Package ‘BioNet’

April 1, 2024

Type Package
Title Routines for the functional analysis of biological networks
Version 1.62.0
Date 2015-09-11
Author Marcus Dittrich and Daniela Beisser
Maintainer Marcus Dittrich
 <marcus.dittrich@biozentrum.uni-wuerzburg.de>
Description This package provides functions for the integrated analysis of protein-protein interaction networks and the detection of functional modules. Different datasets can be integrated into the network by assigning p-values of statistical tests to the nodes of the network. E.g. p-values obtained from the differential expression of the genes from an Affymetrix array are assigned to the nodes of the network. By fitting a beta-uniform mixture model and calculating scores from the p-values, overall scores of network regions can be calculated and an integer linear programming algorithm identifies the maximum scoring subnetwork.
License GPL (>= 2)
Depends R (>= 2.10.0), graph, RBGL
Suggests rgl, impute, DLBCL, genefilter, xtable, ALL, limma, hgu95av2.db, XML
Imports igraph (>= 1.0.1), AnnotationDbi, Biobase
LazyLoad yes
URL http://bionet.bioapps.biozentrum.uni-wuerzburg.de/
biocViews Microarray, DataImport, GraphAndNetwork, Network, NetworkEnrichment, GeneExpression, DifferentialExpression
git_url https://git.bioconductor.org/packages/BioNet
git_branch RELEASE_3_18
git_last_commit 760e83d
BioNet-package
aggrPvals
bumOptim
compareNetworks
consensusScores
fbum
fbumLL
fdrThreshold
fitBumModel
getCompScores
getEdgeList
hist.bum
largestComp
largestScoreComp
loadNetwork.sif
loadNetwork.tab
makeNetwork
mapByVar
permutateNodes
piUpper
plot.bum
plot3dModule
plotLLSurface
plotModule
print.bum
pvaluesExample
readHeinzGraph
readHeinzTree
resamplingPvalues
rmSelfLoops
runFastHeinz
runHeinz
save3dModule
saveNetwork
scanFDR
scoreFunction
scoreNodes
scoreOffset
sortedEdgeList
subNetwork
summary.bum
BioNet-package

Routines for the functional analysis of biological networks

Description

This package provides functions for the integrated analysis of biological networks and the detection of functional modules. Different datasets can be integrated into the network by assigning p-values derived from statistical tests to the nodes of the network. E.g. p-values obtained from the differential expression of genes from an Affymetrix array are assigned to the nodes of a protein-protein interaction network. By fitting a beta-uniform mixture model and calculating scores from the p-values, overall scores of network regions can be calculated and an integer linear programming algorithm identifies the maximum scoring subnetwork.

Details

- **Package:** BioNet
- **Type:** Package
- **Version:** 1.29.1
- **Date:** 2015-09-11
- **License:** GPL (>=2)
- **LazyLoad:** yes

Author(s)

Marcus Dittrich, Daniela Beisser

Maintainer: Marcus Dittrich <marcus.dittrich@biozentrum.uni-wuerzburg.de>

References

aggrPvals

Aggregate several p-values into one p-value

Description

The function aggregates several p-values into one p-value of p-values based on the order statistics of p-values. An overall p-value is given by the ith order statistic.

Usage

aggrPvals(pval.matrix, order, plot=TRUE)

Arguments

- pval.matrix: Numeric matrix of p-values, columns represent different sets of p-values
- order: Numeric constant, the order statistic that is used for the aggregation.
- plot: Boolean value whether to plot p-value distributions.

Value

Aggregated p-value of the given order.

Author(s)

Daniela Beisser

Examples

data(pvaluesExample)
aggrPvals(pval.matrix=pvaluesExample, order=2)

bumOptim

Fitting a beta-uniform mixture model to p-value distribution

Description

The function fits a beta-uniform mixture model to a given p-value distribution.

Usage

bumOptim(x, starts=1, labels=NULL)
Arguments

x Numerical vector of p-values, has to be named with the gene names or the gene names can be given in the labels parameter.

starts Number of start points for the optimization.

labels Gene names for the p-values.

Value

List of class fb with the following elements:

lambda Fitted parameter λ for the beta-uniform mixture model.

a Fitted parameter a for the beta-uniform mixture model.

negLL Negative log-likelihood.

pvalues P-value vector.

Author(s)

Marcus Dittrich and Daniela Beisser

References

See Also

fitBumModel, plot.bum, hist.bum

Examples

data(pvaluesExample)
pvals <- pvaluesExample[,1]
bum <- bumOptim(x=pvals, starts=10)
bum
compareNetworks

Compare parameters of two networks

Description

The function compares the following parameters of two networks: diameter, average degree, degree exponent, average path length and plots the cumulative degree distributions. The networks have to be connected components.

Usage

compareNetworks(network1, network2, plot=TRUE)

Arguments

network1
Network graphNEL or igraph format.

network2
Second network in graphNEL or igraph format, or subnetwork drawn from first network.

plot
Boolean value, whether to plot the cumulative degree distributions.

Value

A vector of network parameters is returned:

diam.network1
Network diameter

diam.network2
Diameter of the subnetwork

av.degree.network1
Average degree of the network

av.degree.network2
Average degree of the subnetwork

degree.exponent.network1
Degree exponent of the network

degree.exponent.network2
Degree exponent of the subnetwork

av.path.length.network1
Average path length of the network

av.path.length.network2
Average path length of the subnetwork

Author(s)

Daniela Beisser
consensusScores

Examples

```r
library(DLBCL)
data(interactome)
subnet1 <- largestComp(subNetwork(nodes(interactome)[1:100], interactome))
subnet2 <- largestComp(subNetwork(nodes(interactome)[101:200], interactome))
compareNetworks(network1=subnet1, network2=subnet2)
```

consensusScores Calculation of a consensus score for a network

Description

The function calculates consensus scores for a network, given a list of replicate modules.

Usage

```r
consensusScores(modules, network, ro=length(modules)/2)
```

Arguments

- **modules**: Calculated modules from pseudo-replicates of expression values in `igraph` or `graphNEL` format.
- **network**: Interaction network, which should be scores. In `igraph` or `graphNEL` format
- **ro**: Threshold which is subtracted from the scores to obtain positive and negative value. The default value is half of the number of replicates.

Value

A result list is returned, consisting of:

- **N.scores**: Numerical vector node scores.
- **E.scores**: Numerical vector edge scores.
- **N.frequencies**: Numerical vector node frequencies from the replicate modules.
- **E.frequencies**: Numerical vector edge frequencies from the replicate modules.

Author(s)

Daniela Beisser
Examples

library(DLBCL)
data(interactome)
network <- interactome
precomputed Heinz modules from pseudo-replicates
Not run: lib <- file.path(.path.package("BioNet"), "extdata")
modules <- readHeinzGraph(node.file=file.path(datadir, "ALL_n_resample.txt.0.hnz"), network=network)
cons.scores <- consensusScores(modules, network)
End(Not run)

fbum

Compute the density of the bum distribution

Description

Function to compute the density of the beta-uniform mixture model.

Usage

fbum(x, lambda, a)

Arguments

x
A numeric value.

lambda
Parameter lambda, mixture parameter, proportion of uniform component

a
Parameter a, shape parameter of beta component

Value

Value of the density of the bum distribution for x.

Author(s)

Marcus Dittrich

References

See Also

bumOptim, fitBumModel
fbumLL

Examples

\[y \leftarrow \text{fbum}(x=0.5, \lambda=0.1, a=0.1) \]
\[y \]

fbumLL

Calculate log likelihood of BUM model

Description

The function calculates the log likelihood of the BUM model.

Usage

\[\text{fbumLL}(\text{parms}, \text{x}) \]

Arguments

- **parms**: Vector of parameters; lambda and a.
- **x**: Numerical vector of p-values.

Value

Log likelihood.

Author(s)

Marcus Dittrich

Examples

\[\text{data(pvaluesExample)} \]
\[\text{pvals} \leftarrow \text{pvaluesExample[,1]} \]
\[\text{bum.mle} \leftarrow \text{fitBumModel(pvals, plot=FALSE)} \]
\[\text{fbumLL(parms=c(bum.mle$lambda, bum.mle$a), x=pvals)} \]
fdrThreshold

Calculate p-value threshold for given FDR

Description

The function calculates the p-value threshold tau for a given false discovery rate. Tau is used for the scoring function.

Usage

```r
fdrThreshold(fdr, fb)
```

Arguments

- `fdr` False discovery rate.
- `fb` Model from the beta-uniform mixture fitting.

Value

P-value threshold tau.

Author(s)

Marcus Dittrich

References

See Also

fbum, fitBumModel

Examples

```r
data(pvaluesExample)
pvals <- pvaluesExample[,1]
bum.mle <- fitBumModel(pvals, plot=FALSE)
tau <- fdrThreshold(fdr=0.001, fb=bum.mle)
tau
```
Description

The function fits a beta-uniform mixture model to a given p-value distribution. The BUM method was introduced by Stan Pounds and Steve Morris to model the p-value distribution as a signal-noise decomposition. The signal component is assumed to be B(a,1)-distributed, whereas the noise component is uniform-distributed under the null hypothesis.

Usage

```r
fitBumModel(x, plot = TRUE, starts = 10)
```

Arguments

- `x`: Numeric vector of p-values.
- `plot`: Boolean value, whether to plot a histogram and qqplot of the p-values with the fitted model.
- `starts`: Numeric value giving the number of starts for the optimization.

Value

Maximum likelihood estimator object for the fitted bum model. List of class fb with the following elements:

- `lambda`: Fitted parameter `lambda` for the beta-uniform mixture model.
- `a`: Fitted parameter `a` for the beta-uniform mixture model.
- `negLL`: Negative log-likelihood.
- `pvalues`: P-value vector.

Author(s)

Daniela Beisser

References

Examples

```r
data(pvaluesExample)
pvals <- pvaluesExample[,1]
bum.mle <- fitBumModel(pvals, plot = TRUE)
bum.mle
```
getCompScores Partition scores for subgraphs of the network

Description

The function partitions the scores into scores for each subgraph of the network.

Usage

getCompScores(network, score)

Arguments

network A network in graphNEL or igraph format.
score Vector of scores.

Value

A data frame with the components of the network and the score for each PPI identifier.

Author(s)

Marcus Dittrich

Examples

library(DLBCL)
data(interactome)
data(dataLym)
create random subgraph with 100 nodes and their direct neighbors
nodes <- nodes(interactome)[sample(length(nodes(interactome)), 100)]
subnet <- subNetwork(nodeList=nodes, network=interactome, neighbors="first")
score <- dataLym$score001
names(score) <- dataLym$label
getCompScores(score=score, network=subnet)

getEdgeList Get representation of graph as edgelist

Description

A network in graphNEL or igraph format is converted to an edgelist.

Usage

getEdgeList(network)
Arguments

network Network in graphNEL or igraph format.

Value

A matrix whose columns represent the connected edges.

Author(s)

Marcus Dittrich

Examples

library(DLBCL)
data(interactome)
getEdgeList(interactome)[1:10,]

hist.bum

Histogram of the p-value distribution with the fitted bum model

Description

The function plots a histogram of the p-values together with the fitted bum-model.

Usage

S3 method for class 'bum'
hist(x, breaks=50, main="Histogram of p-values", xlab="P-values", ylab="Density", ...)

Arguments

x Maximum likelihood estimator object of the beta-uniform mixture fit.
breaks Breaks for the histogram.
main An overall title for the plot.
xlab A title for the x axis.
ylab A title for the y axis.
... Other graphic parameters for the plot.

Author(s)

Daniela Beisser

See Also

fitBumModel, hist.bum, bumOptim
Examples

```r
data(pvaluesExample)
pvals <- pvaluesExample[,1]
mle <- fitBumModel(pvals, plot=FALSE)
hist(mle)
```

Description

The function extracts the largest component of a network.

Usage

```r
largestComp(network)
```

Arguments

- `network`: A graph in `graphNEL` or `igraph` format.

Value

A new graph object that represents the largest component of the given network.

Author(s)

Marcus Dittrich

Examples

```r
library(DLBCL)
data(interactome)
interactome
largestComp(interactome)
```
largestScoreComp

Component with largest score

Description

The function extracts the component of the network with the largest score. All nodes have to exceed the given level for the score.

Usage

largestScoreComp(network, score, level=0)

Arguments

- network: Network in graphNEL or igraph format.
- score: Vector of scores for the network.
- level: Cut-off level for the score for the component.

Value

Subgraph of the network with a score larger than the given level.

Author(s)

Marcus Dittrich

Examples

library(DLBCL)
data(interactome)
data(dataLym)
network <- rmSelfLoops(interactome)
score <- dataLym$score001
names(score) <- dataLym$label
lComp <- largestScoreComp(network=network, score=score, level=1)
Not run: plotModule(lComp)
loadNetwork.sif

Load network from Cytoscape sif file

Description

The function loads a network from a Cytoscape sif file. Edge attributes are provided in the ea.file or vector of ea.files. The node attributes are provided the same way. For other formats see read.graph in the igraph package.

Usage

loadNetwork.sif(sif.file, na.file, ea.file, format=c("graphNEL", "igraph"), directed=FALSE)

Arguments

sif.file Cytoscape sif file, containing the network.
na.file File or vector of file with Cytoscape node attributes.
ea.file File or vector of file with Cytoscape edge attributes.
format Format of output graph, either graphNEL or igraph.
directed Boolean value for directed or undirected graph.

Value

Graph with loaded attributes.

Author(s)

Daniela Beisser

Examples

Not run: lib <- file.path(.path.package("BioNet"), "extdata")
load interaction file, node attribute file with a node weight of 2 for each node and the edge attribute file with a edge weight of 1 for each edge
network <- loadNetwork.sif(sif.file=file.path(lib,"cytoscape.sif"), na.file=file.path(lib,"n.weight.NA"), ea.file=file.path(lib,"e.weight.EA"), format="graphNEL", directed=FALSE)
network;
nodeData(network);
edgeData(network);

End(Not run)
loadNetwork.tab
Load network from tabular format

Description
The function loads a network from a tabular format.

Usage
`loadNetwork.tab(file, header=TRUE, directed=FALSE, format=c("graphNEL", "igraph"))`

Arguments
- `file`
 File with network to load.
- `header`
 Boolean value whether to include header or not.
- `directed`
 Boolean value whether the network is to be directed or not.
- `format`
 Output format of the network, either `graphNEL` or `igraph`.

Author(s)
Marcus Dittrich

See Also
- `loadNetwork.sif`

makeNetwork
Create graph from source and target vectors

Description
Function to create a graph in `graphNEL` or `igraph` format from a source and a target vector.

Usage
`makeNetwork(source, target, edgemode="undirected", format=c("graphNEL", "igraph"))`

Arguments
- `source`
 Vector of source nodes.
- `target`
 Vector of corresponding target nodes.
- `edgemode`
 For an "undirected" or "directed" network.
- `format`
 Graph format, either `graphNEL` or `igraph`.
Value
A graph object.

Author(s)
Marcus Dittrich

See Also
loadNetwork.sif, saveNetwork

Examples
source <- c("a", "b", "c", "d")
target <- c("b", "c", "a", "a")
graph <- makeNetwork(source, target, edgemode="undirected")

mapByVar(ExprSet, network=NULL, attr="geneID", ignoreAFFX=TRUE)

Arguments

exprSet Affymetrix ExpressionSet.

network Network that is used to map the Affymetrix identifiers.

attr The attribute of the network that is used to map the Affymetrix IDs. The IDs are mapped to the unique Entrez gene IDs, which are by default stored in the "geneID" attribute of the network.

ignoreAFFX Boolean value, whether to ignore or leave AFFX control genes.

Value
Expression matrix with one gene (PPI ID) per probeset.

Author(s)
Daniela Beisser
Examples

```r
## Not run: library(ALL);
data(ALL);
mapped.e.set <- mapByVar(ALL);
mapped.e.set[1:10,];
## End(Not run)
```

permutateNodes
Permute node labels

Description
Function to permutate node labels of a given network.

Usage

```r
permutateNodes(network)
```

Arguments

- `network` Network in `graphNEL` or `igraph` format.

Value
Network with permutated labels.

Author(s)
Marcus Dittrich

Examples

```r
library(DLBCL)
data(interactome)
# remove self-loops before permutating the labels
interactome <- rmSelfLoops(interactome)
perm.net <- permutateNodes(interactome)
perm.net
```
piUpper

Description
The function calculates the upper bound \(\pi \) for the fraction of noise.

Usage
\[
\text{piUpper}(fb)
\]

Arguments
\begin{itemize}
\item \texttt{fb} Fitted bum model, list with parameters \(a \) and \(\lambda \).
\end{itemize}

Value
Numerical value for the upper bound \(\pi \).

Author(s)
Marcus Dittrich

See Also
\begin{itemize}
\item \texttt{bumOptim, fitBumModel}
\end{itemize}

Examples
\begin{verbatim}
data(pvaluesExample)
pvals <- pvaluesExample[,1]
bum <- bumOptim(pvals, starts=10)
piUpper(fb=bum)
\end{verbatim}

plot.bum

Description
The function plot the theoretical quantiles of the fitted bum model against the quantiles of the observed p-value distribution.

Usage
\begin{verbatim}
S3 method for class 'bum'
plot(x, main="QQ-Plot", xlab="Estimated p-value", ylab="Observed p-value", ...)
\end{verbatim}
plot3dModule

Arguments

- `x` Maximum likelihood estimation object of the fitted bum model.
- `main` An overall title for the plot.
- `xlab` A title for the x axis.
- `ylab` A title for the y axis.
- `...` Other graphic parameters for the plot.

Author(s)

Daniela Beisser

See Also

`fitBumModel`, `plot.bum`, `bumOptim`

Examples

```r
data(pvaluesExample)
pvals <- pvaluesExample[,1]
mle <- fitBumModel(pvals, plot=FALSE)
plot(mle)
```

Description

The function plots a network from `graphNEL` or `igraph` format in 3D using a modified function from the package igraph and requires the package rgl which uses openGL. The 3D plot can be zoomed, rotated, shifted on the canvas. This function is just used to visualize the modules. For further plotting options use the rglplot function of the igraph package. If a score attribute is provided in the graph this will be used for the coloring of the nodes. Otherwise a vector of values can be given by the `diff.or.score` argument. The vector has to contain positive and negative values, either scores or values for differential expression (fold changes). Labels for the nodes can be provided by the labels argument, otherwise it will be automatically looked for a `geneSymbol` attribute of the nodes.

Usage

```r
plot3dModule(network, labels=NULL, windowSize = c(100,100,1500,1000), diff.or.scores=NULL, red=c("negative","positive"), ...)```
plotLLSurface

Log likelihood surface plot

Description

The function plots the log likelihood surface for all a and lambda parameter of the beta-uniform mixture model.

Usage

plotLLSurface(x, opt=NULL, main="Log-Likelihood Surface", color.palett...
**plotModule**

### Arguments

- **x**  
  Numeric vector of p-values.

- **opt**  
  List of optimal parameters for a and lambda from the beta-uniform mixture model.

- **main**  
  The overall title of the plot.

- **color.palette**  
  Color scheme of the image plot.

- **nlevels**  
  Number of color levels.

### Author(s)

Marcus Dittrich

### Examples

```r
library(DLBCL)
data(dataLym)
pvals <- dataLym$t.pval
names(pvals) <- dataLym$label
mle <- fitBumModel(pvals, plot=FALSE)
plotLLSurface(x=pvals, opt=mle)
```

---

**Description**

The function plots a network from `graphNEL` or `igraph` format, adapted from an igraph plotting function. It is just used to visualize the modules. For further plotting options use the `plot.igraph` function of the igraph package. The shapes of the nodes can be changed according to the scores argument, then negative scores appear squared. The color of the nodes can be changed according to the `diff.expr` argument. Negative values lead to green nodes, positive values are colored in red. If the vectors are not provided, it will be automatically looked for nodes attributes with the name `score` and `diff.expr`.

**Usage**

```
plotModule(network, layout=layout.fruchterman.reingold, labels=NULL, diff.expr=NULL, scores=NULL, main=NULL, vertex.size=NULL, ...)
```

### Arguments

- **network**  
  Network in `graphNEL` or `igraph` format.

- **layout**  
  Layout algorithm, e.g. `layout.fruchterman.reingold` or `layout.kamada.kawai`.

- **labels**  
  Labels for the nodes of the network.
print.bum

**diff.expr**
Named numerical vector of differential expression (fold changes) of the nodes in the network. These will be used for coloring of the nodes. It will be automatically looked for nodes attribute with the name `diff.expr`, if the argument is null.

**scores**
Named numerical vector of scores of the nodes in the network. These will be used for the shape of the nodes. It will be automatically looked for nodes attribute with the name `score`, if the argument is null.

**main**
Main title of the plot.

**vertex.size**
Numerical value or vector for the size of the vertices.

**...**
Other graphic parameters for the plot.

**Author(s)**
Marcus Dittrich and Daniela Beisser

**See Also**
plot3dModule

**Examples**

```r
library(DLBCL)
data(dataLym)
data(interactome)
interactome <- subNetwork(dataLym$label, interactome)
interactome <- rmSelfLoops(interactome)
fchange <- dataLym$diff
names(fchange) <- dataLym$label
create random subnetwork
subnet <- largestComp(subNetwork(nodes(interactome)[1:100], interactome))
fchange <- fchange[nodes(subnet)]

color random subnetwork by the fold change
Not run: plotModule(network=subnet, diff.expr=fchange)
```

---

**print.bum**

*Print information about bum model*

**Description**
The function prints information about the bum model.

**Usage**

```r
S3 method for class 'bum'
print(x, ...)
```
pvaluesExample

Arguments

x          Maximum likelihood estimator object of the beta-uniform mixture fit.
...        Other graphic parameters for print.

Author(s)

Marcus Dittrich

See Also

fitBumModel, summary.bum

Examples

data(pvaluesExample)
pvals <- pvaluesExample[,1]
mle <- fitBumModel(pvals, plot=FALSE)
print(mle)

pvaluesExample  Example p-values for aggregation statistics

Description

Data example consisting of a matrix of p-values. Each gene has two corresponding p-values. These p-values can be aggregated into a p-value of p-values by the method aggrPvals.

Usage

data(pvaluesExample)

Examples

data(pvaluesExample)
pvaluesExample[1:10,]
**readHeinzGraph**

*Convert HEINZ output to graph*

**Description**

Function to convert the HEINZ output to a graph object, or if the output is in matrix form, it will create a list of graphs. The function needs the node and the original network, from which the module is calculated.

**Usage**

```r
readHeinzGraph(node.file, network, format=c("graphNEL", "igraph"))
```

**Arguments**

- `node.file`: Heinz node output file.
- `network`: Original network from which Heinz input was created.
- `format`: Graph format of output, either `igraph` or `graphNEL`.

**Value**

Graph object.

**Author(s)**

Daniela Beisser

**Examples**

```r
library(DLBCL)
data(interactome)
precomputed Heinz output files
Not run: lib <- file.path(path.package("BioNet"), "extdata")
module <- readHeinzGraph(node.file=file.path(lib, "lymphoma_nodes_001.txt.0.hnz"), network=interactome, format="graphNEL")
plotModule(module);
End(Not run)
```
readHeinzTree  

*Converting HEINZ output to tree*

**Description**

Converts the HEINZ output to a tree in graph format. If the output is in matrix form, it will create a list of graphs. The function needs the node and edge file and the original network from which the module is calculated.

**Usage**

```r
readHeinzTree(node.file, edge.file, network, format=c("igraph", "graphNEL"))
```

**Arguments**

- `node.file`: Heinz node output file.
- `edge.file`: Heinz edge output file.
- `network`: Original network from which Heinz input was created.
- `format`: Output format of the graph, either `igraph` or `graphNEL`.

**Value**

A graph object.

**Author(s)**

Daniela Beisser

**Examples**

```r
library(DLBCL)
data(interactome)

precomputed Heinz output files
Not run: lib <- file.path(.path.package("BioNet"), "extdata")
module <- readHeinzTree(node.file=file.path(lib, "lymphoma_nodes_001.txt.0.hnz"),
 edge.file=file.path(lib, "lymphoma_edges_001.txt.0.hnz"),
 network=interactome, format="graphNEL")
plotModule(module);

End(Not run)
```
Resampling of microarray expression values and test for differential expression.

Description

The function uses a 50% jackknife resampling to calculate a pseudo-replicate of the expression matrix. The resampled expression values are used thereupon to calculate p-values for the differential expression between the given groups. Only two-group comparisons are allowed for the performed t-test.

Usage

resamplingPvalues(exprMat, groups, alternative = c("two.sided", "less", "greater"), resampleMat=FALSE)

Arguments

exprMat Matrix with microarray expression values.

groups Factors for two groups that are tested for differential expression.

alternative Testing alternatives for the t-test: "two.sided", "less" or "greater".

resampleMat Boolean value, whether to retrieve the matrix of jackknife resamples or not.

Value

A result list is returned, consisting of:

p.values VNumerical vector of p-values.

resampleMat Matrix of resampled expression values.

Author(s)

Daniela Beisser

Examples

library(ALL)
data(ALL)
mat <- exprs(ALL)
groups <- factor(c(rep("A", 64), rep("B", 64)))
results <- resamplingPvalues(mat, groups, alternative="greater")
### rmSelfLoops

**Remove self-loops in a graph**

**Description**

The function removes self-loops, edges that start and end in the same node, from the network.

**Usage**

```r
rmsSelfLoops(network)
```

**Arguments**

- `network`: A graph object, either in `graphNEL` or `igraph` format.

**Value**

The graph with the removed edges.

**Author(s)**

Marcus Dittrich

**Examples**

```r
graph <- makeNetwork(c("a", "b", "c", "d", "e", "a"), c("b", "c", "d", "e", "e", "e"))
graph2 <- rmSelfLoops(graph)
edges(graph)
edges(graph2)
```

### runFastHeinz

**Calculate heuristically maximum scoring subnetwork**

**Description**

The function uses an heuristic approach to calculate the maximum scoring subnetwork. Based on the given network and scores the positive nodes are in the first step aggregated to meta-nodes between which minimum spanning trees are calculated. In regard to this, shortest paths yield the approximated maximum scoring subnetwork. This function can be used if a CPLEX license is not available to calculate the optimal solution.

**Usage**

```r
runFastHeinz(network, scores)
```
Arguments

- **network**: A graph in igraph or graphNEL format.
- **scores**: A named vector, containing the scores for the nodes of the network. All nodes need to be scored in order to run the algorithm.

Value

A subnetwork in the input network format.

Author(s)

Daniela Beisser

See Also

writeHeinzEdges, writeHeinzNodes, readHeinzTree, readHeinzGraph, runHeinz

Examples

```r
library(DLBCL)
load p-values
data(dataLym)
load graph
data(interactome)
get induced subnetwork for all genes contained on the chip
interactome <- subNetwork(dataLym$label, interactome)
p.values <- dataLym$t.pval
names(p.values) <- dataLym$label
bum <- fitBumModel(p.values, plot=TRUE)
scores <- scoreNodes(network=interactome, fb=bum, fdr=0.0001)
module <- runFastHeinz(network=interactome, scores=scores)
Not run: plotModule(module)
```

Description

The function starts HEINZ from command line. The HEINZ folder has to include the heinz.py python script and the dhea file. CPLEX has to be installed and accessible from the computer R runs on.

Usage

```r
runHeinz(heinz.folder="", heinz.e.file, heinz.n.file, N=TRUE, E=FALSE, diff=-1, n=1)
```
save3dModule

Arguments

heinz.folder    The folder which contains the heinz.py python script and the dhea file.
heinz.e.file    The HEINZ edge input file. See writeHeinzEdges
heinz.n.file    The HEINZ node input file. See writeHeinzNodes
N               Boolean value, whether to run HEINZ on nodes.
E               Boolean value, whether to run HEINZ on edges. HEINZ can run on both with N and E set to TRUE.
diff           Difference of suboptimal solutions to optimal solution in haming distance in percent. Parameter is set to -1 for optimal solution.
n               Number of optimal and suboptimal solutions, the standard n=1 delivers only the optimal solution.

Details

This function starts the integer linear programming algorithm to calculate the optimal scoring subnetwork. The algorithm might be started in the command line when the CPLEX is installed on another machine. To start it from command line use: heinz.py -e edge.file.txt -n node.file.txt -E False/True -N False/True. The results can be loaded with readHeinzTree, readHeinzGraph as a graph object.

Author(s)

Daniela Beisser

References


See Also

writeHeinzEdges, writeHeinzNodes, readHeinzTree, readHeinzGraph

save3dModule     Save a 3D plot of the network

Description

The function saves a 3D plot of a network to file, therefore it requires the plot to be open. A screenshot of the 3D plot can be saved in "pdf" format. Background of the device is changed to white for plotting. The screenshot can take several seconds for large plots.

Usage

save3dModule(file)
saveNetwork

Save undirected network in various formats

Description

The function saves a graph in a Cytoscape readable format: either in XGMML format, or as two tables, one for the nodes with attributes and one for the edges with attributes, or as .sif file. Or other standard formats like tab separated, .tgf, .net

Usage

saveNetwork(network, name="network", file, type=c("table", "XGMML", "sif", "tab", "tgf", "net"))

Arguments

- network: Network to save.
- name: Name of the network, only needed for the XGMML format.
- file: File to save to.
- type: Type in which graph shall be saved.
Details

The format types are "XGMML", "table", "sif", "tab", "tgf" and "net". XGMML (eXtensible Graph Markup and Modeling Language) is an XML format based on GML which is used for graph description. Edges, nodes and their affiliated attributes are all saved in one file. In the table format two tables are created, one for the nodes with attributes and one for the edges with attributes. The sif format creates a .sif file for the network and an node attribute (.NA) or edge attribute (.EA) for each attribute. The name of the attribute is the filename. Tab writes only the edges of the network in a tabular format. Tgf save the network to simple .tgf format. The net format writes a Pajek readable file of the network and the ET type saves the edge tags to file.

Author(s)

Daniela Beisser and Marcus Dittrich

Examples

library(DLBCL)
# create small network
library(igraph)
data(interactome)
interactome <- igraph.from.graphNEL(interactome)
small.net <- subNetwork(V(interactome)[1:16]$name, interactome)
E(small.net)$e.weight <- rep(1, length(E(small.net)))
V(small.net)$n.weight <- rep(2, length(V(small.net)))
summary(small.net)
## Not run: saveNetwork(small.net, file="example_network", name="small.net", type="XGMML")

scanFDR(Dataframe of scores over a given range of FDRs)

Description

The function generates a dataframe for a given range of FDRs.

Usage

scanFDR(fb, fdr, labels=names(fb$pvalues))

Arguments

fb  Fitted bump model.
fdr  Vector of FDRs.
labels  Data frame labels.

Value

Dataframe of scores for given p-values and a range of FDRs.
Author(s)
Marcus Dittrich

See Also
bumOptim, fitBumModel

Examples

data(pvaluesExample)
pvals <- pvaluesExample[,1]
bum <- bumOptim(pvals, starts=10)
scores <- scanFDR(fb=bum, fdr=c(0.1, 0.001, 0.0001))
scores[1:10,]

ScoreFunction

Scoring function for p-values

Description
The function calculates a score for each gene with a given FDR from the fitted beta-uniform mixture model.

Usage
scoreFunction(fb, fdr=0.01)

Arguments

fb
Model from the beta-uniform mixture fitting.

fdr
Numeric constant, from the false discovery rate a p-value threshold is calculated. P-values below this threshold are considered to be significant and will score positively, p-values above the threshold are supposed to arise from the null model. The FDR can be used to control the size of the maximum scoring subnetwork, by zooming in and out in the same region.

Value
Score vector for the given p-values.

Author(s)
Marcus Dittrich and Daniela Beisser

References
scoreNodes

Examples

```r
data(pvaluesExample)
pvals <- pvaluesExample[,1]
bum.mle <- fitBumModel(pvals, plot=FALSE)
scores <- scoreFunction(fdr=0.1, fb=bum.mle)
scores
```

---

**Description**

The function derives scores from the p-values of the nodes of a network.

**Usage**

```r
scoreNodes(network, fb, fdr=0.05)
```

**Arguments**

- `network` A network in `graphNEL` or `igraph` format.
- `fb` Fitted bum model.
- `fdr` False discovery rate.

**Value**

Ordered score vector for the nodes of the network.

**Author(s)**

Marcus Dittrich

**See Also**

`bumOptim`, `fitBumModel`

**Examples**

```r
library(DLBCL)
load p-values
data(dataLym)
load graph
data(interactome)
get induced subnetwork for all genes contained on the chip
chipGraph <- subNetwork(dataLym$label, interactome)
p.values <- dataLym$t.pval
names(p.values) <- dataLym$t.label
bum <- fitBumModel(p.values, plot=TRUE)
scoreNodes(network=chipGraph, fb=bum, fdr=0.001)
```
scoreOffset

Change score offset for 2 FDRs

Description

Function to change score offset from FDR1 to FDR2.

Usage

scoreOffset(fb, fdr1, fdr2)

Arguments

fb               Model from the beta-uniform mixture fitting.
fdr1             First false discovery rate.
fdr2             Second false discovery rate.

Value

Offset for the score of the second FDR.

Author(s)

Marcus Dittrich

See Also

bumOptim, fitBumModel

Examples

data(pvaluesExample)
pvals <- pvaluesExample[,1]
bum <- bumOptim(pvals, starts=10)
scoreOffset(bum, fdr1=0.001, fdr2=0.000001)
**sortedEdgeList**

Get a sorted edgelist

**Description**

Function to get a sorted edgelist where the source protein is alphabetically smaller than the target protein from an undirected network.

**Usage**

```r
sortedEdgeList(network)
```

**Arguments**

- `network` Undirected network in `igraph` or `graphNEL` format.

**Value**

Vector of sorted edges, where the source protein is alphabetically smaller than the target protein.

**Author(s)**

Daniela Beisser

**Examples**

```r
library(DLBCL)
data(interactome)
E.list <- sortedEdgeList(interactome)
```

---

**subNetwork**

Create a subGraph

**Description**

The function creates a subgraph with the nodes given in the `nodeList` or for these nodes including their direct neighbors.

**Usage**

```r
subNetwork(nodeList, network, neighbors=c("none", "first"))
```

**Arguments**

- `nodeList` Character vector of nodes, contained in the subgraph.
- `network` Graph that is used for subgraph extraction.
- `neighbors` Neighborhood, that is chosen for the subgraph extraction. "none" are only the selected nodes, "first" includes the direct neighbors of the selected nodes.
summary.bum

Print summary of informations about bum model

Description

The function summarizes information about the bum model.

Usage

```r
S3 method for class ' bum'
summary(object, ...)
```

Arguments

- `object`: Maximum likelihood estimator object of the beta-uniform mixture fit.
- `...`: Other graphic parameters for summary.

Author(s)

Daniela Beisser
**writeHeinz**

*Write input files for HEINZ*

**See Also**

fitBumModel, print.bum

**Examples**

```r
data(pvaluesExample)
pvals <- pvaluesExample[, 1]
mle <- fitBumModel(pvals, plot=FALSE)
summary(mle)
```

---

**Description**

Function to write the input files with the node and edge scores for HEINZ. These files are used to calculate the maximum scoring subnetwork of the graph. The node scores are matched by their names to the nodes of the network, therefore if nodes.scores are provided as a vector or matrix, the vector has to be named, respectively the matrix has to be provided with rownames. If the network contains more nodes than the score vector, the nodes without a score are scored with the average over all nodes. If the nodes should not be scored and used for the calculation of the maximum scoring subnetwork, draw a subnetwork (subNetwork) first and use this for the argument network. The edge scores can be provided as a vector or matrix as the edge.scores argument. If no scores are provided in the arguments, but the use.node.scores or use.edge.scores argument is set to TRUE, it will be automatically looked for the "score" attribute of the nodes and edges of the network.

**Usage**

```r
writeHeinz(network, file, node.scores=0, edge.scores=0, use.node.score=FALSE, use.edge.score=FALSE)
```

**Arguments**

- `network`: Network from which to calculate the maximum scoring subnetwork.
- `file`: File to write to.
- `node.scores`: Numeric vector or matrix of scores for the nodes of the network. Names of the vector or rownames of the matrix have to correspond to the PPI identifiers of the network. The scores can also be used from the node attribute "score", given one score for each node.
- `edge.scores`: Numeric vector of scores for the edges of the network. Edge scores have to be given in the order of the edges in the network. It is better to append the edge scores as the edge attribute "score" to the network: `V(network)$score` and set use.scores to TRUE.
- `use.node.score`: Boolean value, whether to use the node attribute "score" in the network as node scores.
- `use.edge.score`: Boolean value, whether to use the edge attribute "score" in the network as edge scores.
writeHeinzEdges

Author(s)
Daniela Beisser

See Also
writeHeinzNodes and writeHeinzEdges

Examples
library(DLBCL)
# use Lymphoma data and graph to find module
data(interactome)
data(dataLym)
# get induced subnetwork for all genes contained on the chip
chipGraph <- subNetwork(dataLym$label, interactome)
score <- dataLym$score001
names(score) <- dataLym$label
## Not run: writeHeinz(network=chipGraph, file="lymphoma_001", node.scores=score, edge.scores=0)

writeHeinzEdgesWrite edge input file for HEINZ

Description
Function to write an input file for HEINZ with edge scores. If no edge scores are used, they are set
to 0. In order to run HEINZ, a node input and edge input file are needed.

Usage
writeHeinzEdges(network, file, edge.scores=0, use.score=FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>network</td>
<td>Network from which to calculate the maximum scoring subnetwork.</td>
</tr>
<tr>
<td>file</td>
<td>File to write to.</td>
</tr>
<tr>
<td>edge.scores</td>
<td>Numeric vector of scores for the edges of the network. Edge scores have to be</td>
</tr>
<tr>
<td></td>
<td>given in the order of the edges in the network. It is better to append the</td>
</tr>
<tr>
<td></td>
<td>edge scores as the edge attribute &quot;score&quot; to the network: \texttt{V(network)$score} and set</td>
</tr>
<tr>
<td></td>
<td>\texttt{use.score} to TRUE.</td>
</tr>
<tr>
<td>use.score</td>
<td>Boolean value, whether to use the edge attribute &quot;score&quot; in the network as edge scores.</td>
</tr>
</tbody>
</table>

Author(s)
Daniela Beisser
writeHeinzNodes

See Also

writeHeinzNodes and writeHeinz

Examples

library(DLBCL)
# use Lymphoma data and graph to find module
data(interactome)
data(dataLym)
# get induced subnetwork for all genes contained on the chip
chipGraph <- subNetwork(dataLym$label, interactome)
# remove self loops
graph <- rmSelfLoops(chipGraph)
## Not run: writeHeinzEdges(network=graph, file="lymphoma_edges_001", use.score=FALSE)
score <- dataLym$score001
names(score) <- dataLym$label
## Not run: writeHeinzNodes(network=graph, file="lymphoma_nodes_001", node.scores=score)

# write another edge file with edge scores
library(igraph)
data(interactome)
interactome <- igraph.from.graphNEL(interactome)
small.net <- subNetwork(V(interactome)[1:16]$name, interactome)
scores <- c(1:length(E(small.net)))
E(small.net)$score <- scores
## Not run: writeHeinzEdges(network=small.net, file="test_edges", use.score=TRUE)

writeHeinzNodes(network, file, node.scores=0, use.score=FALSE)

Description

Function to write an input file with the node scores for HEINZ. This file is used together with the edge input file to calculate the maximum scoring subnetwork of the graph. The scores are matched by their names to the nodes of the network, therefore if nodes.scores are provided as a vector or matrix, the vector has to be named, respectively the matrix has to be provided with rownames. If the network contains more nodes than the score vector, the nodes without a score are scored with the average over all nodes. If the nodes should not be scored and used for the calculation of the maximum scoring subnetwork, draw a subnetwork subNetwork first and use this for the argument network.

Usage

writeHeinzNodes(network, file, node.scores=0, use.score=FALSE)
writeHeinzNodes

Arguments

network  Network from which to calculate the maximum scoring subnetwork.
file     File to write to.
node.scores Numeric vector or matrix of scores for the nodes of the network. Names of the vector or rownames of the matrix have to correspond to the PPI identifiers of the network. The scores can also be used from the node attribute "score", given one score for each node.
use.score Boolean value, whether to use the node attribute "score" in the network as node scores.

Details

Use scoreNodes or scoreFunction to derive scores from a vector of p-values.

Author(s)

Daniela Beisser

See Also

writeHeinzEdges and writeHeinz

Examples

# create small network
library(DLBCL)
data(interactome)
small.net <- subNetwork(nodes(interactome)[0:15], interactome)
scores <- c(1:length(nodes(small.net)))
names(scores) <- nodes(small.net)
## Not run: writeHeinzNodes(network=small.net, file="test_nodes", node.scores=scores)

# use Lymphoma data and graph to find module
library(DLBCL)
data(interactome)
data(dataLym)
# get induced subnetwork for all genes contained on the chip
chipGraph <- subNetwork(dataLym$label, interactome)
## Not run: writeHeinzEdges(network=chipGraph, file="lymphoma_edges_001", use.score=FALSE)
score <- dataLym$score001
names(score) <- dataLym$label
## Not run: writeHeinzNodes(network=chipGraph, file="lymphoma_nodes_001", node.scores=score)
Index

aggrPvals, 4, 25
BioNet (BioNet-package), 3
BioNet-package, 3
bumOptim, 4, 8, 13, 20, 21, 34–36
compareNetworks, 6
consensusScores, 7
fbum, 8, 10
fbumLL, 9
fdrThreshold, 10
fitBumModel, 5, 8, 10, 11, 13, 20, 21, 25, 34–36, 39
getCompScores, 12
getEdgeList, 12
hist.bum, 5, 13, 13
largestComp, 14
largestScoreComp, 15
loadNetwork.sif, 16, 17, 18
loadNetwork.tab, 17
makeNetwork, 17
mapByVar, 18
permutateNodes, 19
piUpper, 20
plot.bum, 5, 20, 21
plot3dModule, 21, 24, 32
plotLLSurface, 22
plotModule, 22, 23, 32
print.bum, 24, 39
pvaluesExample, 25
readHeinzGraph, 26, 30, 31
readHeinzTree, 27, 30, 31
resamplingPvalues, 28
rmSelfLoops, 29
runFastHeinz, 29
runHeinz, 30, 30
save3dModule, 22, 31
saveNetwork, 18, 32
scanFDR, 33
scoreFunction, 34, 42
scoreNodes, 35, 42
scoreOffset, 36
sortedEdgeList, 37
subNetwork, 37, 39, 41
summary.bum, 25, 38
writeHeinz, 39, 41, 42
writeHeinzEdges, 30, 31, 40, 40, 42
writeHeinzNodes, 30, 31, 40, 41, 41