```

plotTrace
Trace plots for BGmix output.

Description

Trace plots are plotted for all scalar parameters. Optionally, traces are plotted for parameters indexed by genes, but for selected genes only.

Usage

```r
plotTrace(res, q.beta = T, q.sig = T, q.z = T, ind.genes = (1:3))
```

Arguments

- `res`: list object output from `ccTrace`
- `q.beta`: logical. Plot trace of beta (gene effect) parameters?
- `q.sig`: logical. Plot trace of gene variances?
- `q.z`: logical. Plot trace of gene allocation parameters?
- `ind.genes`: indices of genes for which to plot gene parameters.

Author(s)

Alex Lewin
readBGX

Examples

```r
## Note this is a very short MCMC run!
## For good analysis need proper burn-in period.
data(ybar, ss)
outdir <- BGmix(ybar, ss, c(8,8), nburn=0, niter=100, nthin=1)
tr <- ccTrace(outdir)
plotTrace(tr)
plotTrace(tr, q.beta=TRUE, q.sig=FALSE, q.z=FALSE, ind.genes=1)
plotTrace(tr, q.beta=FALSE, q.sig=FALSE, q.z=TRUE, ind.genes=sample(1:1000, 5))
```

Description

Reads output from BGX package, for input to BGmix.

Usage

```r
readBGX(path)
```

Arguments

- **path**: directory containing BGX output

Value

- **ybar**: ybar object (see `BGmix` help for details)
- **ss**: ss object (see `BGmix` help for details)

Author(s)

Ernest Turro

Simulated example data

Mean log gene expression under two conditions

Description

Simulated gene expression data. 2500 genes under 2 experimental conditions, with 8 replicate arrays for each condition. The data is presented as mean and sum of squares of the log gene expression, in each condition. `ybar` is the matrix containing the means in each condition.

Usage

```r
data(ybar)
```

Format

matrix no. genes x no. experimental conditions
Simulated gene expression data

Sample variance of log gene expression under two conditions

Description

Simulated gene expression data. 2500 genes under 2 experimental conditions, with 8 replicate arrays for each condition. The data is presented as mean and sum of squares of the log gene expression, in each condition. ss is the matrix containing the sample variances in each condition.

Usage

data(ss)

Format

matrix no. genes x no. experimental conditions

TailPP

Tail posterior probability for BGmix output.

Description

For differential expression models with unstructured priors (no mixture prior), calculates tail posterior probability and FDR, and plots a histogram. Uses whole posterior distributions of likelihood parameters (found by 'ccTrace') and posterior means of hyperparameters (found by 'ccParams').

Usage

TailPP(res, nreps, params, paired=F, alpha=0.05, N = 5000, prec=0.05, p.cut = 0.7, plots = T, plot.pi0=F)

Arguments

- **res**
 - list object output from 'ccTrace'
- **nreps**
 - vector length 2 containing the number of replicates in each condition
- **params**
 - list object output from 'ccParams'
- **paired**
 - logical. TRUE for paired design, FALSE for unpaired.
- **alpha**
 - parameter of the tail posterior probability (1-alpha/2 quantile)
- **N**
 - simulation size for tail posterior probability under H0
- **prec**
 - parameter used when estimating CDF of tail posterior probability under H0
- **p.cut**
 - calculate FDR only for cutoffs on tail posterior probability > p.cut
- **plots**
 - logical. if TRUE, makes plots of the histogram of tail posterior probability with the null density and of FDR
- **plot.pi0**
 - logical. if TRUE, diagnostic plot of the estimated pi0 at different locations and the median estimate
TailPP

Value
- **tpp**: vector of tail posterior probabilities with parameter alpha, one per gene
- **FDR**: (smoothed) estimate of FDR for all (distinct) cutoffs > p.cut
- **pi0**: estimated proportion of observations under the null
- **pp0**: simulations under the null

Author(s)
- Natalia Bochkina

References

See Also
- FDRplotTailPP, histTailPP, EstimatePi0

Examples
```r
data(ybar, ss)
nreps <- c(8,8)

## Note this is a very short MCMC run!
## For good analysis need proper burn-in period.
outdir <- BGmix(ybar, ss, nreps, jstar=-1, nburn=0, niter=100, nthin=1)

params <- ccParams(outdir)
res <- ccTrace(outdir)

tpp.res <- TailPP(res, nreps, params, plots = FALSE)
histTailPP(tpp.res)
FDRplotTailPP(tpp.res, plot.TP = TRUE)
```
Index

*Topic **datasets**
 Simulated example data, 19
 Simulated gene expression data, 20

*Topic **plot**
 FDRplotTailPP, 12
 histTailPP, 13
 plotBasic, 14
 plotCompare, 15
 plotFDR, 16
 plotMixDensity, 17
 plotPredChecks, 17
 plotTrace, 18
 readBGX, 19

*Topic **htest**
 calcFDR, 5
 EstimatePi0, 10
 FDRforTailPP, 11
 TailPP, 20

*Topic **manip**
 ccParams, 6
 ccPred, 7
 ccSummary, 8
 ccTrace, 9

*Topic **models**
 BGmix, 3
 BGmix-package, 2

 BGmix, 3, 8, 14, 17, 19
 BGmix-package, 2

 calcFDR, 5
 ccParams, 6
 ccPred, 7
 ccSummary, 8
 ccTrace, 9

 EstimatePi0, 10, 12–14, 21

 FDRforTailPP, 11
 FDRplotTailPP, 10, 12, 14, 21

 histTailPP, 10, 12, 13, 13, 21

 plotBasic, 14
 plotCompare, 15