Package ‘BUScorrect’

March 20, 2024

Type Package
Title Batch Effects Correction with Unknown Subtypes
Version 1.20.0
Date 2018-06-07
Author Xiangyu Luo <xyluo1991@gmail.com>, Yingying Wei <yweicuhk@gmail.com>
Maintainer Xiangyu Luo <xyluo1991@gmail.com>
Depends R (>= 3.5.0)
Description High-throughput experimental data are accumulating exponentially in public databases. However, mining valid scientific discoveries from these abundant resources is hampered by technical artifacts and inherent biological heterogeneity. The former are usually termed "batch effects," and the latter is often modelled by "subtypes." The R package BUScorrect fits a Bayesian hierarchical model, the Batch-effects-correction-with-Unknown-Subtypes model (BUS), to correct batch effects in the presence of unknown subtypes. BUS is capable of (a) correcting batch effects explicitly, (b) grouping samples that share similar characteristics into subtypes, (c) identifying features that distinguish subtypes, and (d) enjoying a linear-order computation complexity.
Imports gplots, methods, grDevices, stats, SummarizedExperiment
VignetteBuilder knitr
Suggests BiocStyle, knitr, RUnit, BiocGenerics
biocViews GeneExpression, StatisticalMethod, Bayesian, Clustering, FeatureExtraction, BatchEffect
LazyLoad yes
License GPL (>= 2)
git_url https://git.bioconductor.org/packages/BUScorrect
git_branch RELEASE_3_18
git_last_commit b2e038a
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-20
R topics documented:

- BUScorrect-package
- adjusted_values
- baseline_expression_values
- BIC_BUS
- BUSexample_data
- BUSgibbs
- calculate_EPSR_gamma
- calculate_EPSR_mu
- calculate_EPSR_sigma_sq
- estimate_IG_indicators
- IG_index
- location_batch_effects
- postprob_DE
- postprob_DE_thr_fun
- print.BUSfits
- scale_batch_effects
- Subtypes
- subtype_effects
- summary.BUSfits
- visualize_data

Index

BUScorrect-package Batch Effects Correction with Unknown Subtypes

Description

High-throughput experimental data are accumulating exponentially in public databases. However, mining valid scientific discoveries from these abundant resources is hampered by technical artifacts and inherent biological heterogeneity. The former are usually termed "batch effects," and the latter is often modelled by "subtypes." The R package BUScorrect fits a Bayesian hierarchical model, the Batch-effects-correction-with-Unknown-Subtypes model (BUS), to correct batch effects in the presence of unknown subtypes. BUS is capable of (a) correcting batch effects explicitly, (b) grouping samples that share similar characteristics into subtypes, (c) identifying features that distinguish subtypes, and (d) enjoying a linear-order computation complexity.

Details

BUS is capable of (a) correcting batch effects explicitly, (b) grouping samples that share similar characteristics into subtypes, (c) identifying features that distinguish subtypes, (d) allowing the number of subtypes to vary from batch to batch, (e) integrating batches from different platforms, and (f) enjoying a linear-order computation complexity.
Author(s)

Xiangyu Luo <xyluo1991@gmail.com>, Yingying Wei <yweicuhk@gmail.com>
Maintainer: Xiangyu Luo <xyluo1991@gmail.com>

References

Examples

```r
#Generate Simulation Data
rm(list = ls(all = TRUE))
set.seed(123)

B <- 3  #total number of batches
K <- 3  #total number of subtypes
G <- 3000  #total number of genes

pi <- matrix(NA, B, K)
  # pi[b,k] stands for the proportion of the kth subtype in the bth batch
pi[1, ] <- c(0.2, 0.3, 0.5)
pi[2, ] <- c(0.4, 0.2, 0.4)
pi[3, ] <- c(0.3, 0.4, 0.3)

#total number of samples in each batch.
n_vec <- rep(NA, B)
  #n_vec[b] represents the total number of samples in batch b.
n_vec <- c(100, 110, 120)

#Data list
data <- list()

data <- list()

#baseline expression level
alpha <- rep(2, G)

#subtype effect
mu <- matrix(NA, G, K)
  #subtype effect, mu[g,k] stands for the kth-subtype effect of gene g
```
$\mu_{i,1} \leftarrow 0$

the first subtype is taken as the baseline subtype
the subtype effect of subtype 1 is set to zero

$\mu_{i,2} \leftarrow c(rep(2,G/20), \ rep(0,G/20), \ rep(0, \ G-G/20-G/20))$

$\mu_{i,3} \leftarrow c(rep(0,G/20), \ rep(2,G/20), \ rep(0, \ G-G/20-G/20))$

batch effect

$\gamma \leftarrow matrix(NA, B, G)$

'location' batch effect of gene g in batch b

$\gamma[1,] \leftarrow 0$

the first batch is taken as the reference batch without batch effects
the batch effect of batch 1 is set to zero

$\gamma[2,] \leftarrow c(rep(3,G/5), \ rep(2,G/5), \ rep(1,G/5), \ rep(2,G/5), \ rep(3,G/5))$

$\gamma[3,] \leftarrow c(rep(1,G/5), \ rep(2,G/5), \ rep(3,G/5), \ rep(2,G/5), \ rep(1,G/5))$

$\sigma^2 \leftarrow matrix(NA, B,G)$

$\sigma^2_{b,g}$ denotes the error variance of gene g in batch b.

$\sigma^2[1,] \leftarrow rep(0.1, G)$

$\sigma^2[2,] \leftarrow rep(0.2, G)$

$\sigma^2[3,] \leftarrow rep(0.15, G)$

$Z \leftarrow list()$

subtype indicator. $Z[b,j]$ represents the subtype of sample j in batch b

$Z[[1]] \leftarrow as.integer(c(rep(1,floor(pi[1,1]*n_vec[1])), \ rep(2,floor(pi[1,2]*n_vec[1])), \ rep(3,floor(pi[1,3]*n_vec[1]))))$

$Z[[2]] \leftarrow as.integer(c(rep(1,floor(pi[2,1]*n_vec[2])), \ rep(2,floor(pi[2,2]*n_vec[2])), \ rep(3,floor(pi[2,3]*n_vec[2]))))$

$Z[[3]] \leftarrow as.integer(c(rep(1,floor(pi[3,1]*n_vec[3])), \ rep(2,floor(pi[3,2]*n_vec[3])), \ rep(3,floor(pi[3,3]*n_vec[3]))))$

for(b in 1:B){ # generate data
 num <- n_vec[b]
 example_Data[[b]] <- sapply(1:num, function(j){
 tmp <- alpha + $\mu_{i, Z[b][j]}$ + $\gamma_{b,j}$ + $\epsilon_{b,g}$
 tmp
 })
}

Apply the BUSgibbs Function
adjusted_values

Obtain adjusted expression values from the output by BUSgibbs

Description

Call the function to obtain the corrected expression values with batch effects removed from the original input data.

Usage

```r
adjusted_values(BUSfits, original_data)
```

Arguments

- `BUSfits` The BUSfits object output by the function BUSgibbs.
- `original_data` The original gene expression data list with length equal to the batch number. Each of its element is a gene expression matrix for a specific batch, in which each row corresponds to a gene and each column corresponds to a sample.
Value

adjusted_data An R list with length equal to the batch number. Each of its element is a corrected gene expression matrix for a specific batch, in which each row corresponds to a gene and each column corresponds to a sample.

Author(s)

Xiangyu Luo

References

Examples

```r
rm(list = ls(all = TRUE))
set.seed(123)
# a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()

# batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10,
                                   3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))

# batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10,
                                   3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch2_effect

# batch 3
batch3_effect <- c(3,2,1,1,2)
example_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10,
                                   3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch3_effect

set.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
adjusted_data <- adjusted_values(BUSfits, example_Data)
```

baseline_expression_values

Obtain the baseline expression values from the output by BUSgibbs

Description

Call the function to obtain the baseline expression values for subtype 1 from the output by BUSgibbs.
Usage

`baseline_expression_values(BUSfits)`

Arguments

- **BUSfits**: The BUSfits object output by the function BUSgibbs.

Value

- **est_baseline_expression_values**: The estimated baseline expression values for subtype 1, a vector with length equal to the gene number.

Author(s)

Xiangyu Luo

References

Examples

```r
rm(list = ls(all = TRUE))
set.seed(123)
# a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()

# batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))

# batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch2_effect

# batch 3
batch3_effect <- c(3,2,1,1,2)
example_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch3_effect

set.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
est_baseline_expression_values <- baseline_expression_values(BUSfits)
```
BIC_BUS

Obtain BIC from the output by BUSgibbs

Description

The BIC value can be used to determine the subtype number if it is unknown to the users.

Usage

```r
BIC_BUS(BUSfits)
```

Arguments

- **BUSfits**
 The BUSfits object from the function BUSgibbs.

Value

- **BIC_val**
 The BIC value for the BUS model with the subtype number being `n.subtypes`, the input subtype number for the BUSgibbs function that generates the BUSfits object.

Author(s)

Xiangyu Luo

References

Examples

```r
rm(list = ls(all = TRUE))
set.seed(123)
# a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()

# batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))

# batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch2_effect

# batch 3
batch3_effect <- c(3,2,1,1,2)
example_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch3_effect + batch2_effect
```
BUSexample_data

A simulated data set

Description

A simulated data set for demonstrating how to use the BUScorrect package

Examples

```r
# This data set is simulated according to the following R code
rm(list = ls(all = TRUE))
set.seed(123456)

B <- 3  
# total number of batches

K <- 3  
# total number of subtypes

G <- 2000  
# total number of genes

pi <- matrix(NA, B, K)  
# pi[b, k] stands for the proportion of kth subtype in bth batch

pi[1, ] <- c(0.2, 0.3, 0.5)  
pi[2, ] <- c(0.4, 0.2, 0.4)  
pi[3, ] <- c(0.3, 0.4, 0.3)

n_vec <- rep(NA, B)  
# n_vec[b] represents the total number of samples in batch b.

n_vec <- c(70, 80, 70)

example_Data <- list()  
# Data list

alpha <- rep(2, G)  
# baseline expression level
```
subtype effect
mu <- matrix(NA, G, K)
subtype effect, mu[g,k] stands for the kth-subtype effect of gene g

mu[,1] <- 0
the first subtype is taken as the baseline subtype
the subtype effect of subtype 1 is set to zero

mu[,2] <- c(rep(2,G/20), rep(0,G/20), rep(0, G-G/20-G/20))
mu[,3] <- c(rep(0,G/20), rep(2,G/20), rep(0, G-G/20-G/20))

batch effect
gamma <- matrix(NA, B, G)
'location' batch effect of gene g in batch b

gamma[1,] <- 0
the first batch is taken as the reference batch without batch effects
the batch effect of batch 1 is set to zero

gamma[2,] <- c(rep(3,G/5), rep(2,G/5), rep(1,G/5), rep(2,G/5), rep(3,G/5))

gamma[3,] <- c(rep(1,G/5), rep(2,G/5), rep(3,G/5), rep(2,G/5), rep(1,G/5))

sigma_square <- matrix(NA, B, G)
sigma_square[b,g] denotes the error variance of gene g in batch b.

sigma_square[1,] <- rep(0.1, G)
sigma_square[2,] <- rep(0.2, G)
sigma_square[3,] <- rep(0.15, G)

Z <- list()
subtype indicator. Z[b,j] represents the subtype of sample j in batch b

Z[[1]] <- as.integer(c(rep(1,floor(pi[1,1]*n_vec[1])), rep(2,floor(pi[1,2]*n_vec[1])), rep(3,floor(pi[1,3]*n_vec[1])))

Z[[2]] <- as.integer(c(rep(1,floor(pi[2,1]*n_vec[2])), rep(2,floor(pi[2,2]*n_vec[2])), rep(3,floor(pi[2,3]*n_vec[2])))

Z[[3]] <- as.integer(c(rep(1,floor(pi[3,1]*n_vec[3])), rep(2,floor(pi[3,2]*n_vec[3])), rep(3,floor(pi[3,3]*n_vec[3])))

for(b in 1:B){ # generate data
 num <- n_vec[b]
 example_Data[[b]] <- sapply(1:num, function(j){
 tmp <- alpha + mu[,Z[[b]][j]] + gamma[b,] +
 rnorm(G, sd = sqrt(sigma_square[b,]))
 })

 tmp
BUSgibbs

Batch Effects Correction and Subtype Discovery using Gibbs Sampler

Description

The function "BUSgibbs" stands for fitting the Batch effects correction with Unknown Subtypes model (BUS) with the Gibbs Sampler. BUS is capable of (a) correcting batch effects explicitly, (b) grouping samples that share similar characteristics into subtypes, (c) identifying features that distinguish subtypes, and (d) enjoying a linear-order computation complexity. After correcting the batch effects with BUS, the corrected value can be used for other analysis as if all samples are measured in a single batch. We adopt the Bayesian framework and use the Gibbs sampler to conduct posterior inference for the BUS model.

Usage

BUSgibbs(Data, n.subtypes, n.iterations = 500, n.records = floor(n.iterations/2),
hyperparameters = c(1, sqrt(5), sqrt(5), 2, 2, 1, 2, 0.005, 1, 3, 10),
showIteration = TRUE)

Arguments

Data

Data is either an R list or a SummarizedExperiment object. If Data is an R list, it has the length equal to the batch number. The bth element of Data is the gene expression matrix in batch b, where the rows correspond to genes and the columns represent samples. If Data is a SummarizedExperiment object, assays(Data) must contain a gene expression matrix named "GE_matr", where one row represents a gene and one column corresponds to a sample. colData(Data) must include a vector named "Batch", which indicates the batch information for each sample.

n.subtypes

n.subtypes is the subtype number, which needs to be specified by the user.

n.iterations

n.iterations is the iteration number used in the Gibbs sampler. The default is 500.

n.records

The posterior samples in the last n.records iterations are used to conduct posterior inference. The default is one half of n.iterations.

hyperparameters

hyperparameters is a hyper-parameter vector with 11 elements used in the Gibbs sampler. The first element to the last element of hyperparameters are as follows. eta_alpha: the mean of the normal prior for alpha_g; tau_alpha: the
standard deviation of the normal prior for alpha_g; \(\tau_{\text{gamma}} \): the standard deviation of the normal prior for gamma; \(\alpha_{\text{par}} \): the parameter of the Dirichlet prior for subtype proportions; a_inv_gamma: the shape of the gamma prior for \(1/\sigma^2_{bg} \); b_inv_gamma: the rate of the gamma prior for \(1/\sigma^2_{bg} \); a_\tau0: the shape of the gamma prior for \(1/\tau^2_{\mu 0} \); b_\tau0: the rate of the gamma prior for \(1/\tau^2_{\mu 0} \); (a_p, b_p): parameters in the beta prior for p; tau_(mu1): the standard deviation of the normal prior of \(\mu_{gk} \) (k >= 2) when the gene expression level in subtype k is different from that in subtype one.

showIteration If TRUE, the iteration number will be displayed when conducting Gibbs sampler. The default is TRUE.

Details

Notice that Data, the input original gene expression values, are organized in the format of an R list with length equal to the batch number. Its bth element Data[[b]] is a G by n_b matrix, where G is the gene number and n_b is the sampler size of batch b.

Value

L_PosterSamp The posterior samples of the intrinsic gene indicators. The return is a G by K-1 by n.records array, where G is the gene number, K is the subtype number, and n.records is the number for recorded iterations.

Subtypes The estimated subtypes, an R list with length equal to the batch number B, in which Subtypes[[b]] is an integer vector showing the subtype indicators of samples in batch b.

tau_mu_zero The estimated \(\tau_{\mu 0} \), which is the prior normal distribution’s standard deviation of the subtype effects when there is no differential expression.

p The estimated proportion of intrinsic genes.

pi The estimated subtype proportions across batches, a B by K matrix, whose [b,k] element is the estimated proportion of subtype k in the batch b.

alpha The estimated baseline expression levels, a G-dimension vector, whose gth element is the estimated mean gene expression level of gene g in subtype one.

gamma_PosterSamp The posterior samples of location batch effects, a G by B by n.records array.

gamma The estimated location batch effects, a G by B matrix, where gamma_gb is the “location” batch effect on gene g in the batch b. Note that the first column is zero as the first batch is taken as the reference batch without batch effects.

sigma_sq_PosterSamp The posterior samples of variances, a G by B by n.records array.

sigma_sq The estimated variance, a G by B matrix, whose [g,b] element is the variance of gene g’s expression in the batch b.

mu_PosterSamp The posterior samples of subtype effects, a G by K by n.records array.

mu The estimated subtype effects, a G by K matrix, whose [g,k] element is the subtype k effect on gene g. Note that the first column is zero as the first subtype is taken as the baseline subtype.

BIC the BIC value when K = n.subtypes, which is used to determine the subtype number by varying the value of K.
Author(s)

Xiangyu Luo

References

Examples

#Generate Simulation Data
rm(list = ls(all = TRUE))
set.seed(123)
B <- 3
#total number of batches
K <- 3
#total number of subtypes
G <- 3000
#total number of genes

pi <- matrix(NA, B, K)
pi[1, k] stands for the proportion of kth subtype in bth batch
pi[1,] <- c(0.2, 0.3, 0.5)
pi[2,] <- c(0.4, 0.2, 0.4)
pi[3,] <- c(0.3, 0.4, 0.3)

#total number of samples in each batch.
n_vec <- rep(NA, B)
#n_vec[b] represents the total number of samples in batch b.
n_vec <- c(100, 110, 120)

#Data list
example_Data <- list()

#baseline expression level
alpha <- rep(2, G)

#subtype effect
mu <- matrix(NA, G, K)
#subtype effect, mu[g, k] stands for the kth-subtype effect of gene g
mu[,1] <- 0
#the first subtype is taken as the baseline subtype
#the subtype effect of subtype 1 is set to zero

\[
\mu_{[\cdot, 2]} <- c(\text{rep}(2, G/20), \text{rep}(0, G/20) , \text{rep}(0, G-G/20-G/20)) \\
\mu_{[\cdot, 3]} <- c(\text{rep}(0, G/20), \text{rep}(2, G/20) , \text{rep}(0, G-G/20-G/20)) \\
\]

#batch effect

gamma <- matrix(NA, B, G)
#’location’ batch effect of gene g in batch b

gamma[1,] <- 0
#the first batch is taken as the reference batch without batch effects
#the batch effect of batch 1 is set to zero

gamma[2,] <- c(\text{rep}(3, G/5), \text{rep}(2, G/5) , \text{rep}(1, G/5), \text{rep}(2, G/5) , \text{rep}(3, G/5)) \\
gamma[3,] <- c(\text{rep}(1, G/5), \text{rep}(2, G/5) , \text{rep}(3, G/5), \text{rep}(2, G/5) , \text{rep}(1, G/5)) \\

\sigma^2 \text{square} <- \text{matrix}(NA, B, G)
#\sigma^2 \text{square}[b,g] denotes the error variance of gene g in batch b.

\sigma^2 \text{square}[1,] <- \text{rep}(0.1, G) \\
\sigma^2 \text{square}[2,] <- \text{rep}(0.2, G) \\
\sigma^2 \text{square}[3,] <- \text{rep}(0.15, G) \\

Z <- \text{list()}
#subtype indicator. Z[b,j] represents the subtype of sample j in batch b

Z[[1]] <- \text{as.integer}(c(\text{rep}(1, floor(\pi[1,1] * n_vec[1])), \text{rep}(2, floor(\pi[1,2] * n_vec[1])), \text{rep}(3, floor(\pi[1,3] * n_vec[1])))}) \\
Z[[2]] <- \text{as.integer}(c(\text{rep}(1, floor(\pi[2,1] * n_vec[2])), \text{rep}(2, floor(\pi[2,2] * n_vec[2])), \text{rep}(3, floor(\pi[2,3] * n_vec[2])))}) \\
Z[[3]] <- \text{as.integer}(c(\text{rep}(1, floor(\pi[3,1] * n_vec[3])), \text{rep}(2, floor(\pi[3,2] * n_vec[3])), \text{rep}(3, floor(\pi[3,3] * n_vec[3])))}) \\

\text{for}(b \text{ in 1:B)}{
 \text{num <- n_vec[b]}
 \text{example_Data[[b]] <- sapply(1:num, function(j)}}{
 \text{tmp <- alpha + mu[,Z[[b]][j]] + gamma[b,] + rnorm(G, sd = sqrt(\sigma^2 \text{square}[b,]))} \\
 \text{tmp} \\
 }{
 } \\
}\text{\text{\text{\text{\text{\text{\text{\text{\text{}}}}}}}}}}
calculate_EPSR_gamma

```r
set.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
```

calculate_EPSR_gamma
Calculate the estimated potential scale reduction factors (EPSR factors) for location batch effects

Description

When Gibbs sampler attains stationary, the distances between multiple chains (with multiple initial values) should be small. The EPSR factors are calculated to help decide the iteration number of Gibbs sampler.

Usage

```r
calculate_EPSR_gamma(gamma_PosterSamp_chain1, gamma_PosterSamp_chain2)
```

Arguments

- `gamma_PosterSamp_chain1`
 posterior samples of location batch effects from chain 1.
- `gamma_PosterSamp_chain2`
 posterior samples of location batch effects from chain 2.

Value

- `EPSR_gamma`
 The EPSR factors for gamma, a G by B matrix. Note that EPSR_gamma[,1] is a NA vector. gamma[,1] are fixed at zero, so their EPSR factors are not taken into account.

Author(s)

Xiangyu Luo

Examples

```r
#2 batches, 10 genes, 100 posterior samples per parameter
chain1 <- 1 + array(rnorm(10*2*100, sd=0.05), dim=c(2,10,100))
chain2 <- 1 + array(rnorm(10*2*100, sd=0.05), dim=c(2,10,100))
calculate_EPSR_gamma(chain1, chain2)
```
calculate_EPSR_mu

Calculate the estimated potential scale reduction factors (EPSR factors) for subtype effects

Description

When Gibbs sampler attains stationary, the distances between multiple chains (with multiple initial values) should be small. The EPSR factors are calculated to help decide the iteration number of Gibbs sampler.

Usage

`calculate_EPSR_mu(mu_PosterSamp_chain1, mu_PosterSamp_chain2)`

Arguments

- `mu_PosterSamp_chain1`: posterior samples of subtype effects from chain 1.
- `mu_PosterSamp_chain2`: posterior samples of subtype effects from chain 1.

Value

- `EPSR_gamma`: The EPSR factors for mu, a G by K matrix. Note that EPSR_mu[,1] is a NA vector. mu[,1] are fixed at zero, so their EPSR factors are not taken into account.

Author(s)

Xiangyu Luo

Examples

```r
#10 genes, 2 subtypes, 100 posterior samples per parameter
chain1 <- 1+array(rnorm(10*2*100, sd=0.05), dim=c(10,2,100))
chain2 <- 1+array(rnorm(10*2*100, sd=0.05), dim=c(10,2,100))
calculate_EPSR_mu(chain1, chain2)
```

calculate_EPSR_sigma_sq

Calculate the estimated potential scale reduction factors (EPSR factors) for the variances of expression values

Description

When Gibbs sampler attains stationary, the distances between multiple chains (with multiple initial values) should be small. The EPSR factors are calculated to help decide the iteration number of Gibbs sampler.
estimate_IG_indicators

Usage

```
calculate_EPSR_sigma_sq(sigma_sq_PosterSamp_chain1, sigma_sq_PosterSamp_chain2)
```

Arguments

- `sigma_sq_PosterSamp_chain1`
 - posterior samples of variances from chain 1.
- `sigma_sq_PosterSamp_chain2`
 - posterior samples of variances from chain 2.

Value

- `EPSR_sigma_sq`
 - The EPSR factors for `sigma_sq`, a G by B matrix.

Author(s)

Xiangyu Luo

Examples

```r
# 2 batches, 10 genes, 100 posterior samples per parameter
chain1 <- 1+array(rnorm(10*2*100, sd=0.05), dim=c(2,10,100))
chain2 <- 1+array(rnorm(10*2*100, sd=0.05), dim=c(2,10,100))
calculate_EPSR_sigma_sq(chain1, chain2)
```

estimate_IG_indicators

Estimate the intrinsic gene indicators

Description

Call the function to estimate the intrinsic gene indicators.

Usage

```
estimate_IG_indicators(BUSfits, postprob_DE_threshold = 0.5)
```

Arguments

- `BUSfits`
 - The BUSfits object output by the function BUSgibbs.
- `postprob_DE_threshold`
 - the threshold to call an intrinsic gene indicator to be one or not according to whether its posterior probability is higher than `postprob_DE_threshold` or not. The default is 0.5.

Value

- `est_L`
 - the estimated intrinsic gene indicators, a matrix where the rows represent genes and the columns correspond to subtypes k=2,...,K
Author(s)

Xiangyu Luo

References

Examples

```r
rm(list = ls(all = TRUE))
set.seed(123)
#a toy example, there are 6 samples and 20 genes in each batch
element_Data <- list()

#batch 1
element_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))

#batch 2
batch2_effect <- c(2,2,2,1,1)
element_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch2_effect

#batch 3
batch3_effect <- c(3,2,1,1,2)
element_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch3_effect

set.seed(123)
BUSfits <- BUSgibbs(element_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
#select the posterior probability threshold to estimate the intrinsic gene indicators
thr0 <- postprob_DE_thr_fun(BUSfits, fdr_threshold=0.1)
est_L <- estimate_IG_indicators(BUSfits, postprob_DE_threshold=thr0)

#obtain the intrinsic gene indicators
intrinsic_gene_indices <- IG_index(est_L)
```

IG_index

Obtain the intrinsic gene indices

Description

Call the function to obtain the indices of the intrinsic genes.

Usage

`IG_index(EstIGindicators)`
Arguments

EstIGindicators

The estimated intrinsic gene indicators.

Value

intrinsic_gene_indices

The intrinsic gene indices

Author(s)

Xiangyu Luo

References

Examples

rm(list = ls(all = TRUE))
set.seed(123)
a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()

batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2), nrow=18, ncol=6))

batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2), nrow=18, ncol=6)) + batch2_effect

batch 3
batch3_effect <- c(3,2,1,1,2)
example_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2), nrow=18, ncol=6)) + batch3_effect

set.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
select the posterior probability threshold to estimate intrinsic gene indicators
thr0 <- postprob_DE_thr_fun(BUSfits, fdr_threshold=0.1)
est_L <- estimate_IG_indicators(BUSfits, postprob_DE_threshold=thr0)

obtain the intrinsic gene indicators
intrinsic_gene_indices <- IG_index(est_L)
location_batch_effects

Obtain the location batch effects from the output by BUSgibbs

Description

Call the function to obtain the location batch effects from the output by BUSgibbs.

Usage

`location_batch_effects(BUSfits)`

Arguments

- **BUSfits**

 The BUSfits object output by the function BUSgibbs.

Value

- **est_location_batch_effects**

 The estimated location batch effects, a matrix whose rows represent genes and columns correspond to batches.

Author(s)

Xiangyu Luo

References

Examples

```r
rm(list = ls(all = TRUE))
set.seed(123)
# a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()

# batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10,3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))

# batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10,3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch2_effect

# batch 3
batch3_effect <- c(3,2,1,1,2)
```
postprob_DE

Example

```r
evaluate DE
```

Description

Calculate the posterior probability of being differentially expressed for genes in subtypes k (k>2) compared to subtype 1.

Usage

```r
postprob_DE(BUSfits)
```

Arguments

- `BUSfits`: The BUSfits object output by the function BUSgibbs.

Value

- `postprob_DE_matr`: the matrix of posterior probabilities of being differentially expressed.

Author(s)

Xiangyu Luo

References

Examples

```r
rm(list = ls(all = TRUE))
set.seed(123)
# a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()

# batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))

# batch 2
```
batch2_effect <- c(2, 2, 2, 1, 1)
example_Data[[2]] <- rbind(matrix(c(1, 1, 5, 10, 10, 5, 12, 7, 12), ncol=6, byrow=TRUE), matrix(c(1, 2), nrow=18, ncol=6)) + batch2_effect

batch 3
batch3_effect <- c(3, 2, 1, 1, 2)
example_Data[[3]] <- rbind(matrix(c(1, 1, 5, 10, 10, 5, 12, 7, 12), ncol=6, byrow=TRUE), matrix(c(1, 2), nrow=18, ncol=6)) + batch3_effect

set.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
postprob_DE(BUSfits)

postprob_DE_thr_fun

Select the posterior probability threshold to control the false discovery rate

Description

To control the false discovery rate at the targeted level, call `postprob_DE_thr_fun` to obtain the threshold for the posterior probability of being differentially expressed.

Usage

```r
postprob_DE_thr_fun(BUSfits, fdr_threshold = 0.1)
```

Arguments

- `BUSfits` The `BUSfits` object output by the function `BUSgibbs`.
- `fdr_threshold` the false discovery rate level we want to control.

Value

`thre0` the posterior probability threshold that controls the false discovery rate.

Author(s)

Xiangyu Luo

References

print.BUSfits

Examples

```r
rm(list = ls(all = TRUE))
set.seed(123)
# a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()

# batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))

# batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch2_effect

# batch 3
batch3_effect <- c(3,2,1,1,2)
example_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch3_effect

set.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
# select kappa to estimate intrinsic gene indicators
thr0 <- postprob_DE_thr_fun(BUSfits, fdr_threshold=0.1)
est_L <- estimate_IG_indicators(BUSfits, postprob_DE_threshold=thr0)

# obtain the intrinsic gene indicators
intrinsic_gene_indices <- IG_index(est_L)
```

print.BUSfits

Print the output by BUSgibbs

Description

Call the function to print the output by BUSgibbs.

Usage

```r
## S3 method for class 'BUSfits'
print(x, ...)
```

Arguments

- **x**: The BUSfits object output by the function BUSgibbs.
- **...**: not used.

Value

print the results from the output by BUSgibbs.
scale_batch_effects

Obtain the scale batch effects from the output by BUSgibbs

Description
Call the function to obtain the scale batch effects from the output by BUSgibbs.

Usage
scale_batch_effects(BUSfits)

Arguments
BUSfits The BUSfits object output by the function BUSgibbs.

Value
est_scale_batch_effects
The estimated scale batch effects, a matrix where rows are genes and columns are batches.
Subtypes

Author(s)

Xiangyu Luo

References

Examples

```r
rm(list = ls(all = TRUE))
set.seed(123)
# a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()

# batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10,
                                      3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2,ncol=18, ncol=6))

# batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10,
                                      3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2,ncol=18, ncol=6)) + batch2_effect

# batch 3
batch3_effect <- c(3,2,1,1,2)
example_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10,
                                      3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2,ncol=18, ncol=6)) + batch3_effect

call.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
est_scale_batch_effects <- scale_batch_effects(BUSfits)
```

Subtypes

Obtain the subtype indicators from the output by BUSgibbs

Description

Call the function to obtain the subtype indicators from the output by BUSgibbs.

Usage

Subtypes(BUSfits)

Arguments

BUSfits The BUSfits object output by the function BUSgibbs.
Value

est_subtypes The estimated subtypes, an R list with length equal to the batch number. The bth element is the estimated subtype indicator vector for samples in batch b.

Author(s)

Xiangyu Luo

References

Examples

```r
rm(list = ls(all = TRUE))
set.seed(123)
# a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()
# batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10,3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))
# batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10,3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch2_effect
# batch 3
batch3_effect <- c(3,2,1,1,2)
example_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10,3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch3_effect
set.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
est_subtypes <- Subtypes(BUSfits)
```

subtype_effects

Obtain the subtype effects from the output by BUSgibbs

Description

Call the function to obtain the subtype effects from the output by BUSgibbs.

Arguments

BUSfits The BUSfits object output by the function BUSgibbs.
Value

`est_subtype_effects`

The estimated subtype effects, a matrix where rows are genes and columns are subtypes.

Author(s)

Xiangyu Luo

References

Examples

```r
rm(list = ls(all = TRUE))
set.seed(123)
# a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()

# batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))

# batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch2_effect

# batch 3
batch3_effect <- c(3,2,1,1,2)
example_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch3_effect

set.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
est_subtype_effects <- subtype_effects(BUSfits)
```

summary.BUSfits

Description

Call the function to summarize the output object by BUSgibbs.

Usage

```r
## S3 method for class 'BUSfits'
summary(object, ...)
```
Arguments

object The BUSfits object output by the function BUSgibbs.

Value

summarize the results from the output by BUSgibbs.

Author(s)

Xiangyu Luo

Examples

rm(list = ls(all = TRUE))
set.seed(123)
a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()

batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))

batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch2_effect

batch 3
batch3_effect <- c(3,2,1,1,2)
example_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10,
3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch3_effect

set.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
summary(BUSfits)

visualize_data

Visualize the gene expression data from multiple batches

Description

Use "heatmap.2" in R package "gplots" to visualize the gene expression data across multiple batches.

Usage

visualize_data(Data, title_name="Heatmap", gene_ind_set, color_key_range=seq(-0.5,8.5,1))
Arguments

Data The gene expression data, an R list with length equal to the batch number. Each of its element is a gene expression matrix, where rows are genes and columns represent samples.

title_name The title name of the heatmap.
gene_ind_set The indices of the set of genes the user wants to display in the heatmap.
color_key_range The color range in the color key.

Details

The values displayed in the heatmap are the raw values in the argument Data without scaling.

Value

visualize the gene expression data matrix, where one row is a gene and one column represents a sample.

Author(s)

Xiangyu Luo

References

Examples

```r
rm(list = ls(all = TRUE))
set.seed(123)
# a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()
# batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))

# batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch2_effect

# batch 3
batch3_effect <- c(3,2,1,1,2)
example_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10, 3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch3_effect

visualize_data(example_Data, title_name="Heatmap", gene_ind_set = 1:20, color_key_range=seq(0,10,2))
```
Index

* **Batch Effects**
 BUSgibbs, 11

* **Data Integration**
 BUSgibbs, 11

* **EPSR factors**
 calculate_EPSR_gamma, 15
 calculate_EPSR_mu, 16
 calculate_EPSR_sigma_sq, 16

* **Gibbs Sampler**
 BUSgibbs, 11

* **Subtype Discovery**
 BUSgibbs, 11

* **visualization**
 visualize_data, 28

adjusted_values, 5

baseline_expression_values, 6
BIC_BUS, 8
BUScorrect (BUScorrect-package), 2
BUScorrect-package, 2
BUSexample_data, 9
BUSgibbs, 11

calculate_EPSR_gamma, 15
calculate_EPSR_mu, 16
calculate_EPSR_sigma_sq, 16

estimate_IG_indicators, 17

IG_index, 18

location_batch_effects, 20

postprob_DE, 21
postprob_DE_thr_fun, 22
print.BUSfits, 23

scale_batch_effects, 24
subtype_effects, 26
Subtypes, 25

summary.BUSfits, 27
visualize_data, 28